Именно там я впервые встретил Станислава Мазура, молодого преподавателя из Львовского университета. Он приходил в политехнический институт, чтобы поработать вместе с Орличем, Никлиборцем и Кацмарцем, которые были на несколько лет старше его.
Беседуя с Мазуром, я начал вникать в вопросы анализа. Я помню, как целыми часами сидел за партой, размышляя над вопросами, которые он ставил передо мной или же обсуждал с другими математиками. Мазур познакомил меня с перспективными идеями теории функций вещественной переменной и нового функционального анализа. Мы обсуждали некоторые из последних задач Банаха, разработавшего новый подход к этой теории.
Время от времени появлялся и сам Банах, хотя основная его работа проводилась в университете. Я встретил его впервые во время своего первого года учебы, но наше знакомство в более точном, близком и интеллектуальном смысле состоялось год или два спустя.
В этих преподавательских комнатах можно было часто увидеть и других математиков. Стоцек, жизнерадостный, круглолицый, невысокий и совершенно лысый, был деканом факультета общих исследований. На польском слово «stozek» означает конус, он же скорее походил на сферу. Всегда в хорошем настроении, вечно шутя, он любил уплетать сосиски, щедро приправленные хреном — блюдо, которое, как он утверждал, излечивает от меланхолии. (Стоцек был одним из профессоров, убитых немцами в 1941 году.)
Здесь работал и Энтони Ломницкий, математик с аристократическими чертами, который специализировался по теории вероятностей и ее приложениям к картографии. (Он тоже был убит немцами во Львове, в 1941 году.) Збигнев Ломницкий, его племянник, стал впоследствии моим хорошим другом и соратником.
Высокий и худощавый Кацмарц (погиб в 1940 году при исполнении воинского долга) и Никлиборц, низкий и полный, заведовали практической частью курса исчисления в целом и курса дифференциальных уравнений. Их часто можно было увидеть вместе, и они напоминали мне Пата и Паташона, двух комических киноактеров того времени.
Я не был образцовым студентом, если понимать под таковым студента, способного заниматься предметами, которые его не интересуют. С другой стороны, после стольких лет я все еще не могу назвать себя состоявшимся математиком-профессионалом. Я люблю пробовать новые подходы и, будучи оптимистом по натуре, всегда надеюсь, что в итоге они окажутся успешными. Мне никогда не приходило в голову, что мое умственное усилие пропадет впустую или что нужно «экономить» свой умственный капитал.
В начале второго семестра первого курса Куратовский рассказал мне об одной задаче в теории множеств, которая касалась преобразования множеств. Она была связана с известной теоремой Бернштейна: если 2
Свою первую научную работу я написал на английском языке, который знал лучше, чем немецкий или французский. Куратовский проверил ее, и в 1928 году моя небольшая статья появилась в «Fundamenta Mathematicae», ведущем польском математическом журнале, редактором которого он был. Это придало мне уверенности в себе.
Но и тогда я все еще не решил, какую профессию или род деятельности выбрать. Реальные шансы стать профессором математики в Польше были ничтожно малы — вакансий в университете было мало. Моя семья хотела, чтобы я обучился какой-нибудь профессии, на втором курсе я собирался перевестись на факультет электротехники. Возможность зарабатывать на жизнь, работая в этой области, казалась мне намного реальнее.
Ближе к концу первого курса Куратовский упомянул на своей лекции еще об одной задаче в теории множеств. Это была проблема, связанная с существованием субтрактивных, т. е. не вполне счетно-аддитивных функций в теории множеств. Помню, что размышлял над этим вопросом недели напролет. Я все еще словно ощущаю то напряжение, с каким я обдумывал его, и то количество попыток, которые я сделал. Я поставил самому себе ультиматум — если я смогу решить эту задачу, то останусь математиком, в противном случае стану заниматься электротехникой.
Через несколько недель способ решения был найден. Я в волнении поспешил к Куратовскому, чтобы рассказать о нем — о своем решении с применением трансфинитной индукции. Математики уже не раз использовали трансфинитную индукцию, но в целях иного рода. То применение, которое нашел ей я, было, на мой взгляд, новым.
Я думаю, Куратовскому мой успех доставил удовольствие, и он одобрил мое намерение продолжать занятия математикой. До окончания первого курса я успел написать свою вторую работу, которую Куратовский также опубликовал в «Fundamenta». Жребий был брошен. Я сосредоточился на «непрактичных» возможностях карьеры ученого. В известном смысле большая часть процесса, который люди называют принятием решения, происходит в силу определенных причин. Однако я считаю, что само решение, к которому приходят в конечном итоге, — это своего рода голосование, которое происходит на уровне подсознания, где верх одерживает большинство доводов в его пользу.
Летом 1928 года я поехал на балтийское побережье Польши, и Куратовский пригласил меня заехать по пути в его загородный дом, недалеко от Варшавы. Это была элегантная вилла с теннисным кортом. Куратовский в то время довольно хорошо играл в теннис, и это меня очень удивляло, так как его фигура была какой угодно, но только не атлетической.
Во время шестичасовой поездки на поезде из Львова в Варшаву я практически беспрестанно думал о проблемах теории множеств, желая представить Куратовскому что-нибудь, что заинтересовало бы его. Я размышлял над тем, как опровергнуть теорию континуума — одну из самых известных нерешенных задач из основ теории множеств и математики, которую сформулировал Георг Кантор, создатель самой теории множеств. Однако все мои соображения были весьма туманными, и Куратовский это очень скоро обнаружил. Тем не менее, мы обсудили отдельные стороны этой проблемы, и я уехал в Сопот с более или менее не потревоженной уверенностью в себе.
