Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Занимательная микроэлектроника - Юрий Всеволодович Ревич на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Юрий РЕВИЧ

«ЗАНИМАТЕЛЬНАЯ МИКРОЭЛЕКТРОНИКА»

К читателю

Как известно, каждый сходит с ума по-своему. Есть люди, «сдвинутые» на собирании спичечных этикеток или монет, есть те, кто прыгает с парашютом, лазает по городской канализации или спускается на плотах по горным рекам северного Урала и Сибири. Одна из самых распространенных разновидностей подобных психических сдвигов — радиолюбительство.

Когда-то радиолюбители были действительно только «любителями радио» — просто потому, что в 10—20-х годах XX века, когда появились первые энтузиасты, кроме радиоэлектроники, никакой другой электроники не существовало. О, в те времена это было жутко престижное хобби! Это сейчас мы привыкли к магнитолам в каждом автомобиле и двум-трем телевизорам в каждой квартире, не считая электронной почты с Интернетом. А тогда сама возможность слушать кого-то с другого конца Земли казалась чудом, подвластным разве что рукам волшебника. Даже настройка на нужную станцию простого промышленного приемника, ставшего к тридцатым годам уже довольно обычным атрибутом не только в богатой Америке, но и в СССР, поначалу вызывала не меньше вопросов, чем сейчас — установка Windows на персональный компьютер.

Но довольно быстро, начиная с 30—40-х годов, электроника стала «широко простирать руки свои в дела человеческие». Термин «радиолюбительство» сохранился, но под ним стали уже понимать отнюдь не только увлечение радиопередатчиками и приемниками. Первым делом выделилась в отдельное направление звукозапись и все с ней связанное — различные усилители и акустические устройства. Затем электроника вторгается в электротехнику и управление различными механизмами. Потом начался компьютерный бум и стало модным все, относящееся к информационным технологиям (вообще-то в них, по справедливости, следовало бы включить и радио с телевидением).

В настоящее время не больше пятой части объема журнала «Радио», выходящего в нашей стране с 1924 года, посвящено именно радио. Следовало бы придумать иное название, но понятие «радиолюбитель» прижилось, и ныне означает любого, кто увлекается электроникой (по крайней мере по-русски, в английском, например, языке это не так). Поэтому не удивляйтесь, если вы в этой книге, адресованной начинающим (и просто желающим повысить свою квалификацию) радиолюбителям, о радио вообще не увидите ни слова. Зато довольно часто будут упомянуты компьютеры — по причинам, которые вы поймете, прочитав эту книгу.

Занятие радиолюбительством в нашей стране некоторое время назад было не просто популярным, а даже очень модным. Стоит привести тот факт, что на первом этапе развития телевидения в СССР, в начале 1930-х годов, половина приемных устройств на основе диска Нипкова (продававшегося в магазинах) была изготовлена населением самостоятельно. Развитию технического творчества способствовало много причин: и относительно высокий уровень технического образования, и бесплатный доступ к компонентам (да-да, купить в свободной продаже что-то электронное было очень сложно, а вот вынести с завода или из НИИ, — всегда пожалуйста), и, наконец, то, что промышленность явно не справлялась с обеспечением потребности населения в «продвинутых» электронных устройствах, а качество тех, что выпускались, чаще всего было ниже всякой критики. Дешевле, лучше и интереснее было сделать все самому. Поэтому в те времена стать меломаном (в смысле «любителем качественной звукозаписи») означало фактически, что человек сам вынужден был изучать азы электроники и браться за паяльник («махать паяльной косой», как любил выражаться один мой знакомый).

