Если пропустить через трубку электрический ток, передающийся, как известно, множеством свободно движущихся электронов, то эти электроны будут сталкиваться с отдельными атомами газа. При этом световой электрон атома может «перескочить» со своей орбиты на другую, более высокую (с более высоким энергетическим уровнем) (рис. 5.3), а затем спонтанно (т. е. совершенно самопроизвольно, в непредсказуемый момент времени) вернуться на прежнюю орбиту.
Рис. 5.3. Электрон движется по более высокой орбите; такое состояние атома называется возбужденным
Освобожденную при этом энергию он отдаст в виде светового излучения (рис. 5.4) и продолжит движение по низкой орбите (рис. 5.5). Таким образом возникает световая волна — точно так же, если бросить в воду камень, возникает волна на поверхности воды.
Рис. 5.4. С верхнего желоба электрон переходит обратно на нижний, испуская при этом энергию в виде световой волны
Рис. 5.5. Электрон снова движется по прежнему, низкоэнергетическому, желобу
Естественно, такую судьбу разделяют множество световых электронов, находящихся в газоразрядной трубке. Они производят световые волны; общая картина при этом сходна с той, что получалась бы на поверхности воды от беспорядочного забрасывания ее камнями, т. е. совершенно хаотичное движение, состоящее из отдельных волновых цугов, напоминающих спагетти. При увеличении силы тока, пропускаемого через газ, в возбужденное состояние переходит все большее количество атомов; можно ожидать, что плотность цугов также увеличится. Многие физики именно так и полагали.
В лазере же происходит нечто совершенно иное; я первым смог показать это в своей теории лазера (и до сих пор горжусь этим). Вместо беспорядочной толкотни в лазере возникнет абсолютно упорядоченный, практически бесконечный волновой цуг. Эксперименты, которые затем проводились в разных лабораториях по всему миру, целиком и полностью подтвердили этот прогноз. В этом, собственно, и заключается разительное отличие света обычной лампы от излучения лазера. Поясним происходящее при этом чудо, используя аналогию.
Рис. 5.6. Принцип действия лампы и лазера. Человечки с шестами стоят на берегу канала, наполненного водой. На верхней картинке они опускают свои шесты в воду независимо друг от друга. Бурное движение водной поверхности соответствует световому полю обычной лампы. Изображенные на нижней картинке человечки погружают свои шесты в воду синхронно; возникающая при этом синхронная волна соответствует свету лазера
Вообразим себе атомы в виде маленьких человечков, стоящих с шестами на берегу наполненного водой канала (рис. 5.6); вода при этом будет символизировать световое поле. Находящаяся в состоянии покоя поверхность воды соответствует случаю, в котором световое поле отсутствует, т. е. темноте. Когда человечки погружают свои шесты в воду, состояние покоя нарушается, и поверхность приходит в движение — появляются волны. Эта ситуация соответствует возникновению вокруг атомов световых полей. Это движение совершенно неупорядочено — такое имеет место в обычной лампе. Однако представим, что человечки действуют согласованно, как по команде, и опускают шесты в воду одновременно, отчего на поверхности воды возникает равномерное движение. Будь наши атомы-человечки настоящими людьми, было бы понятно, каким образом достигается слаженность действий: рядом стоит какой-то босс или шеф и выкрикивает команду, точно регулирующую моменты спуска и подъема шестов. В то же время лазер является примером упорядоченного состояния, реализуемого посредством самоорганизации: хаотичное движение здесь переходит в упорядоченное; для синергетики лазер оказывается просто незаменимым, образцово-показательным примером, который можно использовать в качестве аллегории для очень многих процессов вплоть до социальных.
Однако прежде чем мы двинемся дальше, нам следует в очередной — и отнюдь не в последний! — раз углубить основную идею синергетики, иначе может показаться, что мы бездумно и не имея к тому серьезных оснований переносим знания о физической природе мира на сложнейшие явления, имеющие место в человеческом обществе. На примере лазера мы можем без лишних усложнений разобраться в некоторых вопросах, и это — пусть всего на шаг — приблизит нас к пониманию процессов, протекающих в живой природе.
Самоорганизация в лазере
Рассмотрим подробнее процессы, протекающие в лазере — это поможет нам раскрыть тайну самоорганизации. Лазер отличается от обычной газоразрядной трубки только наличием зеркал (рис. 5.7).