Альфред Тарский, ныне знаменитый логик и профессор в Беркли, был варшавским другом Куратовского и иногда приезжал во Львов. Как логик он уже был известен за рубежом, однако его работа по основам математической логики и теории множеств также имела немаловажное значение. Он был кандидатом на вакантную должность профессора философии в Львовском университете. Вместо него эту должность отдали тогда другому логику, Леону Хвистеку — признанному художнику, автору философских трактатов, шурину Штейнгауза, человеку, хорошо известному своей эксцентричностью. (Он умер в Москве во время войны.) Спустя годы, в Кембридже, я случайно упомянул о Хвистеке в разговоре с Альфредом Нортом Уайтхедом. В ходе нашей беседы я заметил: «Странно, что и он был художником», на что Уайтхед разразился громким смехом и, зааплодировав, воскликнул: «Как это по-английски говорить, что быть художником — это странно!», и миссис Уайтхед тоже рассмеялась. Недавно в Польше вышла в свет биография Хвистека, замечательно изложенная Эйстрейхером. Это увлекательное повествование о его карьере и творческой деятельности Хвистека в Кракове и Львове в период с 1910 по 1446 год.
Один из первых моих контактов с Тарским возник в связи с моей второй научной работой. Я доказал в ней теорему об идеалах множеств в теории множеств. (Позже Маршалл Стоун доказал другую версию этой же теоремы). В своей статье в «Fundamenta» я также раскрыл возможность определения конечно-аддитивной меры с двумя значениями (0 и 1) и установил максимальный простой идеал для подмножеств в бесконечном множестве. К тому же самому результату пришел и Тарский в очень длинной работе, которая появилась через год. Куратовский обратил его внимание на то, что этот результат следовал из моей теоремы, и Тарский отметил это в сноске. Ввиду моей молодости, я расценил это как маленькую победу, как признание моего присутствия в математике.
В то время среди некоторых математиков было распространено мнение, что логика в действительности не является математикой, а представляет собой лишь некое подготовительное и даже чуждое математике занятие. Сегодня это убеждение исчезает перед лицом множества реальных успехов, достигнутых в математике, благодаря методам формальной логики.
На втором курсе я решил прослушать курс теоретической физики, который читал профессор Войцек Рубинович, ведущий польский теоретик, бывший студент и сотрудник знаменитого физика Зоммерфельда из Мюнхена. Я посещал его образцовые лекции по электромагнетизму и принимал участие в семинарах по теории групп и квантовой теории, которые он проводил для способных студентов. Мы занимались по учебнику Германа Вейля «Теория групп и квантовая механика» («Gruppen theorie und Quantum Mechanik»). Весьма впечатляющим был высокий уровень математики, на котором мы изучали уравнения Максвелла и теорию электричества, составлявшие первую часть этого учебника. Хотя многое было выше моего понимания, я умудрялся много читать самостоятельно. Читал популярные доклады по теоретической физике, статистической механике, теории газов и теории относительности, не забывая также про электричество и магнетизм.
Зимой Рубинович заболел и попросил меня (хотя я был самым молодым студентом в группе) провести несколько занятий во время его отсутствия. До сих пор помню, как я корпел над незнакомым и трудным материалом учебника Вейля. Это было моим первым активным занятием в области физики.
Математические кабинеты политехнического института продолжали оставаться местом моего постоянного пребывания. Каждый день я проводил там утренние часы, в том числе и по субботам (суббота тогда не считалась выходным днем; по утрам в субботу проводились занятия). Нередко в институте появлялся Мазур, и мы начали активно работать вместе над проблемами функциональных пространств. Мы нашли решение задачи о бесконечномерных векторных пространствах. Теорема, которую мы доказали, — о том, что преобразование, сохраняющее расстояние, является линейным — входит сейчас в стандартный курс геометрии функциональных пространств. Написанная нами научная статья была опубликована в «Compte-Rendus» Парижской Академии наук.
Именно Мазур (наряду с Куратовским и Банахом) познакомил меня с некоторыми наиболее значительными этапами развития математических подходов и мышления. Я многое узнал от него о психологии исследования и различных отношениях к нему. Иногда мы часами сидели в кафе. На клочке бумаги или мраморной поверхности стола он писал один символ или строчку типа
Мазур, по его же собственным словам, был мастером «наблюдать и замечать». Это позволяло ему формулировать, обычно в краткой и точной форме, некоторые свойства понятий. Как правило, проверить их не составляло труда, поскольку иногда они граничили с традиционными формулировками и потому оставались незамеченными, однако часто именно им принадлежала решающая роль при решении задач.
Во время одной из бесед в кафе Мазур предложил первые примеры бесконечных математических игр. Я помню также (это было, скорее всего, в 1929 или 1930 году), что он поднял вопрос о существовании автоматов, которые обладали бы способностью к копированию самих себя при наличии некоторого наполнителя. Мы обсуждали это весьма отвлеченно, но некоторые из наших идей, которые мы никогда не записывали, практически предопределили будущие теории, такие, как теория абстрактных автоматов фон Неймана. Часто мы размышляли над возможностью создания компьютеров, способных выполнять числовые операции, связанные с исследованиями, и даже формальные алгебраические вычисления.
Я уже упомянул о том, что впервые увидел Банаха, посетив серию математических лекций во время учебы в средней школе. В то время Банаху было за тридцать, но, вопреки впечатлению, которое обычно складывается у молодых о людях, которые на пятнадцать или двадцать лет старше их, мне он показался очень моложавым. Он был голубоглазым блондином, высоким, с довольно тучной фигурой. Его манера говорить впечатлила меня своей открытостью, убедительностью и явной бесхитростностью (особенность, которая, как я заметил, была в какой-то мере напускной). Выражение его лица обыкновенно выдавало хорошее расположение духа в сочетании с определенной долей скептицизма.
Банах происходил из бедной семьи и почти не получил того общепринятого школьного образования. Он был по большей части самоучкой, когда пришел в стены Политехнического института. Говорили, что Штейнгауз совершенно случайно узнал о таланте Банаха, подслушав разговор двух молодых студентов, сидевших на скамейке в парке и обсуждавших математические вопросы. Одним из них был Банах, другим — Никодим, который недавно ушел с поста профессора математики Кеньонского колледжа. Впоследствии Штейнгауза и Банаха ожидало очень тесное сотрудничество и совместное основание Львовской математической школы.
