Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Электрический глаз - Владимир Андреевич Мезенцев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Почему же в таком случае электрон, вырываемый в этом месте волной, всегда имеет одну и ту же энергию, независимо от силы света?

«Это подобно тому, — писал по этому поводу один известный физик, — как если бы морские волны, ударяющиеся о берег, удвоив свою высоту, оказались только в состоянии разбросать больше гальки, чем прежде, но не могли заставить каждый камешек покинуть своё место более охотно и отбросить его на большее расстояние, чем первоначальные малые волны, которые лишь слегка омывали эти камешки».

А когда стали исследовать зависимость энергии, с которой вылетают из вещества электроны, от длины волны падающего на вещество света, то обнаружили и ещё один факт, совершенно необъяснимый с точки зрения волновой теории света: оказалось, что с уменьшением длины волны эта энергия, а значит и скорость электронов, возрастает!

Как можно объяснить все эти загадочные закономерности фотоэффекта?

Ответ даёт так называемая квантовая теория света.

Вместе с тем она очень просто объясняет и вопрос, который, вероятно, уже возник у читателя — каким именно образом свет выбивает из различных тел электроны.

4. «Бомбардировка» светом

Что такое свет? Какова его природа?

Этот вопрос очень труден. Долгое время он оставался для учёных загадкой.

В XIX веке свет считался потоком электромагнитных волн, и только. Однако целый ряд явлений, связанных с поглощением и излучением света, в том числе и явление фотоэффекта, уже в самом начале XX века заставил физиков отказаться от такого взгляда на природу света. Дело в том, что в этих явлениях свет ведёт себя не как волна, а как поток отдельных мельчайших частичек.

Однако в других случаях свет ясно показывает свои волновые свойства.

Что же получается?

Выходит, что наше представление о свете, как только о волнах, недостаточно: оно не отражает всех свойств света.

Теперь установлено, что природа света значительно более сложна, чем, скажем, природа морских волн или потока дробинок, вылетающих из ружья.

Свет — это действительно электромагнитные волны, но испускание и поглощение света происходят не непрерывно, а отдельными порциями. Эти порции носят название квантов.

Каждый атом вещества может поглотить только целое число квантов световой энергии, т. е. один, два и т. д., но никак не половину или, скажем, полтора кванта.

Величина энергии каждого кванта не одинакова. Сна зависит от длины волны. Чем длиннее волна, тем меньше энергия кванта. Таким образом, квант красного излучения, например, несёт меньшую энергию, чем квант синего света. Но энергия как тех, так и других квантов, да и вообще любых квантов видимого света, чрезвычайно мала.

Квантовая теория очень просто объясняет фотоэлектрический эффект и его закономерности.

Понятна зависимость выхода фотоэлектронов от длины волны. Ведь чем меньше длина волны, тем больше энергия квантов этого света и, следовательно, тем скорее эти кванты вырвут электроны.

Таким образом, свет как бы «бомбардирует» различные тела. Такая «бомбардировка» поверхности вещества светом различной длины волны напоминает (но только напоминает) стрельбу из охотничьих ружей. Действительно, каждый охотник знает, что на мелкую дичь употребляют самую мелкую дробь — «бекасинник». На уток и гусей идёт дробь покрупнее. А на крупную дичь — на козлов, кабанов и медведей — необходима либо пуля, либо очень крупная дробина. Если вы будете стрелять по медведю бекасинником, из этого ничего хорошего не выйдет — медведь убит не будет; каждая дробинка в отдельности не сможет пробить его толстой шкуры. Мелкая дробь в этом случае, как и кванты малых размеров (малые порции энергии) не достигнет цели. Но будет достаточно лишь одной пули, несущей большой запас энергии, чтобы медведь был убит.

Так и при «бомбардировке» светом. Если энергии каждого отдельного кванта недостаточно для того, чтобы совершить «работу выхода», необходимую для вырывания фотоэлектрона из тела, то фотоэффект вообще не будет иметь места, сколько бы света ни падало на тело. Вот почему и не наблюдается фотоэлектрический эффект даже при освещении сильным светом, если только длина волны этого света настолько велика, что соответствующая порция энергии (квант) меньше «работы выхода». Если же квант достаточно «энергичен», чтобы при благоприятных условиях вырвать из тела электрон, то ясно, что чем больше квантов будет падать на тело, тем больше будет вырвано электронов, т. е. тем сильнее будет фотоэлектрический ток в пространстве вокруг этого тела.

Так же просто объясняются, с квантовой точки зрения, и другие закономерности фотоэффекта.