Положение, конечно, резко изменилось с приходом в страну дешевого и качественного ширпотреба с Запада и Востока, и теперь уже вряд ли кто будет самостоятельно изобретать, скажем, карманный «плеер-дебильник». Но, как ни странно, радиолюбительство не только не погибло, но даже расцвело, поскольку стали доступны практически любые, как импортные, так и отечественные компоненты (хотя и за деньги) и, что тоже немаловажно, исчерпывающая документация к ним. В 1970-е годы какой-нибудь «Справочник по транзисторам» сметали с прилавков со скоростью, которой могли бы позавидовать сами братья Стругацкие. И вот уже «Чип и Дип» открывает пятый за десять лет супермаркет в Москве и хвастается миллионом посетителей в год, и на Митинском рынке в выходной не протолкнуться…

С программированием сложилась несколько иная ситуация. Для программирования нужен как минимум компьютер, а в области вычислительной техники наша страна, как известно, в свое время сильно отстала. Потому у нас даже сами компьютеры собирали своими руками, а «там» компьютерное любительство началось с появлением знаменитого ПК Altair в 1975 году, который за довольно большие по тем временам деньги (500 долл.) продавался в виде набора «сделай сам».

Сейчас положение выправилось и какой-нибудь компьютер доступен практически каждому. Потому и современная радиоэлектроника, которая «завязана» как на собственно электронику, так и на программирование, стала вполне доступной радиолюбителям и не требует больших денежных вложений.

Невозможно провести четкую границу и указать — вот это любительство, а здесь начинается профессионализм. По данным Microsoft, количество дилетантов в области программирования, использующих такие популярные средства написания программ, как Visual Basic или Delphi, превышает число профессионалов-программистов примерно в три раза. Скорее всего, эти данные неполные, т. к. по понятным причинам многие любители этих программных пакетов не покупают их официально, и в статистику не попадают.

То же самое относится к области электроники: большинство рыночных продуктов создается профессионалами. Но в очень многих областях деятельности, где стоит задача создания «одноразового» прибора (или программы), необходимого сию минуту, а не после многочисленных согласований и утверждений, профессионалов привлекать просто нецелесообразно. Гораздо лучший результат может быть достигнут, если специалист в данной области деятельности не поленится освоить азы электроники и возьмется за конструирование прибора самостоятельно.

Что нового?

Автор был приятно удивлен, когда после выхода «Занимательной электроники» оказалось, что его задумка о создании популярной книжки, рассказывающей об основах этой дисциплины, полностью оправдалась — и по сей день приятные и иногда даже незаслуженно восторженные отзывы продолжают с завидной регулярностью поступать в мой электронный почтовый ящик. Между тем, со временем стали очевидными и недостатки этой книги. После краткого заочного совещания с издателями было решено не перерабатывать старую книжку, а создать новую, в которой отчасти заимствовать предыдущие наработки, устранив повторы, неточности, излишние, иногда устаревшие, подробности, и частично написать текст заново, расширив разделы, посвященные основе современной электроники — микроконтроллерам.

В первой части, где рассматриваются базовые принципы электроники и построение «обычных» схем на дискретных компонентах и микросхемах, сохранены все важнейшие начальные сведения, касающиеся физических основ электроники и призванные ввести читателя в курс дела. Новый раздел задумывался для того, чтобы на популярном уровне как можно полнее раскрыть для читателя мир микроконтроллеров. Изучив эти материалы, внимательный читатель сможет проектировать достаточно функциональные устройства для многих областей применения. И эти знания могут стать хорошей основой для дальнейшего обучения с целью профессионального овладения предметом.

Как читать?

А теперь дам совет, который может показаться несколько неожиданным. Сначала попробуйте мысленно ответить на один вопрос, и пусть он не покажется вам идиотским: «Какова величина тока в комнатной розетке?». То, что этот вопрос отнюдь не такой дурацкий, как кажется, доказывают результаты ответов на него, полученные после опроса группы студентов одного технического вуза (по специальности, не связанной напрямую с электротехникой или электроникой): из нескольких десятков опрошенных только двое смогли дать вразумительный ответ. Итак, если вы, читатель, замялись с ответом или просто не уверены в его правильности, то вот обещанный совет, причем адресованный любому, независимо от возраста: прежде чем продолжать читать дальше, возьмите учебники физики за седьмой и восьмой классы и перечитайте главы, посвященные электричеству. Можете также захватить главу, посвященную строению атома. Еще лучше обратиться не к школьным учебникам, а изучить соответствующие главы из книги Ландсберга [17], где все то же самое изложено куда более увлекательно и подробно. Тогда вам будет намного легче читать эту книгу дальше.