Познания Банаха в математике были обширными. Он внес свой вклад в теорию функций вещественных переменных, теорию множеств, функциональный анализ, теорию бесконечномерных пространств (точки этих пространств являются функциями или бесконечными числовыми рядами). Некоторые его результаты были воистину изящны. Как-то он сказал мне, что в молодости знал все три тома «Дифференциальной геометрии» Дарбу.
Я побывал лишь на нескольких лекциях Банаха. Особенно мне запомнились его доклады на тему вариационного исчисления. В основном его выступления не были как следует подготовлены. Иногда он ошибался или пропускал что-то. Наиболее увлекательно было наблюдать за тем, как он работал у доски, пытаясь устранить свою оплошность и неизменно справлялся с этим. Я всегда находил такие выступления гораздо более увлекательными по сравнению с теми безукоризненными лекциями, во время которых мое внимание, бывало, окончательно переключалось на другие вещи и возвращалось к докладчику, лишь когда я чувствовал, что тот попал впросак. Начиная с третьего курса учебы, почти все идеи моих работ по математике созревали под влиянием бесед с Мазуром и Банахом. Банах говорил, что некоторые из моих работ отличались «необычностью» в постановке задач и обзоре возможных доказательств. Однажды, несколько лет спустя, он сказал мне, что его поражало то, насколько часто эти «необычные» подходы оправдывали себя. Слова эти из уст великого ученого в адрес молодого человека двадцати восьми лет были, наверное, величайшей из всех когда-либо заслуженных мною похвал.
Что же касается способностей Банаха, то будь то математическая дискуссия или короткое замечание на какую-то общую тему — во всем почти сразу можно было почувствовать огромную силу его ума. Он трудился с огромным напряжением, но в какие-то моменты прекращал работу и некоторое время пребывал в кажущемся бездействии. Но и в эти промежутки времени его мозг продолжал работать над отбором тех утверждений — своего рода пробных шаров — которые могли бы наилучшим образом послужить в качестве основных теорем в какой-нибудь последующей области изучения.
Он любил вести длинные математические дискуссии с друзьями и студентами. Я вспоминаю одно наше «заседание» в Шотландском кафе с Мазуром и Банахом, продолжавшееся семнадцать часов подряд, когда мы прерывали нашу беседу лишь для того, чтобы перекусить. Более всего меня вдохновляло то, как он мог обсуждать математические вопросы, обосновывать их и находить доказательства в ходе таких бесед.
Поскольку дискуссии эти чаще всего проходили в соседних кафе или маленьких харчевнях, некоторые математики часто там же и обедали. Сейчас мне кажется, что еда там была так себе, но напитков было великое множество. У столов были белые мраморные поверхности, на которых можно было писать карандашом и, что не менее важно, с них было легко стирать надписи.
Проливался внезапный и непродолжительный поток речи, на столе писалась пара строчек, иногда слышался смех одного из собеседников, а затем наступало длительное молчание, во время которого мы пили кофе, уставившись друг на друга отсутствующим взглядом — вот так это обычно бывало. Должно быть, посетителей, сидевших за соседними столиками, озадачивало столь странное поведение. Однако именно такое упорство и умение сконцентрироваться являются самыми важными условиями истинно плодотворной работы в области математики.
Когда отдаешь много сил размышлению над какой-то одной задачей несколько часов подряд, это может вызвать сильную усталость, граничащую с полным упадком сил. Я сам никогда не испытывал полного упадка сил, хотя два или три раза за свою жизнь мне все же довелось почувствовать себя несколько «странно внутри». Однажды я усиленно размышлял над несколькими математическими построениями, переходя от одного к другому, но в то же время пытаясь сознательно удержать их всех в голове одновременно. Эта сосредоточенность и умственные усилия привели мои нервы в состояние сильнейшего стресса. Внезапно все вокруг пошло кругами, и я вынужден был остановиться.
Эти долгие собрания в кафе с Банахом, а чаще с Банахом и Мазуром были в своем роде уникальны. Сотрудничество наше разворачивалось с таким размахом, равного которому я уже нигде никогда не встречал, возможно только в Лос-Аламосе в годы войны.
Банах признался мне как-то, что еще с самой юности его особенно привлекал сам поиск доказательств, т. е. демонстрация предположений. В его подсознании была заложена способность отыскивать скрытые пути — отличительное свойство его особого дара.
Через год или два Банах перенес наши ежедневные заседания из Римского кафе в Шотландское кафе, что находилось как раз через улицу. Стоцек проводил там ежедневно пару часов, играя в шахматы с Никлиборцем за чашкой кофе. Другие математики, окружив их, давали непрошенные советы. Изредка там появлялись Куратовский и Штейнгауз. Обычно они посещали более изысканные места, славящиеся лучшей выпечкой во всей Польше.
Было трудно оказаться выносливее Банаха или «впитать» в себя больше, чем он во время этих заседаний. Мы обсуждали на них задачи, которые обычно прямо там же и ставились, и зачастую не находили решения даже после нескольких часов размышлений, а на следующий день Банах появлялся, держа в руках несколько маленьких листочков с основными пунктами доказательств, которые он успел закончить накануне. Если же они были не завершены или даже не совсем правильны, то Мазур, как правило, приводил их в более удовлетворительный вид.
Нет нужды говорить, что помимо этих математических дискуссий, мы подолгу разговаривали о науке вообще (особенно о физике и астрономии), университетских новостях, политике, положении дел в Польше, или, выражаясь одной из любимых фраз Джона фон Неймана, об «остальной части Вселенной». Тогда уже приобретала свои зловещие очертания тень грядущих событий, скорого возвышения Гитлера в Германии, и зарождалось смутное предчувствие мировой войны.
В юморе Банаха присутствовала ирония и время от времени слышались нотки пессимизма. В течение некоторого времени он был деканом факультета естественных наук, и ему приходилось посещать разного рода собрания. По возможности он всегда старался избегать эти мероприятия. Как-то он сказал мне: «Wiem gdzie nie bȩdȩ»[4], и по его тону было ясно, что он намеревался пропустить какое-нибудь скучное собрание.