Рис. 5.7. Устройство типичной лазерной установки
Зеркала нужны для того, чтобы свет, движущийся вдоль оси трубки, как можно дольше оставался внутри трубки (рис. 5.8). При этом одно из установленных зеркал частично проницаемо, благодаря чему некоторое количество света излучается наружу. Почему же желательно по возможности дольше удерживать свет внутри лазерной установки?
Рис. 5.8. Световые волны, оказавшись между зеркалами, могут вести себя по-разному: те, что движутся в направлении, точно совпадающем с осью трубки, отражаются от зеркал и остаются в лазере более продолжительное время, а все остальные быстро покидают пределы трубки
При таких условиях начинается процесс, еще в начале двадцатого века предсказанный Эйнштейном. Уже возникшие световые волны могут принудить возбужденные световые электроны к синхронным колебаниям. С электронами происходит то же самое, что и с увлекшимся чечеточником, который усиливает ритм, задаваемый музыкантами, и под конец, обессилев и целиком выложившись, буквально валится с ног. Электрон усиливает световую волну, т.е. поднимает ее гребень, до тех пор, пока не отдаст волне всю свою энергию и не вернется в начальное состояние — состояние покоя. Поскольку благодаря зеркалам световые волны относительно долго остаются внутри лазера, они могут подчинять себе все больше и больше световых электронов, используя их для того, чтобы увеличить собственную амплитуду, т. е. высоту гребня волны. Но и волны с одинаковой амплитудой все же могут отличаться друг от друга: одинаковые по высоте гребни волн могут следовать на разном расстоянии друг от друга (рис. 5.9).
Рис. 5.9. «Волна волне рознь»: примеры волн с различными фазами, т. е. с разными расстояниями между гребнями
Таким образом, у «истоков» каждого лазерного излучения стоят одновременно совершенно разные волны, успевшие на данный момент сформироваться благодаря усилиям нескольких особо «прытких» электронов. Волны вступают в конкурентную борьбу за усиление своего влияния на возбужденные электроны. Сами электроны тоже по-разному относятся к различным волнам, зачастую при передаче энергии отдавая какой-то определенной волне некоторое предпочтение; предпочтением этим пользуются те волны, частота которых оказывается ближе всего к «внутреннему ритму» самого электрона. И хотя такие особые волны часто имеют лишь очень небольшое преимущество, степень их влияния лавинообразно растет, и в конце концов они одерживают верх над остальными. В результате такого тотального подавления вся энергия световых электронов оказывается собрана в единую абсолютно равномерно колеблющуюся волну. И наоборот: стоит только какой-то волне добиться успеха, как она подчиняет себе каждый вновь возбуждаемый электрон, навязывая ему свою собственную частоту колебаний. Возникающая таким образом новая волна определяет своим поведением порядок в лазере — она играет роль параметра порядка; термин этот уже не раз нами упоминался.
Поскольку параметр порядка вынуждает отдельные электроны двигаться совершенно синхронно и тем самым определяет их действия, мы снова можем сказать, что параметр порядка «порабощает», подчиняет себе отдельные элементы системы. Верно и обратное: параметр порядка (т. е. световая волна) есть результат синхронных колебаний отдельных электронов. Возникновение параметра порядка, с одной стороны, и когерентного поведения электронов — с другой, взаимно обуславливают друг друга; в таких случаях принято говорить о циклической причинности. Перед нами еще один типичный пример синергетического поведения. Для обеспечения синхронности колебаний электронов должен существовать параметр порядка (в данном случае эту роль выполняет световая волна). Однако существование самой световой волны возможно только благодаря синхронным колебаниям электронов. Словом, все выглядит так, что мы должны бы задействовать некую высшую силу, единожды создавшую некое изначальное состояние упорядоченности, которое затем сможет самостоятельно поддерживать свое существование. Однако в действительности все происходит иначе. В самом начале имеет место конкурентная борьба и процесс отбора, в результате которого все электроны становятся «рабами» какой-то определенной волны. При этом интересно отметить, что все волны, совершенно случайно — спонтанно — порожденные электронами, должны быть рассортированы в соответствии с законами конкурентной борьбы, т. е. пройти через некий отбор. Перед нами типичный для синергетики пример взаимоотношений между случайностью и необходимостью: «случайность» здесь воплощена в спонтанном излучении, а «необходимость» — в неумолимом законе конкуренции и отбора.