Заметки на полях

Попутно бросим камень в огород Минобразования: по глубокому убеждению автора, полезной информации в указанных учебниках более чем достаточно, а 10-й и 11-й классы — совершенно пустое времяпрепровождение для того, кто не собирается становиться специалистом-физиком. Автор не компетентен говорить то же самое о других предметах, но есть основания полагать, что и там положение ничуть не лучше. Зажмурившись, проследим за полетом этого «камня» и с сожалением отметим, что школьников по-прежнему пичкают массой совершенно излишних сведений, и приступим наконец к делу.

Для лучшего понимания всех заумных материй, излагаемых в этой книге, читателю с самого начала следует хорошо осознать важное правило, которое заключается в эквивалентности программ и «железа»: любую программу можно реализовать аппаратными средствами, любые (цифровые) аппаратные средства можно заменить исполняющейся программой. Существует формальное доказательство этого утверждения, и оно (утверждение) часто используется на практике, например, во многих микропроцессорах различные процедуры выполняются за счет «зашитых» в них программ. Именно этот принцип привел к тому, что микроконтроллеры стали универсальными электронными приборами, способными заменить почти любую электронную схему, реализованную «по старинке».

Несколько слов о том, как пользоваться книгой. Она рассчитана на тех, кто делает все своими руками и занимается конструированием дома (поэтому, например, я не рекомендую компоненты для поверхностного монтажа, т. к. платы под них своими руками изготовить достаточно сложно, и еще труднее их отлаживать). Книга отличается от большинства имеющихся руководств тем, что почти все описанные здесь схемы подробно до мелочей разобраны шаг за шагом, так, чтобы при повторении конструкции у вас не возникало вопросов, зачем нужен тот или иной резистор и почему его сопротивление именно такое.

Но эта книга не самодостаточна. Хотя некоторые технические характеристики популярных компонентов (в основном отечественных) приведены в Приложении 3, но это капля в море. Вам как минимум понадобятся различные справочники — по транзисторам, микросхемам, и особенно по микроконтроллерам. К счастью, сейчас не требуется всю эту литературу иметь под рукой, поскольку многое доступно через Интернет. По западным компонентам в Интернете можно найти абсолютно все самые подробные описания и рекомендации по использованию (т. н. Data Sheets и Application Notes), которые в «бумажном» варианте все равно не существуют. Однако они, естественно, на английском, что осложняет задачу новичка. И хотя некоторые технические описания переведены на русский и такие переводы тоже можно разыскать (например, на сайтах gaw.ru, telesys.ru находится крупнейший русскоязычный форум по электронике, где можно обменяться различными сведениями и получить квалифицированный совет), все же следует, по возможности, обзавестись русскоязычными «бумажными» справочниками и пособиями, например [1–3, 5–7, 9].

В отличие от большинства других радиолюбительских изданий, описания конструкций в книге не приводятся. Во-первых, повторить устройство в точности с теми компонентами, которые приведены в описании, как правило, не получается, да это совершенно и не требуется, так что в большинстве случаев плату придется все равно перерабатывать. Во-вторых, лично я никогда не повторял опубликованных конструкций в точности, стараясь улучшить или упростить схему, и в этой книге вы почти всегда найдете рекомендации по улучшению характеристик или расширению функциональности описанного прибора.

Наконец, есть и еще один момент, скорее методического порядка — разрабатывая печатную плату и конструкцию устройства самостоятельно, вы намного лучше вникаете в работу схемы, после чего отладка и регулировка ее значительно упрощаются. Мое глубокое убеждение состоит в том, что плату нужно делать самостоятельно, под выбранный корпус, а не подгонять его габариты под имеющуюся плату, в результате чего самодеятельные изделия иногда бывают весьма уродливыми.

Как разрабатывать схемы?