Действительно, поскольку определённая частица вещества может поглощать только целый квант, то для неё не имеет значения, сколько вообще квантов падает на тело. Для каждой частицы существенно другое — а именно, величина энергии поглощаемого ею кванта. Процесс, происходящий в каждом атоме, не зависит от количества квантов, то есть от общей падающей энергии, а определяется только энергией каждого отдельного кванта. Поглощённый атомом квант световой энергии увеличивает запас энергии электрона. При этом часть энергии кванта тратится на работу вырывания электрона из тела, а остаток энергии передаётся вылетевшему электрону. Понятно, что этот остаток будет тем больше, чем больше была энергия поглощённого кванта, то есть чем меньше была длина волны света. Значит, чем больше была энергия поглощённого кванта, тем больше будут и та максимальная энергия и та скорость, которые будет иметь вылетевший электрон.

Таково объяснение фотоэлектрического эффекта.

Изученный А. Г. Столетовым фотоэффект называется внешним нормальным фотоэффектом. Изложенные здесь краткая теория и законы фотоэффекта относятся именно к внешнему нормальному фотоэффекту. Однако кроме этого явления были открыты и другие фотоэлектрические эффекты: 1) внешний селективный (избирательный) фотоэффект и 2) внутренний фотоэффект. Об использовании этих явлений будет рассказано в следующей главе без изложения их теории.

Каким же образом явление фотоэффекта используется в тех приборах, о которых мы говорили в самом начале нашей книжки — в фотоэлементах? Как устроены эти приборы?

Об этом рассказывается в следующей главе.

II. КАК УСТРОЕНЫ ФОТОЭЛЕМЕНТЫ

1. Фотоэлементы вакуумные и газонаполненные

Итак, свет, падая на различные тела, способен «выбивать» из них электроны, способен рождать электрический ток в пространстве. Нужно лишь для разных тел подбирать лучи с соответствующей длиной волны.

Возникает заманчивая мысль — а нельзя ли каким-либо путём использовать этот фотоэлектрический ток? Можно!

На использовании этого тона и работают замечательные физические приборы — фотоэлементы.

По существу первый фотоэлемент был построен уже самим Столетовым при его опытах по изучению фотоэффекта.

Посмотрите на рисунок 4.


Рис. 4. Схема простейшего фотоэлемента.

Вы видите здесь маленький стеклянный пузырёк. Воздух из него откачан. Внутрь этого пузырька впаяны две небольшие проволочки, соединённые с двумя металлическими пластинками. Наружные концы этих проволок присоединены к гальванометру. Сбоку пузырька имеется небольшой отросток, закрытый кварцевым окошком, прозрачным и для видимых, и для ультрафиолетовых лучей. Иными словами, перед нами, по существу, та установка Столетова без батареи, с помощью которой он наблюдал возникновение положительного электрического заряда на незаряженной пластинке при её освещении. Вместе с тем, этот прибор является и первым простейшим фотоэлементом.

Пока лучи не действуют на пластинку, тока в цепи нет. Но достаточно осветить пластинку, как в тот же момент стрелка гальванометра отклонится — в пластинках и в проволочках возникает ток электронов. Этот ток идёт от пластинки, на которую падает свет, через безвоздушное пространство внутри пузырька, к другой пластинке, а оттуда по проволоке, через гальванометр, снова к первой пластинке, т. е. по всей цепи (электрон заряжен отрицательно, а направление тока принято считать совпадающим с направлением движения положительных электрических зарядов, поэтому направление электрического тока в фотоэлементе будет обратным движению фотоэлектронов, то есть между пластинками фотоэлемента — от анода к катоду, а во внешней цепи — от катода к аноду).

Таким образом, здесь энергия лучей, поглощённых металлической пластинкой, превращается в энергию электрического тока.

Отрицательную пластинку фотоэлемента, на которую падают лучи света, принято называть катодом. Вторую пластинку называют анодом.

Однако чувствительность к свету этого фотоэлемента очень невелика: при освещении катода в нём возникает слишком слабый электрический ток. Использовать его для каких-либо практических целей ещё нельзя.

Современные фотоэлементы устроены уже иначе, но по сути дела они не отличаются от своего предка. Пришлось лишь немало поработать над тем, чтобы увеличить их чувствительность к свету и сделать их, таким образом, пригодными для практического использования (о применении фотоэлементов рассказывается в III главе).

Теперь изготовляются самые различные типы фотоэлементов. При этом фотоэлементы отличаются друг от друга не только своим устройством. Различные фотоэлементы по-разному «чувствуют» различные световые лучи. В одних фотоэлементах электрический ток возникает только при освещении, скажем, зелёными или жёлтыми лучами.

