Несдержанность при столкновении с соблазнами и неумение контролировать свои порывы в течение длительного времени определяются не только тем, как синтезируется дофамин, но и тем, как он разрушается. Главный ответственный за уничтожение нейромедиатора в нашем мозгу – фермент под названием катехол-О-метилтрансфераза или сокращенно COMT. Он разрушает дофамин и различные его производные вроде адреналина и норадреналина (в организме оба эти вещества синтезируются из дофамина). COMT работает по всему мозгу, но особенно он важен в префронтальной коре. В этом регионе нет фермента DAT – транспортера, который убирает дофамин из щели между нейронами и возвращает обратно в клетки, которые выделили нейромедиатор. В итоге в ПФК COMT становится главным ответственным за своевременное очищение межнейронного пространства от "отработавшего" дофамина24. Если вовремя не убирать нейромедиатор, тонко настроенная система, которая регулирует его выброс, портится.
У людей встречаются два варианта фермента COMT: у одного на 158-м месте стоит аминокислота валин, а у другого – метионин. В гене, кодирующем COMT, у валинового варианта (он более древний) стоит гуанин, а у возникшего позже метионинового – аденин. Разница в одну аминокислоту сказывается на работе фермента драматически: метиониновая версия гораздо менее стабильна, она быстро выходит из строя, так что итоговая активность оказывается в два-три раза ниже, чем у валинового варианта25. Иными словами, у носителей этой версии гена COMT, особенно если она на обеих хромосомах, в префронтальной коре между нейронами всегда больше дофамина, чем у обладателей генов валиновой разновидности. Носители метионинового варианта легче переключаются с одной задачи на другую, но им сложнее сдерживать свои порывы, чем обладателям более активной валиновой версии. Зато мозг последних лучше подавляет побочные желания и способен дольше фиксироваться на одной задаче. Соответственно, люди с одной или двумя метиониновыми версиями более импульсивны, чем обладатели валиновой разновидности COMT. При этом есть данные, что в целом уровень исполнительных функций мозга у людей с постоянно высоким уровнем дофамина в межнейронном пространстве выше [19].
Эффект дофаминового выброса зависит от постоянного фона нейромедиатора
Говоря о снабжении мозга дофамином, специалисты выделяют тоническую и фазовую компоненты. Тонический уровень – сколько дофамина присутствует в щели между нейронами в течение долгого времени, этакий постоянный дофаминовый фон. Под фазовой составляющей подразумевают количество нейромедиатора, которое выбрасывается из дофаминергических нейронов за один раз при их активации. Чем выше ценность какого-нибудь действия, тем больше дофамина будет выброшено в фазовом режиме. Но оказалось, что интенсивность этого выброса зависит не только от привлекательности стимула, но и от количества тонического дофамина [20].
Постоянно "затекающие" в щель между нейронами молекулы дофамина пробираются из нее во внесинаптическое пространство – т. е. подходят к нейронам как бы сбоку. Там они связываются с рецепторами типа D2 и D3 на поверхности самих дофаминергических клеток (т. е. тех, которые выделяют дофамин) и снижают их активность. Такие рецепторы называют ауторецепторами, а сам механизм регуляции – отрицательной обратной связью. Отрицательная обратная связь используется в организме повсюду и работает просто и эффективно: когда чего-то становится настолько много, что появляются излишки, они связываются с источником этого чего-то и тормозят синтез. Эта корректировка позволяет избежать бесконечного раскручивания реакций. В результате у обладателей низкоактивной версии COMT дофаминовый ответ даже на значимые стимулы вроде защиты диссертации или хотя бы минус пяти килограммов на весах оказывается не слишком сильным – сравнимым, например, с ответом на лайк в соцсетях или с реакцией на вкусную булочку. А как говорилось в одной старой рекламе: если нет разницы, зачем платить больше?
Регуляция при помощи ауторецепторов работает в обе стороны
Непрерывная юстировка дофаминовой системы (как и любых других систем в организме) по методу отрицательной обратной связи критически важна для поддержания баланса нейромедиатора. И любое нарушение в работе этого внутреннего аудитора чревато серьезными последствиями. Причем нередко "разнонаправленные" нарушения вызывают сходный эффект. Выше мы выяснили, что постоянно высокий уровень тонического дофамина стимулирует ауторецепторы на поверхности дофаминергических нейронов, и такое "самовозбуждение" снижает интенсивность фазовой компоненты. Но в 2010 году в журнале Science вышла статья, результаты которой, на первый взгляд, противоречат этой теории.
Исследователи из американского Университета Вандербильта кормили здоровых добровольцев амфетаминами и при помощи позитронно-эмиссионной томографии (ПЭТ) смотрели, как реагируют на наркотик нейроны дофаминовой системы. Предварительно ученые прогнали испытуемых через опросник Баррата, о котором мы говорили в прошлой главе, чтобы определить степень импульсивности. Оказалось, что у несдержанных и порывистых людей в некоторых зонах мозга, в том числе в вентральной области покрышки, на дофаминергических нейронах существенно меньше ауторецепторов, чем у тех, кто не склонен к необдуманным действиям (либо рецепторы импульсивных граждан хуже ловят дофамин – методами, которые использовались в работе, невозможно выявить разницу между этими двумя вариантами). И именно таким людям больше всего понравился опыт: они заявили, что были бы не прочь повторить эксперимент и прямо сейчас принять еще амфетамина – исключительно во благо науки, разумеется. Менее импульсивные добровольцы остались равнодушны к наркотику [21].