Банах имел потрясающую способность к постановке задач, охватывающих целые разделы математических дисциплин, и его публикации лишь частично отражают его математические пристрастия. Его интересы в математике были гораздо разнообразнее, чем можно было себе представить по его опубликованным работам. Очень велико было его влияние на других математиков во Львове и в Польше. Он, без сомнения, является одной из выдающихся фигур этого примечательного периода между двумя войнами, во время которого было так много сделано в области математики.
У меня нет достоверных сведений о его жизни и работе на период от начала войны и до его преждевременной смерти осенью 1945 года. По обрывочной информации, полученной позднее, мы узнали, что во время немецкой оккупации он все еще оставался во Львове и претерпевал большие лишения. Выжив, чтобы увидеть поражение Германии, Банах умер в 1945 году от болезни легких, возможно от рака. Я часто видел, как он выкуривал по четыре-пять пачек сигарет в день.
В 1929 году Куратовский попросил меня принять участие в конгрессе математиков из славянских стран, который должен был пройти в Варшаве. Что мне особенно запомнилось, так это прием во дворце президиума Совета Министров и робость, которую я испытывал в окружении такого множества великих математиков, правительственных чиновников и влиятельных людей. Отчасти мне удалось побороть ее, когда другой математик, Ароншайн, который был на четыре-пять лет старше меня, обратился ко мне со словами: «Kolego (так обычно польские математики обращались друг к другу), давайте пройдем в другую комнату, там подают превосходные пирожные». (Сейчас Ароншайн — профессор Канзасского университета в Лоренсе.)
Львовское отделение Польского математического общества проводило заседания по субботам в вечернее время. Обычно в течение часа зачитывалось три или четыре небольших доклада, после чего участники собрания отправлялись в кафе, чтобы продолжить обсуждение там. Не раз я заранее объявлял о своей готовности сообщить о некоторых результатах своей работы на одном из ближайших собраний, хотя доказательство, над которым я работал, еще не было завершено. Это было самонадеянно, однако мне сопутствовала удача, потому что я всегда успевал закончить доказательство до своего выступления.
Мне было девятнадцать или двадцать лет, когда Стоцек попросил меня занять место секретаря Львовского отделения математического общества, обязанность которого состояла, главным образом, в рассылке извещений о предстоящих заседаниях и написании кратких аннотаций обсуждаемых вопросов для «Society’s Bulletin». Разумеется, между нашим отделением и другими отделениями в Кракове, Познани и Вильно велась активная переписка. Серьезные проблемы возникали в связи с намерением перенести административный центр общества из Кракова, старинного королевского города Польши, в столицу Варшаву, где, в конце концов, он и разместился.
Однажды из Кракова пришло письмо, ходатайствующее о поддержке Львовского отделения в этом вопросе. Я сказал Стоцеку, президенту нашего отделения: «Сегодня утром пришло важное письмо», и его ответ — «Спрячь его так, чтобы ни одна душа его не увидела» — нанес серьезный удар по моей юношеской наивности.
Второй конгресс, на котором я побывал, проходил в 1931 году в Вильно. Я поехал в Вильно поездом через Варшаву вместе со Стоцеком, Никлиборцем и еще одним или двумя математиками. Всю дорогу они что-то ели и пили, но когда я вытащил из кармана фляжку с бренди, Стоцек разразился смехом и сказал: «Это мама позаботилась на случай, если ему вдруг станет дурно!» Это заставило меня остро почувствовать, насколько молодо я выглядел в глазах других. В течение многих лет я был самым молодым среди своих друзей-математиков. И теперь мне грустно сознавать, что сейчас почти в любой из групп ученых я самый старый.
Вильно был изумительным городом. Отличаясь от других городов австрийской части Польши, он создавал определенно восточную атмосферу. Он казался мне экзотичным и куда более примитивным по сравнению с той частью Польши, где жил я. Улицы все еще были вымощены булыжником. Когда я приготовился принять ванну в номере отеля, оказалось, что из крана гигантской ванны не бежит вода. На мой звонок явился крепкий парень в русских сапогах с тремя большими ведрами горячей воды, которую нужно было вылить в ванну.
Я побывал в церкви св. Анны, той самой, что привела Наполеона, направлявшегося через Польшу в Москву, в такое восхищение, что тот захотел перевезти ее во Францию.
Это было мое первое и последнее посещение Вильно. Стоит отметить здесь, что один из самых выдающихся математиков Польши Антони Зигмунд занимал в Вильно должность профессора до Второй мировой войны. В 1940 году он уехал в Швецию, а оттуда в Соединенные Штаты. Сейчас он профессор Чикагского университета.
На конгрессе я докладывал о результатах нашей с Мазуром работы над геометрическими изометрическими преобразованиями банаховых пространств, показывающими, что последние являются линейными. Некоторые из введенных тогда нами дополнительных замечаний так и остались неопубликованными. Львовские математики вообще публиковали свои работы с какой-то неохотой. Был ли это какой-то психологический комплекс или напускное пренебрежение? Не знаю. Особенно это касалось Банаха, Мазура и меня самого, но, к примеру, не было свойственно Куратовскому.
Развитие математики исторически связано с конкретными центрами. Эти центры, большие или маленькие, формировались вокруг одной или небольшого числа личностей, а иногда рождались в результате работы нескольких людей — группы, внутри которой бурно развивалась математическая деятельность. Такая группа обладает чем-то большим, чем просто общностью интересов, ей свойственны определенное настроение и определенный характер как при выборе интересов, так и в методе мышления. Это может показаться странным в этимологическом смысле, поскольку математическое достижение, будь то новое определение или доказательство проблемы, кажется достижением сугубо личным, почти как музыкальное сочинение. Однако выбор определенных сфер интересов — это часто результат общности интересов. Зачастую этот выбор обуславливается взаимным влиянием вопросов и ответов, которое намного естественнее развивается, когда соприкасаются несколько мнений. Геттинген, Париж, Кембридж — все эти великие центры XIX века оказали свое особое влияние на развитие математики.