Другие работают в том случае, когда на них падает красный свет (именно в этих фотоэлементах используется избирательный, селективный, фотоэффект). Имеются фотоэлементы, которые «чувствуют» только ультрафиолетовые лучи, и т. д.

Кроме того, современные фотоэлементы делятся на две большие группы: вакуумные и газонаполненные.

Вакуумные — это такие фотоэлементы, у которых воздух из стеклянного пузырька откачан по возможности полностью.

Другие фотоэлементы — газонаполненные — заполняют каким-либо инертным газом, который не действует химически на катод, не портит его. Обычно для этой цели применяют газ аргон.

Схема устройства современного фотоэлемента показана на рисунке 5.


Рис. 5. Схема фотоэлемента с центральным анодом.

Светочувствительный слой — катод — покрывает почти всю поверхность стеклянного пузырька, за исключением! небольшого окошка для доступа света. Анод же имеет вид небольшой проволочной петли или дощечки, укреплённой внутри этого пузырька. Такие фотоэлементы производятся на наших заводах в настоящее время. Внешний вид подобного фотоэлемента вы уже видели в начале книжки, на рисунке 1.

Такая форма фотоэлементов выгодна тем, что в них очень хорошо используется свет: лучи, отражённые от какого-нибудь места катода, обязательно попадут на другое место его, затем на третье и т. д. В итоге в этом случае поглощается и используется почти весь свет, попавший внутрь фотоэлемента.

Как можно увеличить светочувствительность фотоэлемента?

Первый и простейший способ увеличения чувствительности этого прибора — как вакуумного, так и газонаполненного — к свету заключается в тем, что в цепь его включают источник электродвижущей силы — батарею с напряжением в несколько десятков, а иногда и в несколько сотен вольт. Отрицательный полюс этой батареи соединяют, как показано на рисунке 6, с катодом фотоэлемента, а положительный полюс — с его анодом.


Рис. 6. Схема фотоэлемента с электрической батареей.

Конечно, и в этом случае в темноте через фотоэлемент ток идти не будет, так как пластинки фотоэлемента разделены безвоздушным пространством или изолирующим слоем газа[3]. Но если катод фотоэлемента осветить, то с батареей мы получим при том же самом освещении во много раз более сильный ток, чем без батареи.

Заполнение фотоэлемента газом также значительно повышает его чувствительность. При одном и том же свете мы можем получить от газонаполненного фотоэлемента ток в несколько раз более сильный, чем от вакуумного. Это объясняется тем, что электроны, быстро летящие от катода к аноду, сталкиваются по пути с атомами газа и ионизуют их, т. е. выбивают из них электроны. После такого столкновения вместо одного первоначального электрона получается два электрона: один первоначальный и один новый, выбитый из атома газа. Оба они летят к аноду. На пути они снова сталкиваются с атомами газа и также ионизуют их. Таким образом вместо двух электронов получается уже четыре. Эти четыре электрона, при новых столкновениях, дают восемь электронов, и т. д. Другими словами — число свободных электронов, летящих к аноду, очень быстро нарастает. Понятно, что такое усиление фототока тем значительнее, чем выше напряжение внешней батареи.

Однако при очень высоком напряжении сам газ начинает проводить электрический ток; в результате через фотоэлемент пойдёт сильный ток и без освещения его: поэтому напряжение от внешней батареи нельзя неограниченно увеличивать. Практически газонаполненные фотоэлементы работают при напряжении в 250–300 вольт.

Отсюда, между прочим, следует, что у газонаполненных фотоэлементов сила фототока не точно пропорциональна количеству падающей световой энергии.

Какие вещества применяются в современных фотоэлементах для изготовления светочувствительной пластинки — катода?

Как уже говорилось, фотоэлектрический эффект можно наблюдать на всех металлах. Однако большинство из них — такие, как медь, железо, платина, никель, вольфрам — чувствительны только к невидимым ультрафиолетовым лучам. Эти металлы вовсе не испускают электронов под действием видимых лучей, а так как обычные источники света — солнце и электрические лампы — содержат ультрафиолетовые лучи в сравнительно небольшом количестве, то все эти металлы, очевидно, не подходят для изготовления катодов фотоэлементов. Только так называемые щелочные металлы: калий, натрий и особенно цезий, чувствительны к видимым лучам. Вот они-то и применяются на практике для изготовления катодов фотоэлементов.

