Рис. 20.
Гироскоп, как мы видим, способен совершать движение в трех направлениях. Поэтому его называют гироскопом с тремя степенями свободы. Если закрепить одно из колец, то получится гироскоп, способный совершать движение в двух направлениях. Такое устройство называют гироскопом с двумя степенями свободы.
Хотя конструктивно гироскоп отличается от обычного волчка, сходство их свойств настолько велико, что в технике гироскоп часто называют волчком и, наоборот, волчок — гироскопом. Ведь гироскоп — тоже твердое тело, которое вращается вокруг оси симметрии, имеющей неподвижную точку.
Быстро вращающийся ротор гироскопа, как и волчок, обладает способностью устойчиво сохранять свое положение в пространстве, «уходить» под прямым углом к действующей на него силе, совершать прецессию и т. п.
Возьмем, например, гироскоп с быстро вращающимся ротором, представленный на рис. 21.
Рис. 21.
Он обнаруживает удивительные, невероятные на первый взгляд свойства.
Его ось проявляет необычную устойчивость, сохраняя свое положение, например, опираясь регулировочным штифтом о край стакана или на туго натянутый шнур.
Попытавшись свалить его, казалось бы, из неустойчивого положения, мы потерпим неудачу. Слегка качнувшись, гироскоп сохранит приданное ему ранее положение, заметно сопротивляясь прилагаемым усилиям. Но вот ротор прекратил вращение. И как по мановению волшебной палочки, гироскоп теряет устойчивость, превращается в безжизненный кусок металла.
О том, как используют замечательные свойства гироскопа в технике, мы сейчас и расскажем.
Волчок в космосе
Недалек день, когда межпланетные корабли устремятся на штурм вселенной. О полетах на Луну, Марс, Венеру и другие планеты сейчас не только мечтают. Это дело ближайших лет. Немало самых различных машин, механизмов и приборов потребуется создать для осуществления этой многовековой мечты человечества.
Среди них, безусловно, займет почетное место и гироскоп. Его можно будет использовать, например, чтобы определять положение межпланетного корабля.
Мы уже знаем замечательную способность гироскопа сохранять направление своей оси неизменным. Установив в момент отлета ось по направлению Солнца, космонавты оставят гироскоп в таком положении. Теперь, чтобы определить курс межпланетного корабля, потребуется лишь измерить угол между направлением оси гироскопа и направлением на Солнце в момент наблюдения.
Снаряд-гироскоп
Продолговатый снаряд, выпущенный из гладкоствольной пушки, летит, опрокидываясь и кувыркаясь. Это резко уменьшает дальность его полета, снижает меткость попадания (рис. 22,
Рис. 22.
Другое дело, когда стрельба ведется из пушки с нарезным стволом. Снаряд, выпущенный из нее, вращается вокруг оси с довольно большой скоростью, совершая несколько сот оборотов в секунду.
«Поведение» такого снаряда зависит от среды, в которой совершается полет. На высоте более двадцати километров, где сопротивление воздуха из-за его малой плотности ничтожно, снаряд ведет себя подобно быстро вращающемуся гироскопу, стремящемуся точно сохранить направление своей оси (рис. 22,
В обычных же атмосферных условиях снаряд летит головной частью вперед, точно описывая центром тяжести траекторию (рис. 22,
В общем вращающийся снаряд приобретает большую устойчивость, что повышает точность стрельбы. При одинаковом весе заряда, длине ствола и т. п. дальнобойность нарезной пушки значительно выше, чем гладкоствольной.
Торпеда и гироскоп
Наиболее грозный современный подводный снаряд — самодвижущаяся торпеда. Создал ее известный русский изобретатель Иван Федорович Александровский. Впервые в мире торпеда прошла успешные испытания в 1857 г. вблизи Кронштадта. Торпеда, созданная Александровским, несмотря на успешные испытания, к сожалению, не привлекла внимания военных чиновников, признававших только «заграничное». Для русского флота за огромные деньги приобрели «секрет» торпеды у английского промышленника Уайтхеда.
Торпеда, выпущенная с корабля, двигалась к цели — судну противника, в которое производился выстрел. Однако торпеда очень часто сбивалась с заданного направления волной или течением. Этот недостаток торпеды был устранен лишь в 1898 г., когда австрийский офицер Обри предложил применить гироскоп для автоматического управления ее вертикальными рулями.