Выходит, и слишком сильная, и недостаточная стимуляция ауторецепторов приводит к одинаковым последствиям – повышенной импульсивности и желанию все время доставлять себе удовольствие? На самом деле противоречия здесь нет: хотя результат одинаков, причины, побуждающие стремиться к удовольствиям, принципиально различны. Людям с постоянно высоким тоническим дофамином остро не хватает удовольствия, потому что даже традиционно приятные вещи дают им его совсем чуть-чуть. У обладателей халтурящих ауторецепторов все наоборот. Ученые предполагают, что ленивые рецепторы на поверхности дофаминергических нейронов не успевают вовремя притушить дофаминовый всплеск (и все последующие реакции, которые в итоге делают нам хорошо) по методу отрицательной обратной связи, поэтому один и тот же стимул дает обладателям таких рецепторов куда более сильное блаженство, чем носителям их стандартной версии. Звучит здорово, но на деле таким людям приходится постоянно бороться с соблазном употребить что-нибудь этакое. Они знают, что получат ни с чем не сравнимые ощущения, и зачастую даже перспектива быстрой и неприятной смерти, например от передозировки, их не останавливает.
"Неканонические" варианты генов могут влиять как на конкретные расстройства самоконтроля, так и на силу воли в целом
Проблемы с теми или иными генами, контролирующими синтез и усвоение дофамина и других нейромедиаторов, сказываются на поведении в целом, но исследовать поведение в целом затруднительно. Лабораторные тесты, которые определяют степень самоконтроля или импульсивности, не всегда можно напрямую переносить на решения человека в реальной жизни. Поэтому часто исследователи занимаются конкретным проявлением безволия и неспособности противиться сиюминутным желаниям – перееданием, наркоманией, алкоголизмом – и смотрят, какие аллели с ним связаны. Некоторые варианты оказываются специфическими – скажем, они есть у большого процента алкоголиков, но их нет у тех, кто страдает от игровой зависимости. Часто такие узкоспециальные генетические изменения затрагивают "целевые" физиологические особенности – например, влияют на то, как организм усваивает спирт или никотин. Другие версии генов проявляются у людей с самыми разными нарушениями самоконтроля. Они создают подходящую почву для всех проявлений безволия, а вот в какое из них свалится конкретный человек, зависит от множества сопутствующих факторов – от генетики до образа жизни. Определенные особенности поведения или физиологии, которые сами по себе не являются патологией, но указывают на повышенный риск ее развития, принято называть эндофенотипом. Такие черты часто наблюдаются как у самого человека, страдающего от какой-либо проблемы (например, у алкоголика), так и у его родственников. Анализируя ДНК людей с определенными эндофенотипами, ученые могут отыскать гены, которые способствуют их развитию и повышают риск связанной с конкретным эндофенотипом проблемы.
Ниже я разберу самые изученные аллели, которые заметно повышают вероятность всевозможных проблем с самоконтролем: как общих, так и конкретных – т. е. именно эти варианты определяют рисковые эндофенотипы. В случае конкретных расстройств я буду чаще говорить об изменениях в генах дофаминовой системы – просто потому, что данных по этому нейромедиатору собрано больше всего. Но важно понимать, что любые проявления безволия определяются не только дофамином. Во второй половине главы я отдельно коснусь еще нескольких веществ, которые виноваты в том, что мы так часто выбираем сиюминутные удовольствия, даже если они грозят разрушить наши долгосрочные планы. А сейчас поговорим, как именно нарушения в метаболизме дофамина приводят к самым типичным расстройствам силы воли.
Наркомания
Гены влияют на риск стать наркоманом
Несмотря на то что правительства почти всех стран усиленно борются с наркоторговцами, в реальности, приложив совсем немного усилий, испытать, что такое запрещенные вещества, может почти каждый. Например, в городах России, по неофициальным данным, почти 95 % молодых людей и девушек хотя бы раз пробовали наркотики [22]. В конце 1990-х в Москве 25 % школьников эпизодически или регулярно употребляли соединения из списка ФСКН. Среди подростков в целом по России цифры еще выше: в 1992 году 57 % из них позволяли себе что-нибудь запрещенное время от времени, а 38,4 % – постоянно [23].
В мире в общем ситуация чуть лучше, но итоговая картина такая же: большой процент молодых людей довольно рано пробует те или иные наркотики. Однако зависимость развивается далеко не у всех. В 2015 году директор Федеральной службы по контролю за оборотом наркотиков Виктор Иванов заявил, что в России 7,3 миллиона наркоманов – т. е. примерно 6 % всех граждан старше 14 лет (хотя не до конца понятно, кого и по каким критериям чиновник причислил к наркоманам). Это колоссально много, но все же заметно меньше, чем если бы зависимость развивалась у каждого, кто хоть раз попробовал тот или иной препарат. Моментальное формирование зависимости типично для тяжелых наркотиков, но редко кто начинает знакомство с миром "веществ" с героина или морфина – по статистике, первым запрещенным препаратом чаще всего становится марихуана. И большинство, выкурив косячок раз-другой, бросают это дело как не слишком интересное или балуются травкой при случае в компании. Другие же, начав, остановиться уже не могут и нередко переходят с каннабиноидов на более серьезные варианты. То есть риск стать наркоманом зависит не только от среды, но, очень во многом, от внутренних особенностей, которые заложены в ДНК. По оценкам ученых, гены на 40–60 % определяют, насколько беззащитным окажется человек перед наркотиками.
В 2008 году исследователи из Пекинского университета собрали все известные на тот момент данные о вариантах генов, которые чаще встречаются у людей, склонных к наркотической зависимости, в том числе и от никотина (если вдруг вы не знали – это тоже наркотик). В общей сложности авторы рассмотрели больше 1500 различных генов, которые контролируют работу всевозможных биохимических путей, задействованных при употреблении наркотиков [24]. Исследователи обнаружили много интересного – например, их данные косвенно указывают, что у тех, кому легко начать принимать "вещества" и сложно бросить, чересчур хорошо закрепляются воспоминания о приятном опыте – настолько, что им ужасно хочется повторить. Кроме того, похоже, что люди, которые в стрессовых ситуациях беспрерывно курят (или употребляют что-нибудь покруче сигарет), делают это неспроста: у них немного иначе проложены биохимические пути, контролирующие ответ организма на стресс.