И, наконец, рискуя утомить читателя, все же скажу несколько слов о том, как вообще следует разрабатывать и отлаживать схемы. Самый эффективный метод — «сборка» нужной схемы из готовых и заранее отлаженных фрагментов. Эта операция совершенно аналогична тому, как программисты «собирают» программы из готовых и заранее отлаженных процедур (вот он, принцип эквивалентности программ и «железа» в действии!). Каждая такая процедура представляет собой «черный ящик», у которого есть входы и выходы для обмена с другими частями программы, причем в общем случае вы даже не знаете, как она устроена внутри — точно так же, как вы не знаете, что именно размещается внутри микросхемы.

Вы берете микросхему, подсоединяете к ней внешние элементы в соответствии с рекомендациями производителя, и получаете готовый узел, который соединяете с другими подобными узлами. Точно так же следует поступать в случае, если узел представляет собой уже не отдельную микросхему, а законченный фрагмент устройства. Наращивая иерархию отлаженных заранее узлов, вы сэкономите гораздо больше времени, чем при сборке схемы целиком и дальнейшем выяснении, куда что припаяно. Кроме всего прочего, при таком образе действий, когда схема разбивается на отдельные узлы-кирпичики, ее гораздо легче «удержать» в голове и мысленно анализировать ее работу.

При рисовании схемы обязательно обозначайте на ней конкретные типы и значения параметров элементов, не откладывайте это до выполнения практической отладки схемы. Изменить значения вы всегда сможете, но все, что можно посчитать, нужно определить заранее — это сохранит вам очень много времени. Не верьте печатному слову и все рекомендации из литературы проверяйте на макетах (в конце концов у вас образуется библиотека схем таких самостоятельно отлаженных узлов). Отладив все, обязательно нанесите на чертеж схемы полученные в результате точные значения компонентов (те, что еще требуют окончательной подгонки, обозначаются звездочкой), проверьте правильность соединения этих узлов и разводку питания, и только затем собирайте всю схему целиком (сначала на макетной плате). И только убедившись в работоспособности макета схемы, переносите ее на настоящую рабочую плату.

Если вы разрабатываете серьезный прибор, который должен служить годами, постарайтесь заложить в разработку время и деньги, необходимые для выполнения следующих этапов:

— разработка технического задания, с возможно более подробным описанием требуемой функциональности;

Совет

На этом этапе не стоит пренебрегать мелочами, особенно если вы работаете «на сторону», а не для себя. Так, будет очень печально, если вам заказали измеритель температуры, и в конце разработки выяснится, что он должен круглогодично работать на улице. Созданный вами на домашнем столе датчик, естественно, в таких условиях быстро выйдет из строя. Впрочем, подобные накладки чаще касаются технологии изготовления плат, конструкции и подбора деталей, а не собственно схемотехники, но лучше все это учесть заранее.

— разработка принципиальной схемы с отладкой отдельных узлов на макетах;

— изготовление полного макета и его отладка;

— разработка окончательной принципиальной схемы, подбор деталей и разработка печатной платы;

— изготовление и отладка опытного образца, корректировка печатной платы;

— изготовление окончательного варианта печатной платы, корпуса и монтаж прибора.

Приведенный идеальный вариант последовательности разработки редко осуществим на практике: либо времени не хватает, либо денег, либо того и другого. Есть одна известная фирма, которая занимается разработкой заказных электронных устройств, так там берут несколько «килобаксов» только за написание технического задания. И они правы! На практике же часто получается так, что макетный либо опытный образец сразу становится окончательным. И все же по мере возможности не пренебрегайте этими промежуточными этапами, — поверьте, так получится намного эффективнее, чем собрать все сразу, а потом в лучшем случае обнаружить, что ничего не работает, а в худшем — выветривать из комнаты очень неприятный и стойкий запах горелой пластмассы. Учтите, что почти ни одна новая схема никогда не работает сразу, будьте к этому готовы и заранее наберитесь терпения.

Итак, приступим.