Достижения польских математиков за период между двумя мировыми войнами составили значительную долю во всемирной математической деятельности и предопределили ход математических исследований во многих областях.
Это, отчасти, было обусловлено влиянием Янишевского, одного из инициаторов развития математики в Польше и автора учебников по математике, к сожалению, очень рано ушедшего из жизни. Янишевский отстаивал мнение о том, что молодое польское государство должно готовить специалистов скорее в нескольких четко обозначенных областях, чем во множестве направлений, и приводил два следующих аргумента: во-первых, в Польше не так уж много людей, которых можно вовлечь в науку; во-вторых, гораздо лучше, чтобы одна область объединяла некоторое количество людей так, чтобы они имели общие интересы и могли стимулировать друг друга во время дискуссий. Но стратегия эта, если посмотреть с другой стороны, в чем-то все же ограничивала масштаб исследований.
Хоть Львов и был замечательным центром математики, многие профессора как из университета, так и из института находились в чрезвычайно стесненных обстоятельствах, получая очень маленькие жалования. Чтобы увеличить свой мизерный заработок от работы ассистентом или лектором, люди, такие как Шаудер, вынуждены были преподавать в средней школе. (Шаудер был убит немцами в 1943 году.) Збигнев Ломницкий подрабатывал экспертом по теории вероятностей в Правительственном институте статистики и страхования. Но между тем, если бы меня попросили назвать какое-то одно свойство, характеризующее развитие этой школы — школы математиков Львовского университета и политехнического института — я сказал бы, что оно заключается в занятии самыми фундаментальными задачами математики. Я имею в виду следующее: если рассматривать математику в виде дерева, то львовская группа была склонна исследовать скорее его корни и ствол, чем ветви, веточки и листья. Опираясь на надежную теоретическую и аксиоматическую основу, мы исследовали сущность пространства в общетопологическом смысле, общий смысл непрерывности, общие множества точек в евклидовом пространстве, основные функции вещественных переменных, проводили общее исследование пространств функций, понятий длины, площади и объема, т. е. общего понятия меры, и также определений теории вероятностей.
Бросая ретроспективный взгляд, удивляешься тому, что в алгебре понятия не рассматривались в подобном общем направлении. Не менее удивительно и то, что до сегодняшнего дня таким образом не изучены фундаментальные положения физики, особенно теории пространства и времени.
Львов часто и оживленно взаимодействовал с другими математическими центрами, особенно с Варшавой. Из Варшавы время от времени приезжали Серпинский, Мазуркевич, Кнастер, Тарский. Во Львове они часто выступали с небольшой речью на собраниях Математического общества, проходивших по субботним вечерам. Серпинский особенно любил неформальную атмосферу Львова, походы в харчевни и таверны и веселые попойки с Банахом, Рузевичем и другими (Рузевич был убит немцами 4 июня 1941 года).
Как-то Мазуркевич провел во Львове семестр лекций. Точно так же, как Кнастер в топологии, Мазуркевич был мастером по отысканию контрпримеров в анализе — примеров, демонстрирующих ложность какого-либо предположения. Иногда его контрпримеры были очень сложными, но всегда остроумными и изящными.
Серпинский, который сам непрерывным потоком выдавал результаты то в абстрактной теории множеств, то в теоретической топологии, никогда не обделял вниманием новые задачи, даже самые незначительные, и серьезно обдумывал их. Часто из Варшавы приходили его готовые решения.
Бронислав Кнастер был высоким, лысым и очень худым, с блестящими черными глазами. Он и Куратовский опубликовали много совместно написанных работ. Будучи воистину математиком-любителем, он проявлял большую изобретательность при построении множеств точек и континуумов с патологическими свойствами. Во время Первой мировой войны он изучал в Париже медицину. Отличаясь необычайным остроумием, он обычно развлекал нас рассказами о международной группе студентов-полиглотов на том неописуемом языке, на котором они разговаривали. Как-то он процитировал фразу одного студента, подслушанную в ресторане: «Kolego, pozaluite mnia ein stückele von diesem faschierten poisson» — амальгаму польского, русского, идиш, немецкого и французского!
Борсук, который был скорее моим сверстником, приезжая из Варшавы, оставался на более длительное время. С самого начала мы стали сотрудничать. От него я узнал о чисто геометрических, более наглядных и почти «осязаемых» приемах и методах топологии. Наши результаты были изложены в нескольких научных статьях, которые мы посылали в польские и некоторые заграничные журналы. Фактически моя первая публикация появилась в Соединенных Штатах, когда я был во Львове. Это была наша совместная с Борсуком работа, опубликованная в «Bulletin of the American Mathematical Society». Вместе мы дали определение понятию «эпсилон гомеоморфизм» (один из видов приближенного гомеоморфизма) и описали поведение некоторых топологических инвариантов под действием этих более общих преобразований — непрерывных, но необязательно взаимно однозначных. В другой совместной работе, посвященной симметричным произведениям, вводилось понятие, видоизменяющее определение декартова произведения и приводящее к построению некоторых любопытных многообразий. Возможно, некоторые из них когда-нибудь найдут применение в физических теориях. Они соответствуют новой статистике (не в привычном классическом смысле, а скорее в духе статистики неразличимых частиц квантовой теории или же частиц, поведение которых подчиняется статистике Бозе — Эйнштейна или Ферми-Дирака). Я не могу позволить себе вдаваться на этих страницах в объяснения, однако упоминание об этой работе, возможно, все же заинтересует некоторых читателей.
Куратовский и Штейнгауз, каждый по-своему, демонстрировали в математике изящество, строгость и незаурядный ум. Куратовский был истинным представителем варшавской школы, которая, начиная с 1920 года, процветала с потрясающим размахом. Он приехал во Львов в 1927 году, уже знаменитый благодаря своей работе в области классической теории множеств и аксиоматической общей топологии. Будучи редактором «Fundamenta Mathematicae», он стал организатором и руководителем многих исследований, которые освещались в этом известном журнале. Его стилю в математике было присуще нечто, что я определил бы как латинскую лаконичность. Его взвешенному выбору задач, при всем изобилии математических определений и интересов (сейчас еще более обескураживающем, чем в то время), было присуще свойство, которое сложно определить — что-то вроде здравого смысла в абстракциях.