Дофаминовый зуд заставляет носителей "неправильных" версий некоторых генов постоянно искать удовольствия
И конечно, развитие наркотической зависимости не обошлось без дофамина. У людей, злоупотребляющих субстанциями вроде кокаина, опиатов или никотина, чаще, чем в среднем, встречаются "плохие" варианты генов DRD4 и DRD2, кодирующие дофаминовые рецепторы D4 и D2 и тот самый вариант DRD2/ANKK1 A1. Считается, что эти аллели не только увеличивают риск человека стать наркоманом, но предопределяют большую тяжесть заболевания и ухудшают прогнозы на выздоровление. Начинать лечение носителей "плохих" вариантов генов нужно раньше, оно должно быть более интенсивным, а необходимые дозы препаратов, например, при заместительной метадоновой терапии, – выше [25].
Как мы уже говорили, механизм "работы" DRD2/ANKK1 A1 неизвестен, а вот с DRD426некоторая ясность есть. Дофаминовых рецепторов типа D4 очень много на клетках префронтальной коры (ПФК), миндалины, гипоталамуса, гиппокампа, гипофиза и базальных ганглиев – областей, по которым проходит кортикомезолимбический дофаминовый тракт. Все эти регионы – особенно ПФК и миндалина – так или иначе задействованы в процессах, связанных с самоконтролем. Как вы помните из главы 3, при недостаточной бдительности префронтальной коры миндалина – центр эмоциональных реакций – берет верх, и мы поддаемся сиюминутным приятным решениям, хотя точно знаем, что в будущем эта слабость нам непременно аукнется. Для того чтобы ограждать нас от соблазнов, ответственные за силу воли зоны мозга должны адекватно реагировать на вбросы дофамина, но из-за вызванных "неудачными" генами поломок в рецепторах этого не происходит.
Самые распространенные изменения DRD4 затрагивают относительно небольшой участок в середине гена, который состоит из повторяющихся фрагментов ДНК. Длина каждого повтора – 48 нуклеотидов, и у разных людей количество таких повторов варьируется от 2 до 11. Чаще всего встречаются аллели с двумя, четырьмя или семью повторами. Мозг людей, в чьих генах оказались одна или две версии DRD4 с семью повторами (ученые обозначают этот вариант как DRD4-7R), хуже "отрабатывает" дофаминовый сигнал, чем мозг носителей других вариантов. "Правильные" версии дофаминовых рецепторов D4 не дают нейронам накапливать цАМФ (циклический аденозинмонофосфат) – вещество, которое передает соседним клеткам сигнал от многих гормонов, в первую очередь от адреналина. Бодрящий эффект кофеина связан как раз с тем, что он мешает клеткам разрушать цАМФ, продлевая сверх положенного адреналиновый эффект. Исследования показывают, что чем больше цАМФ в нейронах системы поощрения и особенно в прилежащем ядре, тем сильнее мозг жаждет дофаминовой подпитки. Подсаженные на наркотики крысы, которым искусственно блокировали запускаемый цАМФ сигнальный путь в прилежащем ядре, употребляли более скромные дозы, чем их товарищи-наркоманы, и в целом меньше интересовались веществами. И наоборот, активация этого пути заставляла крыс отчаянно искать кокаин или амфетамины и потреблять их в огромных количествах [26 и ссылки внутри].
Курящие люди знают, что особенно хорошо сигарета идет после чашечки кофе или вместе с ней. Некурящие могут получить исчерпывающее представление об этой излюбленной привычке курильщиков из фильма Джима Джармуша "Кофе и сигареты". Природа странной гармонии веками оставалась тайной, но последние работы нейрофизиологов, кажется, могут объяснить ее. Ученые из США и Испании выяснили, что кофеин увеличивает доступность дофаминовых рецепторов D2 и D3 в вентральном стриатуме – важном элементе системы поощрения [27]. "Доступность" означает, что с рецепторами может связаться больше дофамина, чем в обычном состоянии, – как полагают ученые, за счет того, что рецепторы лучше выхватывают нейромедиатор из среды. Повышенная боевая готовность рецепторов гарантирует, что вдруг появившаяся порция нейромедиатора даст максимальный эффект. Желание раздобыть где-нибудь дофамина дополнительно усиливается за счет того, что в нейронах скапливается цАМФ. Сигарета и так обеспечивает курильщику впрыск нейромедиатора, а благодаря доступности рецепторов результат оказывается особенно приятным.
"Кривые" варианты рецептора D4 работают плохо, и в обслуживаемых ими нейронах постоянно скапливаются избытки цАМФ. Стремясь утихомирить спровоцированный этой молекулой дофаминовый зуд, носители DRD4-7R пытаются всеми возможными способами получить дозу нейромедиатора. Именно поэтому обладатели неудачных версий рецептора больше других людей склонны искать новых впечатлений. Путешествия, необычная еда, разные половые партнеры дают желанный дофаминовый впрыск [28], который тоже порождает "неправильный" ответ из-за скопления цАМФ, бесконечно продлевая порочный круг.