Лазер: открытая система с фазовым переходом
Можно ли любую лампу превратить в лазер, просто добавив к ней зеркала? Собственно, почти так оно и есть, однако следует подробнее рассмотреть один ключевой момент. Световые волны, испускаемые возбужденными электронами в обычной лампе, разбегаются прочь с такой быстротой, что другие электроны практически не имеют времени на то, чтобы поддержать колебания этих волн. Это значит, что вынужденное излучение состояться не может, и отдельные волновые цуги оказываются не в состоянии хоть сколько-нибудь «продлить себе жизнь». Лампа испускает самые различные волны таким образом, что они совершенно не зависят друг от друга. Зеркала в лазере предназначены для того, чтобы воспрепятствовать движущимся в осевом направлении волнам покинуть лазер — для того чтобы осталось достаточно времени для усиления волн посредством вынужденного излучения. Однако не существует зеркал, совершенных настолько, чтобы удержать свет в лазере вечно; кроме того, имеются и другие причины, по которым свет «теряется» (например рассеяние). Разумеется, при любом применении лазера часть света зеркала должны выпускать: в конце концов, лазерный свет нужен нам для того, чтобы что-нибудь им облучать.
Таким образом, задача генерации лазерного света становится задачей чисто количественной. Необходимо возбуждать световые электроны атомов газа с такой скоростью, чтобы они оказались в состоянии усиливать световые волны достаточно быстро и эффективно для того, чтобы компенсировать потери от несовершенства зеркал. Другими словами, мы должны постараться устроить все так, что потери энергии волн покрывались бы энергией, получаемой в результате вынужденного излучения. Итак, переход от света обычной лампы к лазерному свету происходит скачкообразно при повышении силы электрического тока, пропускаемого нами через газоразрядную трубку. Существует некое критическое значение силы тока, при котором состояние лазера радикально изменяется — даже в том случае, если ее изменение ничтожно мало. Работу лазера мы можем поддерживать единственным способом: постоянно снабжая его энергией (например в виде электрического тока). Одновременно лазер будет постоянно излучать энергию в виде лазерного света (не будем забывать и о тех неизбежных потерях энергии, которые уже упоминались). Лазер, таким образом, постоянно обменивается энергией с окружающим миром, а значит, является
Скачкообразное возникновение макроскопического состояния упорядоченности очень напоминает поведение ферромагнетика или сверхпроводника, при котором также возникают состояния с совершенно новыми физическими свойствами. Правда, эти системы находятся в состоянии теплового равновесия с окружающей средой, что и отличает их от нашего случая. Именно поэтому многие физики были поражены, когда мы в Штутгарте, одновременно с группой наших американских коллег, смогли установить, что фазовый переход в лазере демонстрирует все свойства, характерные для обычных фазовых переходов, в том числе критические флуктуации и нарушение симметрии. Таким образом, лазер стал как бы мостом между неживой и живой природой. Состояние упорядоченности в лазере поддерживается за счет процессов самоорганизации, протекающих благодаря притоку дополнительной энергии извне. Лазер — как и все биологические системы — система открытая.
Интересный мостик к физиологическим процессам выстраивается, прежде всего, в ходе исследований химических лазеров, где происходит своего рода обмен веществ. Химический лазер нуждается в водороде и фторе; эти вещества очень активно вступают в реакцию друг с другом. В результате между атомами водорода и фтора возникает новое «партнерство», причем химическая реакция протекает настолько бурно, что вызывает возбуждение световых электронов, а они, в свою очередь, генерируют лазерный свет уже знакомым нам способом.
В данном случае энергия создается в ходе химических реакций. Химическая энергия, высвобождаемая в виде тепла, преобразуется при этом в конечном счете в строго упорядоченную энергию синхронного движения волн лазерного света. Перед нами своего рода обмен веществ, при котором низкоуровневая энергия горения преобразуется в высокоуровневую энергию лазерного света. Нечто похожее происходит в двигателе, цилиндр которого наполнен газовой смесью. Тепловая энергия, распределенная по многим степеням свободы, преобразуется здесь в кинетическую энергию поршня, которая, собственно, и заставляет автомобиль двигаться. В дальнейшем мы еще не раз столкнемся с тем, что подобная трансформация микроскопических энергий в макроскопическую энергию с меньшим числом степеней свободы оказывается одним из основных принципов протекания биологических процессов.