Штейнгауз был одним из немногих польских профессоров еврейского происхождения. Он происходил из известной, вполне ассимилированной еврейской семьи. Его двоюродный брат, который был великим патриотом и сражался в рядах армии Пилсудского, был убит на Первой мировой войне.
Его понимание анализа и прочувствованный подход к задачам в области вещественных переменных, теории функций, ортогональных рядов подтверждали его глубокое знание исторического развития математики и ее понятий, непрерывно сменяющих друг друга. Вполне возможно, что Штейнгауз сам, не имей он такого интереса и понимания сугубо абстрактных разделов математики, направил бы какие-нибудь новые математические идеи в русло практического применения.
Он обладал талантом применять математические формулировки к вопросам, сходным по своей простоте с проблемами повседневной жизни. Он склонялся к выбору таких геометрических задач, которые можно было бы рассматривать с точки зрения комбинаторики, да и любых других, лишь бы они представляли видимый, осязаемый вызов математическому подходу.
Он обладал тонким чувством лингвистики, которое временами граничило с педантизмом, и настаивал на применении абсолютно правильного языка в отношении математики или областей науки, поддающихся математическому анализу.
Ауэрбах был невысокого роста, сутуловатый и ходил, как правило, с опущенной вниз головой. Несмелый с виду, он часто обнаруживал очень едкий юмор. Его знание классической математики было, возможно, глубже, чем у большинства других профессоров. Он, к примеру, прекрасно знал классическую алгебру.
С его подачи Мазур, я и еще несколько математиков начали систематическое исследование групп Ли и других теорий, которые выходили за пределы той математики, которую сейчас принято называть польской. Ауэрбах обладал большими познаниями и в геометрии. Я часто обсуждал с ним теорию выпуклых тел, которой Мазур и я посвятили несколько совместных работ.
В Римском кафе Ауэрбах и я играли в шахматы, и часто мой дебют (тогда я еще не знал о теориях шахматных дебютов и в игре полагался лишь на интуицию) сопровождался следующим маленьким ритуалом: я делал ход пешкой и он обыкновенно говорил: «Ah! Ruy Lopez». Я спрашивал его: «Что это значит?», а он мне отвечал: «Испанский слон».
Ауэрбах умер во время войны. Насколько я знаю, он и Штернбах приняли яд, когда немцы везли их на допрос, однако мне ничего не известно ни об обстоятельствах их ареста, ни об их жизни до и во время фашистской оккупации.
Мое сотрудничество со Шрейером началось, я полагаю, когда я учился на втором курсе университета. Из всех математиков университета и политехнического института только Шрейер был действительно моим сверстником, т. к. он был старше меня всего лишь на полгода или год, и был тогда еще студентом университета. Мы встречались в аудитории для семинаров на лекциях Штейнгауза и обсуждали задачи, которыми я занимался. Почти сразу у нас обнаружилось много общих интересов, и мы стали регулярно встречаться. Результатом нашего сотрудничества явилась целая серия совместно написанных работ.
Мы встречались почти каждый день, иногда в кафе, но чаще у меня дома. Сам он жил в Дрогобыче — небольшом городке, нефтяном центре к югу от Львова. Какие проблемы и методы мы только не обсуждали вместе! Работа наша, несмотря на влияние действовавших тогда во Львове методов, распространялась на новые области: группы топологических преобразований, группы перестановок, теорию абстрактных множеств, общую алгебру. Я считаю, что некоторые наши научные статьи входят в число самых первых работ, рассматривающих приложения к более широкому классу математических объектов современных методов теории множеств с использованием более алгебраического подхода. Еще мы начали работу над теорией группоидов, как называли ее мы, или теорией полугрупп, как называют ее сейчас. Сейчас некоторые результаты этой работы можно найти в соответствующей литературе, а некоторые, насколько мне известно, так и остались ненапечатанными.
Шрейер был убит немцами в Дрогобыче, в апреле 1943 года.
Другой математик, Марк Кац, который был моложе меня на четыре или пять лет, был студентом Штейнгауза. Он только перешел на последний курс, но уже тогда в нем обнаружился исключительный талант. Позднее, когда я начал учиться в Еарварде и приезжал во Львов на летние месяцы, наше знакомство стало более близким. Как и мне, ему выпала удача приехать в Соединенные Штаты, но только несколькими годами позже, и именно в этой стране мы по-настоящему подружились.
В 1932 меня пригласили выступить с небольшим сообщением на Международном математическом конгрессе в Цюрихе. Это была первая встреча на международном уровне, на которой мне довелось побывать, и я был очень горд тем, что меня пригласили. В отличие от некоторых знакомых мне польских математиков, восхищавшихся западной наукой, я был убежден в не меньшей значимости польской математики. Эта уверенность распространялась и на то, что делал я сам. Фон Нейман однажды сказал моей жене, Франсуазе, что никогда ни в ком не встречал подобной самоуверенности, добавив, что у меня, скорее всего, имеются на то основания.
На Запад я ехал вместе с Куратовским, Серпинским и Кнастером, к которым присоединился в Вене, куда все они приехали из загородного дома Куратовского близ Варшавы; на пути в Цюрих профессора решили задержаться в Инсбруке. Мы провели там пару дней вместе с несколькими математиками из других стран, которые также ехали на конгресс. Я помню экскурсию к горе Хафелекар на фуникулере. Впервые в жизни я оказался на высоте свыше двух тысяч метров, и мне открылся потрясающий вид. Помню, что в течение нескольких минут у меня кружилась голова, и я тогда сравнил это ощущение с чувством, которое не раз испытывал прежде, постигая смысл ключевых моментов в доказательствах теорем, некогда изучаемых мною в средней школе.