Сам факт, что нечто новое нравится нам именно потому, что активирует дофаминовую систему, исследователи подтвердили давным-давно. Генетически модифицированные мыши, у которых были "выключены" обе копии рецептора D4, совершенно не желали изучать бумажные стаканчики, которые ученые приклеивали к днищу клетки [29]. Большинство людей тоже вряд ли заинтересовались бы ими, но с точки зрения мышей стаканчики – жутко привлекательная вещь, ведь в них можно спрятаться или прогрызть дыру! И скучающие в тесных лабораторных вольерах грызуны с нормально работающими рецепторами D4 этой возможностью непременно пользуются. Мыши, лишенные способности нормально воспринимать вызванный новым объектом дофаминовый сигнал, не видели никакого смысла исследовать что-то неизвестное, потому что в основе любопытства лежит все тот же извечный стимул – поиски удовольствия. Кстати, по некоторым данным, полностью неработающий вариант гена DRD4 встречается и у людей, но крайне редко [30]. Специальных исследований не проводилось, но можно предположить, что такие люди страшно нелюбопытны и с трудом соглашаются менять что-то в своей жизни. Винить или укорять их нет смысла: любые доводы о том, как классно будет съездить в новый город и съесть на обед что-то, отличное от котлеты с макаронами и компотом, таких людей не убеждают. Смена обстановки не принесет им приятных ощущений, и разделить ваш восторг от Эйфелевой башни или фуа-гра они не смогут.
Хотя для разных наркотиков связь с различными вариантами DRD4 и DRD2 выражена в разной степени, само по себе наличие таких аллелей повышает риск подсесть на какое-нибудь из веществ, а то и сразу на несколько. Возможно, именно по этой причине большинство наркоманов злоупотребляют еще и алкоголем: среди тех, кто сидит на опиатах, таких 74 %, среди кокаинистов – 89 %. Половина наркоманов, употребляющих кокаин внутривенно, не брезгуют и героином, а 92 % тех, кто сидит на героине, при случае нюхают кокаин [31]. Из-за неправильной работы дофаминовой системы такие люди усиленно ищут, где бы добыть то внутреннее ощущение приятности, которое обещает дофамин, и им принципиален результат, а не средство.
Алкоголизм
Страсть к спиртному передается по наследству
Грустное наблюдение, что склонность к выпивке передается из поколения в поколение, не оспаривают даже те, кто в принципе не верит в генетику. Более того, алкоголизм идеально соответствует критериям, по которым обычно проверяют, является ли та или иная болезнь наследственной. Родственники алкоголиков становятся алкоголиками в четыре раза чаще, чем те, у кого в семье этой привычки не водилось. У однояйцевых близнецов алкоголика шансов спиться больше, чем у разнояйцевых или сводных братьев и сестер. Усыновленные трезвенниками дети алкоголиков рискуют пристраститься к выпивке в те же четыре раза чаще, чем средний человек. Взятые вместе, все эти данные указывают, что роль генов в развитии алкоголизма составляет от 40до 60 % [32 и ссылки внутри].
Стивен Кинг, Эдгар Алан По, Михаил Шолохов, Эрнест Хемингуэй, Эрих Мария Ремарк, Модест Мусоргский, Эдит Пиаф, Алексей Саврасов, Эми Уайнхаус, Серж Генсбур, Виктор Ерофеев. Всех этих людей объединяет не только талант, но еще и пагубная страсть к спиртному. В 1987 году профессор Университета Айовы Нэнси Андреасен подсчитала, что среди известных писателей доля алкоголиков достигает 30 % – по сравнению с 7 % в популяции в среднем [33]. По художникам и артистам такой статистики нет, но можно предположить, что они не сильно отстают от писателей. Повышенный процент алкоголиков (и наркоманов) среди творческих людей, по-видимому, является следствием их таланта. Та же Андреасен выяснила, что в этой группе гораздо больше, чем в среднем, распространены всевозможные расстройства личности, в первую очередь биполярное расстройство (которое больше известно как маниакально-депрессивный психоз). Сбои в системах серотонина, дофамина и других нейромедиаторов – непременный атрибут всех этих болезней.
Только часть генов, связанных с алкоголизмом, контролируют метаболизм спирта
Некоторые из таких "алкогольных" генов влияют на то, как организм расщепляет алкоголь. Например, гены ADH и ALDH кодируют ферменты семейства алкоголь- и альдегиддегидрогеназ. Алкогольдегидрогеназы (АДГ) окисляют спирт до ацетальдегида, а альдегиддегидрогеназы (АльДГ) превращают ацетальдегид в ацетат, т. е. ион уксусной кислоты. Ацетат расщепляется до воды и углекислого газа, которые легко выводятся из организма. В человеческом геноме есть как минимум 19 генов разных альдегиддегидрогеназ и 7 генов алкогольдегидрогеназ. И у каждого из них есть различные варианты, которые работают с большей или меньшей интенсивностью. Разница между ними может быть очень значительной: например, эффективность работы "крайних" вариантов АльДГ отличается в 800 раз!
Оптимальным в смысле снижения риска алкоголизма считается сочетание высокоактивной алкогольдегидрогеназы и неактивной альдегиддегидрогеназы. Печень носителя такой комбинации (АДГ и АльДГ сидят именно там) очень быстро расщепляет весь поступивший спирт до ацетальдегида, лишая хозяина приятного опьянения. Зато второй фермент работать не торопится, поэтому токсичный ацетальдегид гуляет по телу, отравляя человека и повреждая его клетки: похмелье27 у обладателей активной АДГ и неактивной АльДГ часто наступает уже в начале вечеринки. Пару раз насладившись волшебными ощущениями, человек вряд ли пристрастится к спиртному. Эта комбинация ферментов – надежная защита от алкоголизма. Но если человек презреет трудности и все-таки начнет регулярно употреблять, он подвергнет себя куда большей опасности, чем выпивоха с другим сочетанием типов АДГ и АльДГ. Ацетальдегид – яд и канцероген, и чем дольше он присутствует в организме, тем серьезнее последствия. Так что в данном случае банальный совет прислушиваться к сигналам тела актуален как никогда.