Лазер можно заставить работать не только повышая силу тока и увеличивая тем самым частоту возбуждений отдельных электронов. Следует обратить внимание и на другой процесс, при котором мощность накачки остается прежней, но число атомов в лазере постоянно увеличивается. Исследования показывают, что до тех пор, пока количество атомов в лазере не достигает определенного значения, он действует в режиме обычной лампы, но как только число атомов увеличится до критического, возникает лазерный свет. В сущности, перед нами переход количества в качество.
Приведенные примеры показывают, что процессы самоорганизации могут быть запущены различными способами. В дальнейшем, обратившись к биологии, мы займемся этой темой подробнее.
Рис. 5.10. Между двумя зеркалами распространяются только совершенно определенные волны
С другой стороны, мостик к биологии можно перебросить и на основе уже имеющихся примеров. Благодаря использованию зеркал в лазере мы создаем для атомов и генерируемых ими световых волн специфическую «окружающую среду». Физикам известно, что между двумя параллельными зеркалами могут существовать только совершенно определенные световые волны (рис. 5.10). Это означает, что изначально ясно, какие именно волны могут рассматриваться в качестве лазерных. Вполне может случиться так, что волны, «пользующиеся успехом» у световых электронов, окажутся неспособны распространяться между зеркалами. Однако это не приведет к отказу электронов от участия в генерации лазерного света; электроны просто выберут волну с такими характеристиками, которые окажутся ближе всего к «полюбившимся» им ранее волнам (правда, это срабатывает лишь до определенных пределов). При медленном изменении расстояния между зеркалами изменится, соответственно, и процесс испускания электронами лазерного света — электроны приспособятся к новой окружающей среде. Здесь может произойти нечто, достойное весьма пристального рассмотрения. Возможно, что новая волна между зеркалами окажется больше похожа на «предпочитаемую» электронами волну, чем на ту, которой электроны подчинялись и которую поддерживали до сего момента. В этом случае сначала отдельные электроны спонтанно, в виде флуктуации, отдадут новой волне свою энергию, а вскоре и все остальные электроны поддержат именно эту волну, полностью отказав в поддержке прежней: адаптация к новому «зеркальному окружению» прекратится посредством флуктуации.
В лазере, как и в жидкости, состояние макроскопической упорядоченности может быть достигнуто увеличением количества поступающей энергии. В случае с жидкостью мы повышаем температуру, получая в результате все более и более сложные структурные образования вплоть до возникновения турбулентности; то же и с лазером: при дальнейшем повышении мощности накачки лазер внезапно начинает испускать регулярные невообразимо короткие и интенсивные световые вспышки. Выходная мощность каждой вспышки при этом может быть сопоставима с мощностью всех вместе взятых электростанций США. Длительность же такой вспышки составляет всего триллионную долю секунды. Описанные световые вспышки, называемые также ультракороткими лазерными импульсами, возникают в результате кооперации множества различных волн. Конкуренция между ними прекращается, вытесненная общим мощным усилием. Кроме того, наша теория предсказывает, что лазеры способны генерировать еще один новый тип света — турбулентный свет, что открывает обширную новую область исследования для экспериментальной физики.
Спустя несколько лет после первой публикации этой книги турбулентный, или, как еще его называют, детерминистски-хаотический свет был открыт экспериментально, что блестяще подтвердило прогноз, основанный на нашей теории (см. также главу 12).
Глава 6 ХИМИЧЕСКИЕ СТРУКТУРЫ
Химический «марьяж»
Особенно яркими примерами самоорганизующихся структур располагает современная химия. Все мы знаем, что определенные химические вещества способны вступать друг с другом в реакции, образуя при этом новые вещества. Наиболее, пожалуй, известной такой реакцией является процесс горения, при котором какой-либо элемент (например, углерод) соединяется с кислородом. Эта и подобные ей химические реакции становятся возможны только при определенных условиях; в данном случае это некая минимальная температура, необходимая для возгорания. Химики обнаружили, что существует и другой способ запустить химическую реакцию или, по крайней мере, ускорить ее протекание. Реакция, которая прежде не шла вовсе или шла очень медленно, может быть «поддержана» введением в нее определенных веществ. Такими веществами могут быть металлы — например
пластинка платины; сами они в ходе химической реакции не изменяются, выступая в роли, чем-то похожей на роль свахи: они помогают партнерам соединиться, образовав при этом новое химическое вещество. Эти особые вещества, помогающие вступить в союз другим веществам, называются в химии «катализаторами» (рис. 6.1).