По сравнению с любым другим конгрессом, на котором мне случалось бывать раньше, конгресс в Цюрихе был огромным событием, но все же он был весьма скромным, если сравнивать с конгрессами, которые проводились после Второй мировой войны. У меня сохранилась фотография всех его участников, стоящих на фоне Высшей технической школы. Там я в первый раз увидел зарубежных математиков и даже познакомился со многими из них.
Встреча была интересной, и для меня стало стимулом узнать о многих других формах и областях математики, отличных от тех, что культивировались в Польше. Разнообразие математических областей открыло для меня новые перспективы и навело на новые мысли. В те дни я посещал почти каждую общую беседу.
Многие математики из Германии и Западной Европы показались мне нервными; у некоторых были лицевые судороги. В целом, по сравнению с поляками, которых я знал, они держались менее раскованно. И, несмотря на то, что в Польше глубоко восхищались Геттингенской школой математиков, я вновь испытал, быть может, не вполне оправданное чувство самоуверенности.
Во время своего собственного небольшого выступления я тоже нервничал, но в меру. Смотря в прошлое, я думаю, что причиной этого относительного отсутствия волнения послужило мое отношение, вызванное некоторым опьянением математикой и постоянными занятиями ею.
Кто-то показал мне на невысокого пожилого человека. Это был Гильберт. Я встретил также Дикштейна, старого польского математика, которому было уже за девяносто, прогуливавшегося в надежде найти кого-нибудь из своих современников. Учитель Дикштейна был студентом Коши в начале девятнадцатого века, а он сам до сих пор считал Пуанкаре, умершего в 1912 году, талантливым молодым человеком. Для меня это был словно экскурс в предысторию математики, и я был преисполнен философского благоговения. Я также познакомился с первым в своей жизни американским математиком и будущим своим коллегой Норбертом Винером. Фон Неймана не было, и это стало разочарованием: я был наслышан о его приезде во Львов в 1929 году.
У бассейна отеля я познакомился с прославленным физиком Паули, профессором Фавром и Адой Хальперн. Фавр, наставник Ады, был швейцарским математиком, известным, кроме всего прочего, своими исследованиями знаменитой классической проблемы о фигурах равновесия вращающихся планет и звезд. Ада была родом из Львова. Она была очень хорошенькой девушкой, изучавшей математику в Женевском университете. Несколько лет нас связывал непостоянный роман. На глазах у всей этой компании я тогда повернулся к Паули и скаламбурил: «Это Pauli Verbot!» (дело в том, что согласно физическому принципу Паули, две частицы, обладающие одинаковыми характеристиками, не могут занимать одно и то же место), намекая на то, что мы оба, Фавр и я, находимся в компании одной молодой хорошенькой леди.
Еще одна интересная встреча произошла как-то днем в лесу, окружавшем знаменитый отель Долдер. Заблудившись, я натолкнулся на Павла Александрова и Эмми Нетер, которые гуляли и беседовали о математике. Александров знал о некоторых моих работах, так как я посылал ему оттиски, одно время мы вели переписку по вопросам математики. Одним из самых радостных моментов моей жизни было получение его письма на имя профессора С.Улама. В ту встречу Александров неожиданно сказал мне: «Улам, вы хотели бы съездить в Россию? Я мог бы все устроить и был бы очень рад видеть вас у себя». Как поляку, да еще из капиталистической семьи, мне польстило его приглашение, но все-таки поездка эта все же казалась нереальной.
Конгресс закончился, и после маленькой экскурсии в Монтрё вместе с Куратовским и Кнастером я вернулся в Польшу как раз ко времени сдачи экзаменов на степень магистра.
К экзаменам у меня было почти патологическое отвращение. Более двух лет я вообще пренебрегал сдачей экзаменов, которые обычно были обязательными для перевода на последующий курс, а профессора, знавшие о моих оригинальных работах, смотрели на это сквозь пальцы. И вот я, в конце концов, все же должен был сдать их — все за раз.
Я проучился несколько месяцев, сдал что-то вроде всестороннего экзамена и написал диссертацию на степень магистра, тему которой придумал сам. Я работал над ней неделю, и еще одна ночь, часов с десяти вечера до четырех утра, ушла на то, чтобы оформить ее на бумаге — на длинных листах отцовой бумаги форматом 33 х 40, 6 см. У меня до сих пор сохранилась та рукопись (она не опубликована по сей день). В этой работе освещены общие идеи об операциях с произведениями множеств и, в общих чертах, то, что сейчас носит название теории категорий. Она содержит также мои собственные результаты с очень абстрактной трактовкой понятия о теории многих переменных в различных разделах математики. Все это произошло осенью 1932 года по моему возвращению из Цюриха.
В 1933 году я защитил докторскую диссертацию. Она была напечатана издательством Ossolineum, выпускающим львовское периодическое издание «Studia Mathematica». В ней были объединены несколько моих предыдущих работ, теорем и обобщений в теории мер.
Я был первым, кому присудили докторскую степень на факультете общеобразовательных дисциплин Львовского политехнического университета, основанном в 1927 году. Это был единственный факультет, где можно было получить степень магистра и доктора, на всех других факультетах присваивались «инженерные» степени.
Церемония была весьма официальной и проходила в просторном холле института в присутствии семьи и друзей. Мне пришлось надеть белый галстук и перчатки. Каждый из моих поручителей, коими были Стоцек и Куратовский, произнес небольшую речь о том, что я сделал и какие написал работы. Сказав также несколько слов о диссертации, они вручили мне пергаментный документ.
«Аула» — большой холл, в котором проходила церемония — был украшен традиционными фресками, очень похожими на те, что через двадцать лет я увидел на стенах кафетерия МТИ[5]. На последних были изображены парящие женщины в убогих одеждах, символизирующие науку и искусство, и крупная женская фигура какой-то богини, нависшей над отпрянувшим в ужасе стариком. Обычно я в шутку говорил, что это военно-воздушные силы, предлагающие контракты физикам и математикам. В Фалд Холл, здании Принстонского университета, также есть одна старая картина, которая висит в кафетерии, где днем для беседы часто собирается народ. Там тоже изображен старик, который старается укрыться от ангела, спускающегося с небес. Когда мне сказали, что никто не знает, что именно предполагалось передать в этой картине, я предположил, что это может быть изображение Минны Рис, женщины-математика (которая в то время возглавляла Управление морскими исследованиями), предлагающей Эйнштейну, отшатнувшемуся в ужасе, контракт на работу консультантом в военно-морском флоте.