Гомозиготы по неактивному генетическому варианту АльДГ ALDH2*2 (т. е. люди, у которых он присутствует и на материнской, и на отцовской хромосомах) практически никогда не становятся алкоголиками – в первую очередь потому, что полностью или почти полностью воздерживаются от спиртного. Сложностей с тем, чтобы не пить на корпоративах и дружеских посиделках, у них не возникает: носителям такой комбинации генов очень плохо даже от минимального количества спирта, и никакое обещание веселья и приподнятого настроения не может перевесить этот дискомфорт. Тем более что особого веселья у обладателей двух версий ALDH2*2 не бывает: только они почувствуют расслабляющее действие этанола, как им уже становится плохо.
Нерасторопность или, наоборот, излишняя прыть определенных вариантов АДГ и АльДГ во многом объясняют, почему отдельные нации менее подвержены алкоголизму. В некоторых районах Восточной Азии ALDH2*2 есть у 50 % жителей, а у людей европейского и африканского происхождения этот вариант почти не встречается [34], [35], [36]. В Китае, Японии и Корее часто встречается шустрая версия алкогольдегидрогеназы ADH1B*2 (она же ADH2*2), которая очень быстро превращает весь спирт в ацетальдегид и обеспечивает своему носителю жестокую головную боль и прочие неприятные ощущения. У европейцев и африканцев этот защитный вариант редкость [37]. Зато от 15 до 25 % людей африканского происхождения несут аллель алкогольдегидрогеназы ADH1B*3 [38], который тоже кодирует высокоактивный фермент. У белых эта удачная в смысле защиты от алкоголизма версия не встречается. Всего исследователи нашли десяток охранительных и рисковых версий АДГ и АльДГ, самые изученные из них собраны в таблице ниже (из [39] с изменениями) (см. таблицу ниже).
Впрочем, даже защитные аллели не спасают, если человек очень сильно старается. В Японии с 1979 по 1992 год среди людей с диагнозом "алкоголизм" количество носителей одной копии спасительной версии гена ацетальдегиддегидрогеназы ALDH2*2 выросло с 2,5 до 13 % [42]. А живущие в США индейцы умирают от алкоголизма чаще, чем представители прочих этнических групп, хотя исследователи не обнаружили каких-то радикальных отличий в том, как их организм расправляется со спиртом [43]. Из этих результатов следуют два важных вывода. Первый: риск конкретного человека получить алкогольную зависимость во многом определяется социальными факторами и условиями среды – например, когда в стране растет уровень безработицы, увеличивается и количество сильно пьющих [44]. И второй: предрасположенность к алкоголизму определяется не только генами, которые отвечают за переработку спирта.
Повышенная тяга к спиртному зависит от генов, вовлеченных в регуляцию самоконтроля
Как и в случае наркомании, предрасположенность к алкоголизму выше у людей с определенными эндофенотипами. Некоторые из них связаны с ответом организма на алкоголь и определяются вариациями в генах АДГ и АльДГ. Другие опасные эндофенотипы характеризуются конкретными личностными особенностями. Черты личности, которые повышают риск, что человек может начать выпивать сверх меры, включают импульсивность, постоянную жажду новых ощущений, неспособность сдерживать эмоциональные реакции. Как мы обсуждали выше, эти качества во многом вызваны расстройствами в системах нейромедиаторов, в первую очередь дофамина и серотонина. Именно по этой причине среди людей, которые страдают от шизофрении или биполярного расстройства, алкоголизм распространен больше, чем в среднем в популяции. Эти заболевания связаны, в том числе, с изменениями в обмене нейромедиаторов, и склонность к выпивке (а заодно и ко всем прочим "веществам") проявляется как сопутствующее расстройство [45], [46].
Если речь заходит об изменениях в дофаминовой системе, то первым делом все вспоминают про главный (а точнее, самый изученный) вариант DRD2/ANKK1 A1, который сопутствует едва ли не всем нарушениям самоконтроля. И действительно, исследования больших групп людей показывают, что носители одного или двух "нехороших" аллелей рискуют спиться больше, чем остальные [47]. Однако тяжесть и выраженность симптомов даже внутри этой группы значительно варьируют. Кроме того, у представителей некоторых этносов связи между этим полиморфизмом и алкогольной зависимостью нет вовсе. Это означает, что помимо DRD2/ANKK1 A1 на развитие алкоголизма влияют и другие факторы. Еще один "подозреваемый" обнаружился довольно быстро: ученые плотно занялись геном DRD3, кодирующим дофаминовые рецепторы типа D3. В отличие от рецепторов других типов, D3 синтезируются в отдельных зонах лимбической системы вроде прилежащего ядра – именно там, где наблюдается усиленный выброс дофамина после рюмочки чего-нибудь горячительного. Кроме того, рецепторы D3 работают как ауторецепторы: т. е. они торчат на поверхности самих дофаминергических клеток и тормозят выброс нейромедиатора, если его становится слишком много [48]. Когда подсаженным на спиртное крысам вводили антагонисты к этим рецепторам, они переставали искать алкоголь [49]. Кстати, тот же эффект наблюдался и с мышами-наркоманами, так что дофаминовые рецепторы D3 причастны к обеим этим зависимостям [50].