Рис. 6.1. Катализатор в роли химической свахи
В ходе исследований химики столкнулись с явлением, которое поначалу воспринималось ими как некая случайная странность, но со временем приобрело довольно серьезное значение. Дело в том, что существуют химические вещества, которые в состоянии служить катализаторами в реакциях получения самих себя. Звучит это, конечно, довольно запутанно, но означает всего-навсего то, что молекулы такого вещества способны в некотором смысле самостоятельно размножаться. Им удается преобразовывать молекулы других веществ таким образом, что в результате возникают новые молекулы их собственного типа (рис. 6.2).
Рис. 6.2. Автокатализ: катализатор соединяет две молекулы таким образом, что получаемые в результате реакции молекулы оказываются идентичны молекуле самого катализатора
В этом процессе уже присутствует нечто, явно схожее по своим свойствам с живой материей, а потому нет ничего удивительного в том, что мы еще столкнемся с этим явлением при рассмотрении теории эволюции. Процессы, подобные описанному, называются автокаталитическими. Что же происходит в ходе химической реакции? При этом нас интересует как микроскопический, так и макроскопический уровень. На микроскопическом уровне вещество состоит из отдельных молекул, а те, в свою очередь, — из атомов. Допустим, некие молекулы двух видов — назовем их вид 1 и вид 2 — вступают в химическую реакцию, в результате которой образуется молекула нового вида (скажем, вида 3). При этом новое вещество может обладать иными химическими и физическими свойствами — например другим цветом. В этом можно легко убедиться, проведя несколько опытов: смешав две жидкости разных цветов — голубую и бесцветную — мы вдруг получаем жидкость красного цвета (рис. 6.3).
Рис. 6.3. Соединение двух различных химических веществ обычно приводит к возникновению гомогенного конечного продукта
Полученная жидкость обычно совершенно равномерно окрашена и не теряет свой цвет со временем. Впрочем, так случается «обычно» — но не всегда; тут мы подбираемся, собственно, к главной теме этой главы. Дело в том, что в XX веке учеными было обнаружено несколько довольно сложных химических реакций, в ходе которых образовывались макроскопические структуры, своими размерами в миллиарды раз превосходящие размеры молекул исходных веществ.
Химические часы
Начнем с самого известного примера: с реакции, открытой русским ученым Б. П. Белоусовым, а позднее систематически исследованной А. М. Жаботинским. Реакция эта весьма сложна, и мы не будем здесь останавливаться на подробностях ее проведения. Нас интересуют прежде всего образующиеся в ходе этой химической реакции структуры. С течением времени цвет жидкости, получаемой в результате описываемой реакции, изменяется с красного на голубой, затем с голубого снова на красный, и т.д. (рис. 6.4).
Рис. 6.4. Периодическая смена цвета жидкости с красного на голубой в реакции Белоусова — Жаботинского
Химическую реакция такого рода можно рассматривать как своеобразные химические часы (ведь часы суть не что иное, как инструмент, непрерывно отмеряющий периоды определенной длительности). Здесь необходимо отметить, что в первоначальном эксперименте вещества, единожды соединившись, основательно и окончательно перемешиваются, а затем полученная однородная жидкость, предоставленная сама себе, демонстрирует периодическое изменение своего цвета. Еще одна подробность: смена цвета жидкости продолжается не бесконечно — спустя некоторое время система приходит в однородное равновесное состояние.
Однако условия эксперимента можно изменить таким образом, что система перестанет быть закрытой: для этого в сосуд, где протекает реакция, необходимо постоянно вводить исходные реагенты и выводить из него конечный продукт. В таких условиях реакция периодической смены цвета оказывается в состоянии непрерывно поддерживать собственное течение.
Обнаружение возможности такого рода флуктуаций исключительно значимо для биологии, ведь все физиологические процессы имеют химическую или электрохимическую природу, а многие из них еще и являются периодическими. Следовательно, стоит разобраться в принципах функционирования химических часов, и мы значительно приблизимся к пониманию таких ритмических процессов в организме, как, например, работа сердца. Здесь нам снова (как и в случае с лазером) придут на помощь концепция параметра порядка и принцип подчинения. При введении в систему исходных реагентов в определенных концентрациях течение реакции становится нестабильным и замещается периодическими изменениями, т. е. флуктуаци-ями, которые играют роль параметра порядка и подчиняют себе отдельные молекулы. Вследствие этих флуктуаций реакция приобретает вынужденно периодический характер, при котором молекулы в едином ритме образуют новые соединения, а затем разрушают их и т.д., так что на макроскопическом уровне мы наблюдаем периодическое изменение цвета жидкости с красного на голубой и обратно. Флуктуационные процессы такого рода можно обработать математически и определить точное значение параметра порядка.