Юрий Ревич <revich@homepc.ru>

Автор выражает благодарность Юрию Певзнеру за консультации по микроконтроллерам Atmel AVR. Отдельно хочется поблагодарить за теплое и внимательное отношение сотрудников издательства "БХВ-Петербург" Игоря Шишигина, зам. главного редактора, и Григория Добина, зав. редакцией, а также всех остальных известных и неизвестных мне работников издательства.

Схемы, чертежи и фотографии компонентов подготовлены автором. Все остальные иллюстрации взяты из официальных источников для прессы, за исключением фотографии первого транзистора из главы 3 и портрета Клода Шеннона из главы 7, любезно предоставленных автору корпорацией Lucent Technologies Inc./Bell Labs в лице ее сотрудницы Франциски Мэттьюз (Francisca Matthews).

Часть I

ЭЛЕКТРОНИКА БЕЗ ПРОГРАММИРОВАНИЯ

Глава 1

Основные физические законы в микроэлектронике

Уйди-уйди! — закричал вампир. — Мы так не договаривались. Я боюсь электричества.

Кир Булычев «Вампир Полумраке»

В наше время нередко можно встретить «эксперта» по английской культуре, не знающего английского языка, или «программиста», не разбирающегося в математической логике. Не будем им уподобляться, тем более что практическая электроника совсем не требует знаний на уровне физико-математического факультета МГУ. Вполне работоспособные схемы можно создавать и проектировать, обладая лишь багажом сведений в пределах 8-го класса средней школы, но уж в базовых понятиях из области электричества желательно ориентироваться как можно свободнее. Мы и начнем с того, что проясним их для себя раз и навсегда.

Чем отличается ток от напряжения?

Дурацкий вопрос, скажете вы? Отнюдь. Опыт показал, что не так уж и много людей могут на него ответить правильно. Известную путаницу вносит и язык: в выражениях вроде «имеется в продаже источник постоянного тока 12 В» смысл искажен. На самом деле в данном случае имеется в виду, конечно, источник напряжения, а не тока, т. к. ток в вольтах не измеряется. Самое правильное будет сказать — «источник питания постоянного напряжения 12 вольт», а написать можно и «источник питания =12В» где символ «=» обозначает, что это именно постоянное напряжение, а не переменное. Впрочем, и в этой книге мы тоже иногда будем «ошибаться» — язык есть язык.

Чтобы разобраться во всем этом, для начала напомним строгие определения из учебника (зазубривать их — очень полезное занятие!). Итак, ток, точнее, его величина, есть количество заряда, протекающее через сечение проводника за единицу времени: I = Q/t. Единица измерения тока — ампер, а ее размерность — кулоны в секунду (здесь и далее, кроме оговоренных случаев, мы будем употреблять систему единиц СИ). Знание сего факта пригодится нам позднее. Куда более запутанно выглядит определение напряжения, как разности потенциалов между двумя точками пространства. Измеряется она в вольтах и размерность этой единицы измерения — джоуль на кулон, т. е. U = E/Q. Почему это так, легко понять, вникнув в смысл строгого определения величины напряжения: 1 вольт есть такая разность потенциалов, при которой перемещение заряда в 1 кулон требует затраты энергии, равной 1 джоулю.

В этой главе мы будем говорить о постоянном токе и напряжении. Все это наглядно можно представить себе, сравнив проводник с трубой, по которой течет вода. При таком сравнении величина тока есть количество (расход) протекающей воды за секунду. Это довольно точная аналогия, роль молекул воды играют бегущие по проводнику электроны. Тогда напряжение предстанет, как разность давлений на входе и выходе трубы, за счет которой поток приобретает способность к движению.

Чаще всего труба заканчивается открытым краном, так что давление на выходе равно атмосферному давлению, и его можно принять за нулевой уровень. Точно так же в электрических схемах существует общий провод (или «общая шина» — в просторечии для краткости ее часто называют «землей», хотя это и не совсем точно), с нулевым потенциалом, относительно которого отсчитываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.