Пресловутый аллель DRD2/ANKK1 A1 отличился и в исследованиях генетики алкоголизма. Первая публикация, в которой было показано, что он встречается у 69 % алкоголиков и только у 20 % людей без зависимости, вышла в 1990 году в престижном Journal of the American Medical Association [51]. С тех пор другие исследователи в своих статьях процитировали работу более 1100 раз (это много), а ее ведущий автор, американский нейрогенетик Кеннет Блум, прочно "сел" на тему DRD2/ANKK1 A1 и влияния этого аллеля на разнообразные зависимости. В 1996 году Блум придумал термин "синдром недостатка удовольствия" (reward deficiency syndrome), которым обозначил унылое существование людей, несущих в генах вариант DRD1/ANKK1 A1. Гипотеза Блума проста и элегантна: у носителей этого варианта в системе поощрения меньше дофаминовых рецепторов D2, а значит, по сравнению с обладателями нормальных версий рецептора, они получают меньше удовольствия от одинаковых по силе стимулов. Стремясь восполнить дефицит приятных ощущений, такие люди пускаются во все тяжкие, в частности, начинают пить (Блум специализируется на исследованиях алкоголизма). Но дефицит приятных ощущений, по Блуму, определяет поведение обладателей и других аддикций: наркоманов, людей с игровой зависимостью, женщин (в основном это касается их), страдающих от нервного переедания, и т. д.
Гипотеза о хронической нехватке радости всем страшно понравилась28. Еще бы, ведь с ее помощью можно очень логично и красиво объяснить природу любых зависимостей. Сам Блум разрабатывал эту тему с упорством, которое быстро переросло в, скажем так, не слишком научную деятельность. Сначала он запатентовал метод выявления предрасположенности к компульсивным расстройствам (то есть разного рода навязчивому поведению) и синдрому недостатка удовольствия, основанный на выявлении аллеля DRD2/ANKK1 A1. Потом начал выпускать биологически активные добавки (БАДы), которые якобы должны помогать людям справиться со всеми видами зависимостей, вызванных недостатком дофаминовых рецепторов. В составе выпускаемых Блумом БАДов ничего криминального нет: утверждается, что это агонисты дофамина (т. е. вещества, которые активируют те же рецепторы, что этот нейромедиатор), эффект которых подтвержден многочисленными исследованиями. Проблема в том, что львиная доля этих исследований выполнена в лаборатории самого Блума или при его активном участии. Налицо классический конфликт интересов.
Более того, проведенный в 2007 году метаанализ показал, что, хотя связь алкоголизма и DRD2/ANKK1 A1 есть, она далеко не такая сильная и судьбоносная, как утверждалось в ранних публикациях [52]. Авторы метаанализа специально оговорили, что затеяли его именно для того, чтобы проверить, не начали ли ученые видеть ложные связи там, где их нет. Это довольно часто случается, когда исследователям очень хочется подтвердить какую-нибудь перспективную гипотезу. По-английски стремление выдавать желаемое за действительное называется удобным словом bias, по-русски говорят – "Притянуть результаты за уши". Но со временем накапливается массив данных, которые не подтверждают или лишь частично подтверждают изначальное предположение. Так произошло и со связкой DRD2/ANKK1 A1 – алкоголизм. Явное ослабление декларируемого эффекта не означает, что этот вариант никак не влияет на склонность людей к зависимостям: данных, которые эту связь подтверждают, довольно много, причем среди них немало свежих. Однако очевидно, что сам по себе этот вариант не является определяющим: он лишь увеличивает склонность к импульсивному поведению. Гипотеза о том, что людям, которые склонны поддаваться порывам, хронически не хватает радости, все еще актуальна: по крайней мере, данных, которые бы прямо опровергали ее, получено не было.
У людей все оказалось не так однозначно. Авторы одной из работ обнаружили, что в определенных частях мозга ген DRD3 по-разному работает у алкоголиков и людей без зависимости. Правда, к удивлению исследователей, отличия обнаружились не в системе поощрения, а в гипоталамусе [53]. Основная гипотеза, которая объясняет, почему именно здесь дофаминовые рецепторы интенсивнее работают у тех, кто не может прожить без алкоголя, такова. Когда в гипоталамусе растет количество дофамина, в прилежащем ядре – сердце системы поощрения – увеличивается уровень бета-эндорфина. Как и все эндорфины, это вещество связывается с опиоидными рецепторами, уменьшает боль и поднимает настроение. Ради приятных ощущений, которые дают эндорфины, люди снова и снова употребляют алкоголь. Когда человек потягивает коктейль, лежа в ПЭТ-сканере, прибор показывает, что в вентральном стриатуме (часть системы поощрения) выбрасывается много бета-эндорфина [54]. Вероятно, команду на впрыск дают как раз рецепторы D3, и у склонных к алкоголизму людей из-за "не таких" рецепторов эта команда "громче", чем у тех, кто свободен от этой зависимости. Кстати, генетически определяемые неполадки в системе бета-эндорфина тоже могут увеличивать риск чрезмерно полюбить спиртное. У людей, которым особенно нравится выпивать, часто наблюдают два отклонения: либо у них понижен базовый уровень бета-эндорфина, либо, наоборот, в "обслуживаемых" этим веществом зонах мозга слишком много рецепторов к нему, особенно рецепторов типа мю [55 и ссылки внутри].
Дофаминовые рецепторы D4, которых много в лимбической системе, видимо, тоже вносят свой вклад в предрасположенность человека к алкоголизму. Как вы помните, в середине гена DRD4, который кодирует эти рецепторы, есть участок, состоящий из нескольких повторяющихся фрагментов ДНК – их может быть от 2 до 11. Как мы обсуждали в части про наркоманию, рецепторы носителей гена с семью повторами менее чувствительны к дофамину: они хуже активируются молекулами нейромедиатора. В норме активация D4-рецепторов дофамином мешает клеткам "запасать" цАМФ, но в клетках, покрытых "бракованными" рецепторами его скапливается много. Это вещество, особенно если его излишки скапливаются в прилежащем ядре, заставляет мозг активно требовать дофаминовой добавки.