Недавние исследования показали, что связанный с обменом энергией процесс обмена веществ в отдельной клетке протекает в определенном ритме и также является периодическим.
Химические волны и спирали
На свете существует множество еще более прекрасных и сложных явлений. Некоторые из них представлены на рис. 6.5.
Рис. 6.5. Химические структуры в форме кругов (данный рисунок) и спиралей (рис. 6.6). Круги распространяются наружу, а спирали закручиваются
Мы снова возвращаемся к реакции Белоусова-Жаботинского. Сначала в центрах, случайным образом возникающих на общем красном фоне, образуются голубые точки; затем эти точки становятся голубыми кругами, в центрах которых появляются красные точки, быстро вырастающие в красные круги; в красных кругах образуются голубые точки, и все повторяется сначала. Таким образом, голубые концентрические кольца расходятся вширь. Условия эксперимента можно изменить, проведя по жидкости, скажем, ногтем; результатом станет возникновение спиралей (рис. 6.6).
Рис. 6.6. См. подпись к рис. 6.5
На первый взгляд, понять причину образования подобных макроскопических структур весьма непросто; воспользуемся для облегчения этой задачи следующим нехитрым примером. Возникновение концентрических колец можно сравнить со степным пожаром. Красный фон станет в таком случае высохшей травой, а огонь в эпицентре пожара в безветренную погоду будет гореть равномерно, распространяя пламя по кругу одинаково во все стороны. Если горящую поверхность обозначить голубым цветом, то сложится следующая картина: небольшая голубая точка разрастается сначала до круглого пятна, а затем расходится все дальше и дальше от эпицентра, в котором уже снова успела вырасти и высохнуть трава, благодаря чему он на нашей картине вновь выглядит красным и продолжает разрастаться до тех пор, пока трава за линией расширяющегося фронта пожара не высохнет до степени самовозгорания. После этого вся история повторяется сначала. Описываемые здесь химические реакции не нуждаются во внешнем воздействии (для степного пожара таким воздействием является воспламеняющий траву жар солнца). Система сама по себе находится в состоянии, являющемся в известной степени надкритическим, и реакция, ведущая к возникновению голубых точек, начинается самопроизвольно, но в остальном это явление того же рода, что и степной пожар. Выгорание в случае с травой из нашего примера и появление кругов голубого цвета на красном фоне в реакции Белоусова-Жаботинского означает, что происходят определенные химические трансформации, однако затем наступает фаза обратной реакции, которая приводит к восстановлению прежнего состояния.
Для возникновения волн или спиралей в реакции Белоусова-Жаботинского молекулы реагентов должны сходиться друг с другом, а это означает, что они должны обладать способностью к движению. Они и в самом деле движутся, и происходит это благодаря диффузии — явлению, всем нам хорошо знакомому из повседневной жизни. Например, промокнем чернильное пятно на столе листом промокательной бумаги: чернила диффундируют в бумагу, в результате чего мы получим чернильное пятно уже на бумаге. Обсуждаемые здесь макроскопические процессы основаны, таким образом, на взаимопереходах между химическими реакциями с одной стороны, и диффузией — с другой. Такие процессы описываются уравнениями, которые на профессиональном языке называются уравнениями диффузии; здесь мы ими заниматься, естественно, не будем. Важно для нас только то, что математическая обработка и здесь доказывает существование параметра порядка, управляющего развитием пространственно-временных структур. Именно тип параметра порядка определяет возникновение в системе волновых или спиральных структур. В полном согласии с теорией экспериментально были обнаружены также полосатые и гексагональные структуры, аналогичные образующимся в нагреваемой снизу жидкости.
Новый универсальный принцип
На конкретных примерах, взятых из разных областей физики и из химии, мы убедились, что концепция параметра порядка и принцип подчинения встречаются повсюду. Эти понятия красной нитью пройдут через всю книгу. Наблюдая их проявления в химических реакциях, мы впервые осознаем некую новую общность. В основе химических флуктуаций и волн, с которыми мы познакомились, всегда лежат процессы автокатализа. Исходные молекулы своим присутствием и взаимодействием с молекулами другого типа способствуют получению новых молекул своего типа. Это проливает новый свет и на процессы, происходящие в лазере: некая световая волна одним фактом своего существования вынуждает электроны отдавать свою энергию для усиления именно этой волны — налицо не что иное, как процесс автокатализа (рис. 6.7).