Принцип действия устройства, предложенного Обри, несложен. В момент выстрела ось гироскопа автоматически устанавливается по ходу торпеды, а струя сжатого воздуха, попадая в лункообразные углубления на окружности ротора, приводит его в быстрое вращение (рис. 23, 1).
Рис. 23.
Кольцо гироскопа связано с клапаном — золотником, через который подается воздух к механизму управления вертикальным рулем. В тот момент, когда торпеда под влиянием внешних сил, изменив направление, как бы поворачивается вокруг гироскопа, сохранившего свое первоначальное положение (рис. 23, 2), в механизм управления вертикальным рулем поступает сжатый воздух. Под влиянием его вертикальный руль устанавливается таким образом, чтобы торпеда «возвратилась» на установленный курс. Когда торпеда начинает двигаться в прежнем направлении, руль возвращается в нейтральное положение (рис. 23, 2 и 3). На таком принципе основаны и другие, более сложные устройства, например так называемый гирорулевой, осуществляющий автоматическое управление кораблем.
Замечательное свойство быстро вращающегося гироскопа сохранять неизменным свое положение в пространстве широко применяется и в авиации.
Слепой полет
Пройти по прямой линии с завязанными глазами невозможно. Идущий постепенно заворачивает в сторону. На одном большом аэродроме в 1926 г. летчики пытались с завязанными глазами управлять автомобилем. Совершив в пути несколько поворотов, автомобиль начинал двигаться по спирали.
Разумеется, никто всерьез не станет управлять автомобилем или самолетом с завязанными глазами. Но представим себе полет в тумане, в сплошной облачности, когда самолет словно погружен в молоко или окутан непроницаемой пеленой. Чем отличается такой полет от путешествия человека с завязанными глазами? Полет в тумане, сплошной облачности недаром называют слепым полетом.
Даже птицы не могут летать, не видя Земли. Они не обладают какими-то особыми «летными качествами». Выпущенная в полет с завязанными глазами или в сплошном тумане, птица немедленно переходит в штопор либо беспорядочно падает.
Что же получится, если самолет встретит на своем пути сплошную облачность или туман и будет вынужден в таких условиях продолжать полет? Отличается ли человек от птицы, оказавшись в таких условиях? Может ли он руководствоваться своими ощущениями?
Чтобы получить ответ на эти вопросы, обратимся к нескольким примерам.
В некоторых парках культуры и отдыха имеется аттракцион «вертящаяся комната». Любители острых ощущений, входя в такую комнату, садятся на качели. Качели слегка раскачиваются, после чего включается двигатель, вращающий стены комнаты. Сидящим в качелях кажется, что вращаются не стены, а они сами и что в некоторые моменты времени качели занимают положение
Рис. 24.
На самом деле посетители не совершают головокружительного переворота ногами к потолку, а спокойно сидят в почти неподвижных качелях. Просто комната расположилась иначе, чем было до этого (положение
Еще более сильное ощущение можно испытать в непрозрачном вращающемся шаре. Предположим, что в нем находятся два человека, как изображено на рис. 25,
Рис. 25.
К немалому изумлению находящихся в шаре, каждому кажется, что его сосед прилип где-то на вертикальной стене, словно муха (рис. 25,
Приведенные примеры наглядно показывают, что доверять ощущениям нельзя. Но, может быть, к летчикам это не относится?
Обратимся к рассказу одного американского летчика о том, что случилось с ним при полете в облаках.
«Оторвавшись от аэродрома, мы поднялись на высоту тысяча восемьсот футов (550
Доверять ощущениям в слепом полете ни в коем случае нельзя. Единственное средство для успешного слепого полета — специальные приборы.
Безошибочно совершать полеты в любую погоду, уверенно управлять самолетом в любой обстановке, точно знать положение самолета в пространстве помогают многие приборы. Принцип действия большинства из них основан на замечательных свойствах гироскопа. Одним из таких приборов является авиагоризонт. Без него даже в ясную ночь, когда видна Земля, недопустим полет на скоростном самолете. Этот прибор совершеннее обычного искусственного горизонта и устроен несколько иначе.
Мы уже говорили, что применять на самолете отвес с грузом невозможно.
На стоянке шнурок с отвесом будет, вообще говоря, направлен к центру Земли, то есть по направлению истинной вертикали, которая всегда перпендикулярна плоскости горизонта. В полете же отвес может занимать относительно плоскости горизонта самые различные положения. Человек, находящийся в самолете, ощущает действие силы тяжести примерно в том же направлении, что и отвес (рис. 26).
Рис. 26.
Такое направление называют кажущейся вертикалью.