После защиты диссертации и всех церемоний я опубликовал еще несколько работ и затем был вынужден взять передышку до самого конца 1933 года из-за паратифа, на несколько месяцев отнявшего у меня все силы — один из тех редких случаев в моей жизни, когда я был действительно серьезно болен.
Однако нельзя утверждать, что в моей жизни была только серьезная работа без минуты развлечения. В начале тридцатых в наше кафе заглядывал Хирняк, преподаватель естественных наук в средней школе, маленький морщинистый человечек. Обычно он сидел в нескольких столиках от нас, потягивая по очереди то водку, то кофе, и что-то царапал на клочке бумаге с озабоченным видом. Время от времени он поднимался и пересаживался за наш столик, чтобы поболтать или дать пару-другую непрошеных советов, когда Никлиборц и Стоцек играли в шахматы. И Никлиборц тогда твердил с ликованием: «Gehirn (по-немецки «мозг») Гехирник!»
Хирник, который преподавал математику, физику и химию, пытался решить знаменитую теорему Ферма[6]. Это одна из самых известных в математике нерешенных задач, которая уже давно привлекает и чудаков, и дилетантов, регулярно предъявляющих либо неверные, либо очень неполные доказательства.
В кафе Хирник был общеизвестной личностью, его речь была поразительно колоритной и изобиловала высказываниями, которые из его уст звучали весьма забавно. Обычно мы запоминали и пересказывали их друг другу; у меня же вошло в привычку наклеивать их на стены своей комнаты.
Как оказалось, мой отец знал Хирника, жена которого владела большим заводом по производству содовой воды, так как его контора вела их юридические дела. Отец считал Хирника до смешного глупым человеком. Когда же он увидел мою коллекцию с изречениями Хирника, то, как я полагаю, он очень удивился и, возможно, даже затревожился о моем психическом здоровье. Поэтому мне пришлось разъяснить ему некоторые тонкости юмора и особые его стороны, привлекательные для математиков.
Хирник, к примеру, иногда говорил Банаху, что в его доказательстве теоремы Ферма есть некоторые пробелы. При этом он добавлял: «Чем больше мое доказательство, тем меньше дыра. Дыра тем меньше, чем длиннее и толще доказательство». Для математика такая формулировка звучала весьма забавно. Он делал также странные заявления, касающиеся физики. Например, говорил, что половину элементов периодической таблицы составляют металлы, а другую — неметаллы. Когда же кто-то замечал ему, что это не совсем так, он отвечал: «Ага, ведь по определению мы можем отнести к металлам даже еще несколько элементов!» Он замечательным образом позволял себе вольности в определениях.
Он рассказывал, как в Геттингене, где он учился, он бывало пил вино, разливаемое монетным автоматом. Однажды что-то случилось с машиной, и вино продолжало литься. Хирник же продолжал его пить, пока не очутился на земле в окружении толпы людей. Он расслышал чей-то вопрос: «Vielleicht ist etwas los?» (Должно быть, что-то случилось?) И он ответил: «Vielleicht nicht» (Должно быть, нет), после чего толпа торжественно доставила его домой на своих плечах.
А вот история о Хирнике, которую я рассказал фон Нейману несколько лет спустя в Принстоне и которая весьма его позабавила. Как-то Хирник сказал Банаху, Мазуру и мне, что он уже почти доказал гипотезу Ферма и что американские репортеры, узнав об этом, приедут во Львов и скажут: «Где этот гений? Дайте ему сто тысяч долларов!», и Банах откликнулся эхом: «Дайте ему!» Однажды в Лос-Аламосе, уже после войны, Джонни сказал мне: «Помнишь, как мы смеялись над той «сотней тысяч долларов»? Так вот, прав был он, он был настоящим пророком, а мы, глупцы, над ним смеялись.» Джонни, конечно, имел ввиду представителей Министерства Обороны, военно-воздушных сил и Военно-морского флота, разъезжавших в то время по всей стране, щедро предлагая ученым контракты на исследовательскую работу. В среднем, такой контракт оценивался где-то в сотню тысяч долларов. «Он не только не ошибся, — сказал тогда Джонни, — он даже предсказал точную сумму!»
В 1933 или 1934 году Банах принес в Шотландское кафе большой блокнот, чтобы мы могли записывать в него формулировки новых задач, а также результаты наших дискуссий. Эта книга всегда хранилась в кафе. Официант приносил ее по нашему требованию, и мы вписывали туда задачи и комментарии, после чего он церемонно уносил ее обратно в секретное место. Впоследствии этот блокнот обрел известность под названием «Шотландской книги» («The Scottish Book»).
Многие задачи относились к периоду до 1935 года. Указанные имена принадлежат тем, кто принимал самое большое участие в их обсуждении. Многим поставленным вопросам, прежде чем «официально» занести их в книгу, уделялось немало времени. Иногда проблемы решались сходу, и ответы записывались тут же, на месте.
За несколько лет от начала ведения Шотландской книги городу Львову, да и самой книге суждено было прожить очень бурную историю. В начале Второй мировой войны город оккупировали русские. Из нескольких пунктов ближе к концу книги явствует, что в город, по-видимому, приезжали русские математики. Они записали в ней несколько задач с обещанием вручить премию тому, кто решит их. Последняя указанная в книге дата — 31 мая 1941 года. Пункт № 193 содержит набор довольно загадочных численных результатов с подписью Штейнгауза, связанный с задачей о распределении количества спичек в коробке. Записи прекращаются после начала войны между Германией и Россией, когда летом 1941 года Львов оккупировали немецкие войска. Мне не известно, что стало с книгой в последующие годы войны. Штейнгауз говорил, что сын Банаха, который сейчас работает в Польше нейрохирургом, привез этот документ в Вроцлав (прежде Бреслау).