Люди, несущие хотя бы одну копию гена DRD4 с семью повторами, чаще курят, их лимбическая система сильнее возбуждается от запаха и вкуса спиртного, они склонны играть в азартные игры и часто менять половых партнеров. Но, пожалуй, самые интересные данные о влиянии полиморфизмов гена DRD4 на отношения с алкоголем были получены исследователями, проверявшими, как носители разных вариантов рецепторов выпивают в компании. Ученые разбивали незнакомых друг с другом добровольцев на группы, наливали по стаканчику водки с клюквенным соком (1 к 3,5; смешать, но не взбалтывать) и оставляли. Для контроля часть испытуемых пила клюквенный сок со швепсом, а чтобы участники ничего не заподозрили, стакан сбрызгивали водкой. Через полчаса добровольцам предлагали оценить, насколько им понравились их товарищи и времяпрепровождение в целом. Обладатели DRD4 с семью повторами, которые пили настоящий алкогольный коктейль, были довольны больше остальных. Иными словами, для носителей этого аллеля дофаминового рецептора D4 особую приятность приобретает именно выпивка в компании [56].
Помимо дофамина, на развитие алкоголизма влияют и другие нейромедиаторы
Второе после дофамина важнейшее вещество, которое определяет самые разные черты личности, в том числе способность контролировать сиюминутные порывы, – серотонин. Ниже мы подробно обсудим, как именно этот нейромедиатор влияет на силу воли, а здесь ограничимся лишь констатацией факта: "плохие" варианты генов, которые определяют метаболизм серотонина, повышают шансы человека пристраститься к выпивке. Измененные серотониновые гены контролируют вовсе не механизмы, при помощи которых организм перерабатывает этанол. Как и в случае с дофамином, они формируют подходящий эндофенотип, обладатели которого легко впадают в различные зависимости. Самая известная серотониновая вариация находится в гене, кодирующем транспортер серотонина, а именно в участке под названием 5-HTTLPR. Люди, несущие на обеих хромосомах "нехороший" вариант этого гена, начинают пить раньше сверстников, делают это чаще и выпивают больше. Нередко они пьют именно чтобы напиться, а не слегка поднять настроение. В целом шансы пристраститься к алкоголю всерьез для носителей этого аллеля выше [57 и ссылки внутри]. Впрочем, есть работы, в которых связи между неудачными вариантами 5-HTTLPR и различными проявлениями алкоголизма найдено не было. Такое расхождение результатов означает, что 5-HTTLPR – не единственный аллель, который влияет на развитие алкогольной зависимости. Так, исследования показывают, что риск человека спиться зависит, например, еще и от того, как хорошо у него работают гены, контролирующие работу главного "тормоза" нервной системы – гамма-аминомасляной кислоты (ГАМК) и главного активатора мозга – глутамата. Более того, для них корреляция между "плохими" вариантами и риском алкоголизма куда более выраженная. Действие этих и других генов и факторов среды может нивелировать негативные эффекты изменений в гене серотонинового транспортера.
Долгое время считалось, что типичные эффекты спиртного – эйфория и расслабленность после приема небольших доз, нарушение речи и движений при высоких концентрациях – объясняются неспецифическим воздействием алкоголя на нейроны. Мол, спирт растворяет липидную мембрану нервных клеток, из-за чего они начинают сбоить. Но за годы исследований ученые накопили множество данных, которые подтверждают, что этанол прицельно связывается с различными белками на поверхности нейронов и изменяет их работу. Большинство таких белков – это рецепторы, в том числе рецепторы нейромедиаторов. Специфически активируя или, наоборот, выводя из строя, этанол влияет на важнейшие процессы в мозгу. В зависимости от конфигурации рецепторов этанол может больше или меньше мешать их нормальной работе. А конфигурация, в свою очередь, определяется тем, какие варианты генов человек несет в ДНК. Например, в нескольких работах было показано, что этанол специфично активирует только один из вариантов рецептора к ГАМК – т. е. рецепторы людей с иными версиями этого гена молекулы спирта "не заметят" [58]. Однако этот результат требует дополнительной проверки, так как авторы других исследований не смогли воспроизвести эффект [59].
Тот факт, что исследования по поиску "причастных" к алкоголизму генов нередко дают противоречивые результаты, имеет еще одно объяснение. Развитие алкогольной зависимости – не мгновенный процесс. Наркоманом можно стать с одной попытки – если начать сразу с тяжелых наркотиков, но для того, чтобы по-настоящему спиться, нужны годы. На разных стадиях отношений со спиртным ключевую роль играют разные гены и создаваемые ими эндофенотипы. Одни увеличивают риск начать употреблять горячительное – скажем, гены, отвечающие за реакцию организма на стресс, или гены, которые влияют на склонность искать новые ощущения. Другие повышают шансы человека полюбить спиртное, если уж он начал иногда выпивать. Сюда, например, относятся гены, контролирующие выброс эндорфинов и других эндогенных опиоидов и рецепторы к ним. И так далее. Для того чтобы отловить все эти гены и исследовать, как разные их варианты повышают или снижают шансы, что на том или ином этапе процесса появится зависимость, нужны исследования с гигантскими выборками. Алкоголизм изучается довольно активно – хотя и не так активно, как, например, рак – так что еще какие-то из причастных к этой беде генов ученые рано или поздно найдут. Многие из них отвечают не конкретно за алкоголизм, – они лишь создают эндофенотипы, уязвимые к спиртному. Модулируя работу этих генов, теоретически, можно будет не только вылечиться от зависимости или снизить риски, что она возникнет, но еще и "подправить" характер в целом. И хотя такие модификации – дело далекого будущего, знать, что в вашей ДНК записана предрасположенность к спиртному, будет нелишне уже сегодня. Хотя бы для того, чтобы избегать опасного соблазна.