Ясно, что наши ощущения и даже простейшие устройства, вроде отвеса, совершенно непригодны для определения истинной вертикали и горизонта на летящем самолете. Эта задача легко разрешима при помощи гироскопа. Ось гироскопа, как мы знаем, может располагаться по линии истинной вертикали — к центру Земли (рис. 27).
Рис. 27.
Такой гироскоп и применяется в авиагоризонте (рис. 28).
Рис. 28.
Корпус прибора жестко крепится к приборной доске самолета. Круглое отверстие в передней стенке корпуса закрыто стеклом. На стекле нарисован горизонтальный силуэт самолета, летящего вперед от смотрящего на прибор. За стеклом находится круглый диск. Верхняя половина диска окрашена в голубой или белый цвет, а нижняя — в серый или черный. Горизонтальная линия, разделяющая верхнюю и нижнюю половины, представляет линию горизонта.
Диск авиагоризонта насажен на удлиненную ось, идущую от внутреннего кольца гироскопа. Внутри этого кольца расположен вертикально ротор гироскопа, вращающийся со скоростью свыше десяти тысяч оборотов в минуту. Весит ротор всего около четырехсот граммов. Приводится он во вращение струей воздуха, падающей на лункообразные углубления, имеющиеся по окружности ротора. Внешнее кольцо гироскопа покоится в подшипниках корпуса прибора.
В горизонтальном полете силуэт самолета на стекле прибора совпадает с горизонтальной линией, делящей диск на две половины (рис. 29).
Рис. 29.
При кренах, снижении или наборе высоты ось гироскопа неизменно направлена к центру Земли. Весь самолет как бы поворачивается вокруг оси ротора. Диск, насаженный на удлиненной оси внутреннего кольца гироскопа, тоже сохраняет свое положение в пространстве неизменным, а силуэт на стекле, поворачиваясь вместе с самолетом, занимает такое положение относительно линии на диске, какое самолет занимает относительно горизонта (рис. 29). Таким образом, пилот видит положение своего самолета относительно горизонта как бы со стороны.
Не меньшую роль играет в полете указатель поворотов. Этот прибор показывает угол поворота самолета вокруг вертикальной оси.
В основе указателя поворотов мы снова обнаруживаем гироскоп. Он находится в свободно подвешенной рамке. Прибор устроен таким образом, что ось гироскопа постоянно удерживается специальными пружинами в положении равновесия (рис. 30).
Рис. 30.
Быстро вращающийся ротор гироскопа, стремясь сохранить свое первоначальное положение, перемещает стрелку, указывающую степень поворота самолета.
Нередко указатель поворотов совмещают в одном приборе с авиагоризонтом. Авиагоризонт с указателем поворотов — лишь один из важнейших гироскопических приборов, необходимых для совершения слепых полетов.
Самолет без летчика
Непосвященный, заглянув в кабину управления летящего самолета, мог бы иногда с удивлением, а возможно и с ужасом обнаружить, что штурвал и педали перемещаются сами собой, словно самолетом управляет человек-невидимка. Пилоты же спокойно сидят в креслах. Один, как дома за столом, закусывает, второй безмятежно читает книжку или дремлет.
Секрет такого полета очень прост.
Почти на всех современных пассажирских и транспортных самолетах обязательно имеется автомат управления полетом — автоматический пилот, или автопилот.
Автопилот способен управлять самолетом по «заданию» летчика, подменяя его при взлете, наборе высоты или совершении поворотов и полете по прямой в направлении заданного курса, выполнять виражи и снижение под заданным углом.
При воздушной качке автопилот ведет самолет даже лучше опытного пилота, более плавно, смягчает толчки и броски самолета.
Бывают и такие автопилоты, которые автоматически выводят самолет из любого положения в горизонтальное, если летчик вынужден почему-либо оставить управление.
Можно, наконец, на борту самолета совместно с автопилотом поместить специальную радиоустановку и управлять таким образом полетом самолета с Земли.
Любопытна история создания автопилота.
Желание автоматизировать полет самолетов возникло одновременно с появлением самих же самолетов.
Первую в мире схему автоматического управления дирижаблем разработал наш соотечественник, знаменитый ученый К. Э. Циолковский в 1898 г. Принцип действия этого автоматического устройства чрезвычайно прост.
На дирижабле нужно иметь источник электрического тока, электромотор, для отклонения руля высоты и чувствительный элемент в виде маятника с переключателями цепи электрического тока (рис. 31).
Рис. 31.