Итак, вернемся к вопросу в заголовке: чем же отличается ток от напряжения? Правильный ответ будет звучать так: ток — это количество электричества, а напряжение — мера его потенциальной энергии, способности к движению.

Напряжение и ток обычно связаны между собой. Слово «обычно» я употребил потому, что в некоторых случаях — для источников напряжения или тока, о которых мы поговорим в этой главе далее — от этой связи стараются избавиться, хотя полностью это сделать никогда не удается. Если вернуться к аналогии с трубой, то легко представить, как при возрастании давления (напряжения) увеличивается количество протекающей жидкости (ток), т. е. зависимость тока от напряжения довольно наглядна. Сложнее уяснить обратную зависимость: как ток влияет на напряжение. Для этого нужно сначала понять, что такое сопротивление.

Сопротивление

Вплоть до середины XIX века физики не знали, как выглядит зависимость тока от напряжения. Этому есть одна важная причина. Попробуйте сами экспериментально выяснить, как выглядит график этой зависимости. Схема эксперимента приведена на рис. 1.1, а примерные результаты — на рис. 1.2.


Рис. 1.1. Схема эксперимента по проверке закона Ома


Рис. 1.2. Примерные результаты проверки закона Ома

Показанные на графике результаты весьма приблизительны, т. к. вид кривой будет сильно зависеть от того, как именно выполнен проводник (R1 на рис. 1.2): намотан ли он плотно или редко на толстый массивный каркас или на тонкий, а также от температуры в комнате, сквозняка и еще от множества других причин. Именно такое непостоянство и смущало физиков — меняется не только ход кривой (т. е. ток в общем случае непропорционален напряжению), но вид и форма этой зависимости весьма непостоянны и меняются как при изменении условий внешней среды, так и для различных материалов.

Понадобился гений Георга Ома, чтобы за всеми этими деревьями увидеть настоящий лес: а именно понять, что зависимость тока от напряжения описывается элементарно простой формулой: I = U/R. А все несуразности проистекают от того, что сама величина сопротивления R зависит от материала проводника и от условий внешней среды, в первую очередь от температуры. Так, в нашем эксперименте загиб кривой вниз происходит потому, что при прохождении тока проводник нагревается, а сопротивление меди с повышением температуры увеличивается (примерно на 0,4 % на каждый градус). А вот сама величина этого нагрева зависит от всего, что угодно: намотайте провод поплотнее и заверните его в асбест, он будет нагреваться сильнее, а размотайте его и поместите на сквозняк — нагрев резко уменьшится.

В ознаменование заслуг Георга Ома единица измерения сопротивления так и называется — ом. Согласно формуле закона Ома, приведенной в предыдущем абзаце, 1 Ом есть сопротивление такого проводника, через который течет ток в 1 А при напряжении на его концах, равном 1 В. Обратная сопротивлению величина называется проводимостью и измеряется в сименсах, названных так в честь другого ученого: 1 Сименс = 1/Ом. В электронике почти всегда оперируют величиной сопротивления, так что сименсы мы в основном оставим для физиков, хотя иногда прибегать к ним приходится.

Сопротивление проводника зависит от его геометрических размеров: оно увеличивается пропорционально длине и уменьшается пропорционально площади сечения: R = ρ∙L/S. Большое практическое значение имеет коэффициент пропорциональности ρ — т. н. удельное сопротивление материала проводника. При определенной температуре (обычно берется 20 °C) эта величина почти постоянна для каждого материала. «Почти» я тут написал потому, что на самом деле эта величина сильно зависит от химической чистоты и даже от способа изготовления материала проводника. Поэтому для проводников употребляют очень чистые металлы, скажем, обычный медный провод изготавливают из меди с количеством примесей не более 0,1 % (как говорят, с чистотой в «три девятки»). Это позволяет уменьшить сопротивление такого провода и избежать лишних потерь на его нагрев.