Не следует думать, однако, что катод современного высокочувствительного фотоэлемента представляет собой просто пластинку или толстый массивный слой какого-либо щелочного металла. Чувствительность такого фотоэлемента к свету была бы очень невелика. Опыты показали, что если на металлический слой, скажем на слой серебра или платины, нанести плёнку щелочного металла толщиной всего в один слой атомов, то чувствительность такой плёнки значительно больше, чем чувствительность массивного слон того же щелочного металла. Ещё больше оказывается чувствительность плёнки щелочного металла тогда, когда она нанесена не прямо на слой другого металла, а лежит на тончайшем слое какого-нибудь химического соединения этого щелочного металла, например соединения его с кислородом.

Таким образом, современные так называемые «сложные» катоды фотоэлементов состоят из трёх слоёв. Внизу лежит слой какого-нибудь металла — чаще всего это тонкая плёнка серебра, нанесённая на стекло пузырька фотоэлемента; на этот металлический слой нанесена тончайшая плёнка соединения того или иного щелочного металла с кислородом (окись металла); и уже поверх этой плёнки лежит слой чистого щелочного металла. Таксе устройство имеет, например, катод широко применяемого на практике кислородно-цезиевого фотоэлемента. Здесь на серебре лежит слой окиси цезия, а поверх него — плёнка металла цезия.

Такие сложные катоды в одном существенно отличаются от катодов из чистых металлов. Чувствительность катодов из чистых металлов всё время возрастает, если их освещать лучами всё меньшей и меньшей длины волны. У сложных катодов это не так. Чувствительность их к свету особенно- велика лишь в какой-нибудь одной определённой области длин волн. Она уменьшается как в сторону волн меньшей длины, так и в сторону более длинных волн.

Например, кислородно-цезиевый фотоэлемент особенно чувствителен к красным лучам, которых имеется очень много в излучении обычных источников света.

Эта способность сложных катодов «выбирать» себе особую, «излюбленную» область лучей и получила название «избирательного», «селективного», фотоэффекта.

Широкое распространение получили в последние годы и фотоэлементы с катодом из соединения сурьмы с цезием. Сильнее всего эти фотоэлементы «чувствуют» сине-зелёные лучи. Чувствительность их настолько высока, что при освещении светом одной и той же яркости они дают ток в несколько раз более сильный, чем кислородно-цезиевые фотоэлементы. Отличаются также они исключительно большим сроком службы. Сурьмяно-цезиевые фотоэлементы позволяют передавать фототелеграммы, написанные цветными чернилами и карандашами — синими, красными, зелёными. Большая заслуга в разработке этих фотоэлементов принадлежит нашим учёным.

Сурьмяно-цезиевые и кислородно-цезиевые фотоэлементы — это основные типы фотоэлементов, применяемые в настоящее время в технике. Все они в больших количествах производятся на наших заводах.

2. Вторично-электронные трубки

Все только что описанные способы увеличения чувствительности фотоэлементов зачастую, однако, недостаточны для практических целей. Слишком слаб ещё получаемый в фотоэлементах электрический ток. В самом деле, если, например, хороший фотоэлемент поставить на расстоянии в один метр от электрической лампочки мощностью в сто ватт, то в нём возникнет ток силой приблизительно всего лишь в одну стотысячную долю ампера. Иными словами, этот ток примерно в сто тысяч раз слабее, чем ток, идущий через нашу электрическую лампу. А во многих случаях токи, которые мы получаем от фотоэлементов, ещё в сотни тысяч и миллионы раз слабее.

Чтобы усилить эти слабые токи до нужной величины, до недавнего времени существовал только один способ. Электрический ток, возникающий в фотоэлементе, усиливают при помощи радиоламп. При этом добиваются усиления фототока в миллионы и десятки миллионов раз. К сожалению, такие устройства довольно сложны.

Но вот, около двадцати лет назад советский учёный Л. А. Кубецкий нашёл необычайно простой и остроумный способ обойти эти затруднения. Он добился усиления фототока в десятки и сотни тысяч раз без помощи радиоламп. Вот в чём заключается идея построенного Кубецким прибора, названного им вторично-электронной трубкой.

Уже давно было известно, что если «бомбардировать» какое-либо тело потоком достаточно быстрых электронов, то они могут вырывать из поверхности этого тела в окружающее пространство новые, так называемые вторичные электроны.

Вот это явление, получившее название вторичной электронной эмиссии (т. е. испускания), и используется во вторично-электронных трубках. В них располагается друг за другом большое число (11–13) пластинок, покрытых веществами, дающими большую вторичноэлектронную эмиссию (рис. 7).


Рис. 7. Схема вторично-электронной трубки Л. А. Кубецкого.