Рис. 6.7. Аналогия между автокаталитической реакцией (вверху) и усилением (или мультипликацией) световых волн в лазере (внизу)
Идея автокатализа — так же, как и понятие параметра порядка и принцип подчинения — приобретает значение, далеко выходящее за рамки химии. В некотором смысле и цилиндрическое движение в жидкости носит автокаталитический характер, усиливаясь за счет уже существующего в системе движения такого же типа — пусть минимального и возникшего по чистой случайности. Автокатализ и неустойчивость коллективных форм движения суть одно и то же. Именно здесь мы начинаем понимать, что Природа, по всей видимости, всегда использует для создания упорядоченных макроскопических структур одни и те же принципы.
Глава 7 БИОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ: ВЫЖИВАЕТ СИЛЬНЕЙШИЙ
Еще в начале XIX века происхождение различных видов животных и растений оставалось для человечества тайной Природы, хранимой за семью печатями. Наконец англичанину Чарлзу Дарвину (1809-1882) удалось совершить решительный прорыв. Во время своих многочисленных исследовательских путешествий по далеким странам (например по Южной Америке) внимание Дарвина было поглощено чрезвычайным многообразием животного и растительного мира и изощренностью существующих в природе способов выживания. Результаты многолетнего размышления над увиденным ученый изложил в учении, которое сегодня называют дарвинизмом. Дарвин сформулировал ряд оригинальных тезисов, касающихся возникновения и развития видов в растительном и животном мире; принципы дарвинизма и по сию пору сохранили признание и не забылись. Правда, забылось другое: независимо от Дарвина в то же самое время разработкой точно таких же идей занимался еще один англичанин, Альфред Рассел Уоллес (1823-1913).
За два года до того, как Дарвин получил потрясшее его сообщение Уоллеса с формулировками теории эволюции, то есть в 1856 году, Дарвин написал Чарлзу Лайелю (1797-1875) ставшее теперь знаменитым письмо, в котором объяснял, что он еще не совсем готов к опубликованию своей работы — а Лайель побуждал Дарвина сделать это, пока его никто не опередил. Дарвин пишет: «Мне претит мысль писать только для того, чтобы заявить о своем приоритете, но я, конечно, весьма огорчился бы, если кто-нибудь опубликовал бы мою теорию раньше меня.»[5] (Строка Гёте «Ах, две души живут в моей груди!» характеризует, кажется, многих ученых, и социолог Роберт К. Мертон для иллюстрации этого положения в науке наряду с другими примерами использует и письмо Дарвина.)
Удар обрушился на Дарвина в 1858 году: произошло то, о чем предупреждал Лайель — и то, во что не хотел верить Дарвин. Дарвин писал об этом убийственном, ошеломившем его событии Лайелю: «Сегодня я получил от него [Уоллеса] прилагаемую статью, которую он просит переслать Вам. По-моему, она вполне заслуживает внимания. Ваши слова о том, что меня опередят, полностью оправдались. [...] Если бы Уоллес имел мой рукописный очерк, законченный в 1842 году, он не мог бы составить лучшего извлечения! Даже его термины повторяются в названиях глав моей книги. [...] Итак, вся моя оригинальность, какова бы она ни была, разлетится в прах.»[6]
Скромность и desinteresse[7] толкали Дарвина к тому, чтобы отказаться от права на приоритет; желание же получить признание и утвердить собственное авторство не позволяло ему смириться с тем, что все потеряно. Сначала Дарвин принимает великодушное, но отчаянное решение вовсе отойти в сторону; однако спустя неделю он снова пишет Лайелю: «Я очень желал бы опубликовать теперь очерк моих общих взглядов, страниц на десять или около того; но я не уверен, будет ли это с моей стороны благородно.»[8] Снедаемый противоречивыми чувствами, Дарвин заканчивает письмо такими словами: «Мой добрый дорогой друг, простите меня. Это — вздорное письмо, подсказанное вздорными чувствами.»[9] И далее, в приписке, пытаясь окончательно очиститься от этих чувств: «Больше никогда не буду докучать Вам и Гукеру этим предметом.»[10]
От этих слов Дарвин отрекается на следующий же день, в очередном письме Лайелю; противоречивые чувства вновь овладевают им. Волею судьбы именно в этот момент Дарвин узнает о смерти сына, Чарлза-младшего. По просьбе своего друга, Джозефа Долтона Гукера (1817-1911), Дарвин высылает ему рукопись Уоллеса и первоначальный вариант своей собственной, в редакции 1844 года: «Я посылаю мой набросок 1844 года только для того, чтобы Вы могли видеть по Вашим собственноручным пометкам, что Вы его читали. [...] Не теряйте много времени. Это жалкая слабость с моей стороны — вообще думать о каком-либо приоритете.»[11] То, что измученный сомнениями Дарвин не хочет сделать для себя сам, делают для него другие члены научного сообщества.