Удельное сопротивление проводника, по определению, есть сопротивление (Ом) проводника единичной площади (м2) и длины (м). Если подставить эти величины в предыдущую формулу, вы получите размерность для удельного сопротивления Ом∙м2/м или просто Ом∙м. Практически в таких единицах измерять удельное сопротивление страшно неудобно, т. к. для металлов величина получается крайне маленькой — представляете сопротивление куба меди с ребром в 1 м?! На практике часто употребляют единицу в 100 раз больше: Ом∙см. Эта величина часто приводится в справочниках, но и она не слишком удобна для практических расчетов. Так как диаметр проводников измеряют обычно в миллиметрах (а сечение, соответственно, в квадратных миллиметрах), то на практике наиболее удобна старинная внесистемная единица Ом∙мм2/м, которая равна сопротивлению проводника сечением в 1 квадратный миллиметр и длиной 1 метр. Для того чтобы выразить «официальный» Ом∙м в этих единицах, нужно умножить его величину на 106, а для Ом∙см — на 104. Посмотрев в справочнике величину удельного сопротивления меди (0,0175 Ом∙мм2/м при 20 °C), мы легко можем вычислить, что сопротивление проводника с параметрами, приведенными на рис. 1.1, составляет около 45 Ом (проверьте!).

Заметки на полях

Надо сказать, что человечество весьма преуспело в изготовлении специальных материалов, имеющих коэффициент удельного сопротивления, мало зависящий от температуры. Это, прежде всего, специальные сплавы, константан и манганин, температурный коэффициент сопротивления (ТКС) которых в несколько сотен раз меньше, чем у чистых металлов. А для обычных стандартных углеродистых или металлопленочных резисторов ТКС составляет приблизительно 0,1 % на градус или меньше, т. е. примерно в 4 раза лучше, чем у меди. Есть и специальные прецизионные резисторы (среди отечественных это, например, С2-14, С2-29В, С5-61, проволочные С5-54В и др.), у которых этот коэффициент значительно меньше. Есть и другие материалы, у которых температурный коэффициент, наоборот, весьма велик (несколько процентов на градус, и при этом, в отличие от металлов, отрицателен) — из них делают т. н. термисторы, которые применяют в качестве чувствительных датчиков температуры. Для точного измерения температуры тем не менее используют чистые металлы — чаще всего платину и медь.

Схема с двумя резисторами

Познакомившись с понятием сопротивления и его особенностями, вспомним. Для чего мы все это делали. Ах, да, мы же хотели понять, как практически представить зависимость напряжения от тока! Но ведь мы пока не умеем произвольно изменять ток в проводнике, так? Напряжение изменять просто— нужно взять регулируемый источник питания, как это изображено на рис. 1.1, или, на худой конец, набор батареек, при последовательном соединении которых (1, 2, 3 и более штук) мы получим некий набор напряжений. А вот источников тока (именно тока, а не напряжения) мы еще не имеем. Как же быть?

Выход из этой ситуации показан на рис. 1.3 (заметьте, мы от схематического изображения проводника из длинной проволоки, имеющей некое сопротивление, перешли к стандартному обозначению резисторов, как это делается в настоящих электрических схемах, см. Приложение 1).


Рис. 1.3. Схема для изучения свойств цепи с двумя резисторами

Здесь нам уже не нужен регулируемый источник питания. Питается схема от батареи из трех гальванических элементов, например, типа D, соединенных последовательно (или одной типа 3336, см. Приложение 2). Каждый такой элемент (если он еще не был в эксплуатации) дает напряжение примерно 1,6 В, так что суммарное напряжение будет почти 5 В, как и указано на схеме (под нагрузкой и по мере истощения элементов напряжение немного упадет, но ошибка в данном случае не играет большой роли).