Между каждой парой таких пластинок или, как их называют, вторичных катодов или эмиттеров (а также между первым эмиттером и катодом, с одной стороны, и последним эмиттером и анодом — с другой стороны) включены батареи с напряжением около 100 вольт. Благодаря этому электроны, летящие с катода на первую пластинку, с первой пластинки на вторую, со второй на третью и т. д., приобретают на пути очень большую скорость.

Представьте себе, что из катода трубки Кубецкого под действием света вырвался один электрон и что, попав на первую пластинку, он благодаря приобретённой скорости выбил из неё два новых, вторичных, электрона. Но эти два электрона летят ко второй пластинке. Ударившись об неё, они выбьют из пластинки уже четыре электрона. Из третьей пластинки будет выбито 8 электронов; из четвёртой — 16, из пятой — 32 и т. д. Легко рассчитать, что в этом случае окончательный ток — после 11 пластинок — эмиттеров — будет примерно в 2 000 раз сильнее, чем первичный ток, возникший под действием света на катод! А так как фактически добиваются, что каждый электрон выбивает из эмиттера не два электрона, а больше, то фототок удаётся усиливать не в две тысячи, а в миллионы раз!

А для того, чтобы заставить все электроны, вылетающие из катода или эмиттера, попадать на следующий эмиттер, Кубецкий поместил трубку, в которой находятся анод, катод и эмиттеры, в поле электромагнита. Магнит отклоняет движущиеся электроны и направляет их, куда нужно. А позднее были разработаны новые конструкции вторично-электронных трубок; в них можно обойтись и без магнитов.

Над усовершенствованием вторично-электронных трубок много работал советский физик профессор Тимофеев.

В настоящее время у нас имеется уже много различных типов этих замечательных приборов. Они всё шире и шире применяются на практике.

В 1948 году работы Л. А. Кубецкого были удостоены Сталинской премии.

3. Фотосопротивления и вентильные фотоэлементы

Во всех фотоэлементах, с которыми вы познакомились, свет вырывает электроны из поверхности катода и выбрасывает их в окружающее пространство. Такой фотоэлектрический эффект, как уже было сказано, называют внешним. Но, оказывается, во многих телах электроны под действием света не вырываются в окружающее пространство, а лишь слегка смещаются внутри тела. Это явление, названное внутренним фотоэлектрическим эффектом, было обнаружено впервые ещё около 70 лет тому назад.

Было замечено, что сопротивление некоторых веществ прохождению через них электрического тока сильно уменьшается при освещении. Первоначально это наблюдалось на элементе селене. В обычных условиях селен проводит электрический ток очень плохо. Его электрическое сопротивление примерно в 70 миллиардов раз больше, чем сопротивление хорошего проводника, например меди, Если включить в цепь батареи пластинку селена, как показано на рисунке 8, то, пока свет не действует на селен, ток в цепи очень слаб, так как сопротивление селена велико. Но стоит лишь осветить селеновую пластинку, как сопротивление её резко уменьшается; ток в цепи при том же напряжении батареи сильно возрастает, Чем сильнее будет действующий на селеновую пластинку свет, тем меньше будет сопротивление селена и тем сильнее ток в цепи.

Такое изменение сопротивления вещества под влиянием освещения и объясняется внутренним фотоэффектом. На рисунке 8 вы видите, по сути дела, прибор, в котором, так же как в описанных выше фотоэлементах, сила тока регулируется силой падающего на прибор света. Такого рода приборы получили название фотосопротивлений.


Рис. 8. Схема фотосопротивления.

Кроме селеновых фотосопротивлений, в последнее время появились фотосопротивления и с другими светочувствительными веществами. Однако практически все эти приборы менее удобны, чем фотоэлементы, и применяются они поэтому сравнительно редко.

Зато имеются другие фотоэлементы, основанные также на внутреннем фотоэлектрическом эффекте.

Уже сравнительно давно было известно, что если на медной пластинке вырастить (путём нагревания на воздухе до высокой температуры) слой полупроводника электричества (вещества, очень плохо проводящего электрический ток) — закиси меди — соединения меди с кислородом, то такая пластинка будет обладать поразительным свойством: она будет пропускать электрический ток в одну сторону и не пропускать его в другую! А позднее стало известно, что таким же свойством обладают и многие другие металлы, на которые нанесён слой полупроводника, например железные пластинки, покрытые слоем селена, и другие.

Во всех этих случаях на границе между металлом и полупроводником возникает особый, так называемый «запирающий» или «вентильный» слой, через который электроны могут свободно проходить только в одну сторону, а именно — от металла к полупроводнику. В обратном же направлении — от полупроводника к металлу — электроны через этот слой проходить не могут.

Схематический разрез такой пластинки с односторонней проводимостью изображён на рисунке 9.




Поделиться книгой:

На главную
Назад