Лайель и Гукер берут дело в свои руки и устраивают то судьбоносное заседание Линнеевского общества, на котором были представлены обе работы.
Это событие стало часом официального рождения теории эволюции, получившей название по имени своего создателя, Чарлза Дарвина. Теория находилась на волосок от того, чтобы называться «уоллесизмом»; почему этого не произошло, и почему дарвинизм так знаменит, а уоллесизм между тем почти совсем забыт, мы обсудим позднее, в главе 18. Здесь же будут изложены только основные положения теории эволюции. По Дарвину, природа пребывает в развитии, причем более сложные живые организмы являются продуктом развития организмов менее сложных. Фундаментальное значение для этого процесса имеет взаимодействие между генотипом, т. е. наследственными признаками, с одной стороны, и фенотипом, т. е. признаками и свойствами, приобретаемыми самими растениями и животными в процессе индивидуального развития, — с другой. Дарвин предполагал, что наследственные признаки могут спонтанно изменяться — мутировать. Сегодня возможность такого рода мутаций в генах, несущих в себе наследственную информацию, доказана. Эти мутации представляют собой изменения на микроскопическом уровне.
Вследствие изменившихся наследственных признаков происходят изменения присущих животным и растениям свойств. Например, потомство белых бабочек может иметь черные крылья, могут также быть видоизменены конечности. Жизнь животных под влиянием этих изменений также может изменяться в большей или меньшей степени. Так, например, птицы с изменившейся формой клюва могут питаться насекомыми, которых прежде были неспособны добывать. Природа постоянно поражает нас изобилием самых разнообразных форм, среди которых часто встречаются такие, чья функциональность и целесообразность становится очевидна с первого взгляда. Такая целесообразность рассматривалась в прежние времена как целенаправленность божественного промысла: бог намеренно создал животных именно такими, чтобы им легче было добывать себе пищу. Согласно же Дарвину, эти формы суть результат мутаций с одной стороны, и отбора, называемого также селекцией, — с другой. Разные виды животных, сумевших хорошо адаптироваться к окружающей среде, вступают в межвидовую конкурентную борьбу за пропитание. Можно назвать и другие потребности, ведущие к возникновению такой борьбы: для птиц это и поиск мест гнездования, и поиск укрытий. Так начинается конкурентная борьба между различными видами, приводящая к выживанию лучших из них. Таковы вкратце основные положения дарвинизма, и теперь мы можем двигаться дальше.
Правда, перед нами сразу же встает ряд проблем, связанных прежде всего с биологией и натурфилософией. Во-первых, тезис «выживает сильнейший» напоминает о кошке, пытающейся ухватить саму себя за хвост, так как согласно этому же тезису понятие «сильнейший» определяется следующим образом: сильнейший — это тот, кто выживает. Этот гордиев узел можно разрубить, использовав аналогичный пример из мира неживой природы, ведь дарвинизм применим не только к живой, но и к неживой материи. Мы уже сталкивались с этим на примере лазера, когда установили, что между световыми волнами существует конкуренция, в результате которой «выживает» только одна волна. Волну эту можно рассматривать как «сильнейшую». Однако важно здесь то, что в физике лазера мы имеем возможность с самого начала вычислить, какая именно мода или какая именно волна выживет, а значит, окажется «сильнейшей». Таким образом, в этом случае в нашем распоряжении имеются объективные критерии, благодаря которым мы еще до начала процесса можем сказать, кто станет победителем. Правда, здесь существуют и некоторые ограничения: обычно на роль «сильнейших» находится одновременно несколько волн-кандидатов.