Как работает эта схема? Допустим, что движок переменного резистора R1 выведен в крайнее правое (по схеме) положение. Проследим путь тока от плюсового вывода батареи—амперметр, вывод движка резистора R1, крайний правый вывод R1, резистор R2, минусовой вывод батареи. Получается, что резистор R1 в схеме как бы не участвует, поскольку ток от плюсового вывода батареи сразу попадает на R2 (амперметр можно не принимать во внимание — далее мы узнаем, почему это так) и схема становится фактически такой же, как на рис. 1.1. Что покажут наши измерительные приборы? Вольтметр покажет напряжение батареи — 5 В, а показания амперметра легко вычислить по закону Ома: ток в цепи составит 5 В/50 Ом = 0,1 А или 100 мА (напомним еще раз, что это значение приблизительное, т. к. напряжение батареи несколько меньше 5 В).

Теперь поставим движок R1 в среднее положение. Ток в цепи теперь пойдет от плюса батареи через амперметр, вывод движка R1, половину резистора R1, резистор R2 и далее, как и раньше, вернется к минусу батареи. Как изменятся показания приборов? Раньше резистор R1 в деле не участвовал, а теперь участвует, хоть и половинкой. Соответственно, общее сопротивление цепи станет уже не 50 Ом (один резистор R2), а 50 (R2) + 50 (половинка R1), т. е. 100 Ом. Амперметр покажет уже не 100 мА, а 5 В/100 Ом = 0,05 А или 50 мА— в два раза меньше. А вот что покажет вольтметр? Так сразу и не скажешь, не правда ли? Придется считать, для этого рассмотрим отдельно участок цепи, состоящий из R2 с присоединенным к нему вольтметром. Очевидно, что току у нас деться некуда — все то количество заряда, которое вышло из плюсового вывода батареи, пройдет через амперметр, через половинку R1, через R2 и вернется обратно в батарею. Значит, и на этом отдельном участке, состоящем из одного R2, ток будет равен тому, что показывает амперметр, т. е. 50 мА. Получается, как будто резистор R2 подключен к источнику тока!

Замечание

На самом деле это не совсем точно — часть тока, хотя и очень небольшая, все же пойдет через вольтметр, минуя R2. Но на практике, особенно для современных вольтметров, этим всегда пренебрегают (см. далее).

И это действительно так — источник напряжения с последовательно включенным резистором (в данном случае это половинка R1) представляет собой источник тока (хотя и плохой). Так каковы же будут показания вольтметра? Очень просто: из закона Ома следует, что UIR где R — сопротивление нужного нам участка цепи, т. е. R2, и в данном случае вольтметр покажет 0,05 50 = 2,5 В. Эта величина называется падением напряжения, в данном случае — падением напряжения на резисторе R2. Легко догадаться, даже не подключая вольтметр, что падение напряжения на резисторе R1 будет равно тоже 2,5 В, причем его можно вычислить двумя путями: как разницу между 5 В от батареи и падением на R2 (2,5 В), или по закону Ома, аналогично расчету для R2.

Замечание

И это не совсем точно — амперметр тоже имеет некоторое сопротивление и может быть представлен в виде еще одного последовательного резистора. Но, как и в случае вольтметра, этим на практике пренебрегают.

А что будет, если вывести движок переменника в крайнее левое положение? Я сразу приведу результат: амперметр покажет 33 мА, а вольтметр — 1,66 В. Пожалуйста, проверьте это самостоятельно! Если вы получите те же значения, то это будет означать, что вы усвоили закон Ома и теперь умеете отличать ток от напряжения.

Источники напряжения и тока

В схеме на рис. 1.3 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.

Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.

Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС, т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.

Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обладать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечно малого) может обладать бесконечным выходным сопротивлением, довольно трудно, и в быту таких источников вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напряжения (не тока!), как R1 на рис. 1.3, при условии, что сопротивление нагрузки мало (R2 << R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разберемся позднее.

Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.4, а и б. Не перепутайте, логики в этих обозначениях немного, но так уж принято. А эквивалентные схемы (их еще называют схемами замещения) реальных источников приведены на рис. 1.4, в и г, где RB обозначает внутреннее сопротивление источника. Как можно использовать эти эквивалентные схемы при анализе реальных цепей? Для этого нужно окончательно разобраться, как рассчитываются схемы с параллельным и последовательным включением резисторов.



Поделиться книгой:

На главную
Назад