Склонность к риску
Поучительная, но очень характерная история про любителей риска
2014 год. Туманный майский день в Швейцарских Альпах. Неуютные голые скалы кое-где скрыты облаками. Далеко внизу видна зеленая равнина, но тут, на высоте, все уныло-серое. Высокий худой человек с крупным носом в странном объемном костюме, больше напоминающем зеленое стеганое одеяло, сажает в здоровенный черный рюкзак маленькую собачку и надевает ей на глаза авиаторские очки. С трудом натянув рюкзак на плечи, человек в одеяле подходит к краю уступа, сгибаясь под тяжестью груза. Выпрямившись, несколько секунд смотрит вниз, напряженным голосом считает: "Раз. Два. Три" – и прыгает со скалы. Необычный костюм (он называется вингсьют) расправляется, и падающий человек становится похож на белку-летягу. Сидящий в рюкзаке пес пытается вертеть головой, но у него ничего не получается – клапан плотно застегнут, и собака почти не может шевелиться. От вершины скалы до зеленой равнины 3970 метров. Пару десятков секунд, которые кажутся почти вечностью, человек и пес несутся вниз – костюм не сильно замедляет падение; затем из рюкзака вырывается маленький купол на стропах, и еще через секунду раскрывается белый парашют-крыло. Приземлившись, человек первым делом вынимает из рюкзака собаку, и та, слегка пошатываясь, бежит к хозяйке, которая наблюдала полет снизу. Пес подпрыгивает на коротких лапках и облизывает ей лицо. Человек в зеленом костюме смеется. Его звали Дин Поттер, и он считался суперэкстремалом даже среди корифеев самого опасного в мире (по статистике смертности) спорта – бейсджампинга, т. е. прыжков со всевозможных высоких объектов.
Американец Поттер оприходовал, кажется, все скалы в Йосемитском национальном парке и установил несколько рекордов по времени свободного падения – прыгая, он старался как можно дольше не раскрывать парашют. Помимо этого Поттер в одиночку и чаще всего без страховки поднимался по самым сложным альпинистским маршрутам: он практиковал один из опаснейших видов подъема – трещинное скалолазание. Бонусом Поттер ходил по канату на высоте нескольких километров – тоже без страховки. Он разбился 16 мая 2015 года вместе со своим другом: порыв ветра снес спортсменов на скалы, парашют раскрыть они не успели. Пса Виспера в тот день Поттер с собой не взял.
Любители экстрима все время ищут острых ощущений из-за физиологических особенностей мозга
Все известные экстремалы, отвечая на вопрос, зачем они это делают, говорят примерно одно и то же: "Не могу жить без риска", "Ничего не в силах поделать с собой, все время тянет в горы / прыгнуть откуда-то / преодолеть на рафте пороги еще и на этой реке", "По сравнению с этими ощущениями обычная жизнь кажется пресной". Будто что-то внутри этих людей не дает им получать удовольствие от менее опасных вещей: вернувшись после очередного приключения, очень скоро они начинают скучать и тосковать по острым ощущениям. И, кажется, наука разобралась, что именно заставляет любителей экстрима снова и снова рисковать жизнью. Во-первых, их прилежащее ядро устроено иначе, чем у осторожных или даже смелых людей: в нем ниже плотность дофаминовых рецепторов. Экстремалам недостаточно стимулов, которые они получают в повседневной жизни: для того чтобы "запустить" систему поощрения, людям с низкой плотностью рецепторов нужна более серьезная встряска. И именно поэтому они регулярно решаются на многообещающие в плане ощущений, но очевидно опасные мероприятия.
Вторая возможная причина тяги к экстремальным видам спорта, а заодно и азартным играм – недостаточная возбудимость рецепторов. В 2016 году ученые из Стэнфорда продемонстрировали, что, искусственно взбадривая вялые дофаминовые рецепторы склонных к рискованным поступкам крыс (да-да, это не только человеческая черта), можно "убедить" их вести себя более разумно. Животных сажали в клетку с двумя рычагами: нажимая их, грызуны получали сладкую воду. По "заказу" с первого рычага зверям всегда выдавали среднюю порцию. Когда они давили на рычаг номер два, порция была заметно меньше, но иногда крысам доставалась прямо-таки гигантская доза разбавленного сиропа. Как и ожидалось, большинство зверей предпочитали не рисковать и выбирали не слишком большой, зато гарантированный профит – и за мгновение до того, как они нажимали на рычаг, в их прилежащем ядре активировались дофаминовые нейроны. Но некоторые животные упорно давили на второй рычаг, который почти всегда приносил жалкие капли сиропа, но изредка одаривал королевской порцией – при этом нейроны в их прилежащем ядре "молчали". Используя тонкое оптоволокно и слабый ток, исследователи стимулировали неактивные нейроны рисковых крыс как раз тогда, когда они выбирали, на какой рычаг надавить, – и, о чудо, животные перестали обращать внимание на педаль номер два и спокойно довольствовались средней порцией крысиного "Ситро" [60].
Мозг подростков – как и мозг экстремалов – устроен иначе, чем мозг не склонных к риску взрослых
Очень может быть, что в голове двух любителей бейсджампинга, которые стоят на краю трамплина, установленного на Останкинской башне, и собираются сигануть оттуда с парашютом (это единственный высокий объект в развитых странах, с которого можно прыгать легально), работают различные механизмы, но итог один. Их стремление совершить смертельно опасный прыжок сильнее голоса разума, который небезосновательно предупреждает, что последствия могут быть не очень. Точно так же действуют подростки, которые находят, как сломать себе шею, даже по дороге за хлебом. И если у взрослых экстремалов пренебрежение инстинктом самосохранения часто связано с генетическими особенностями, похоже, что безрассудное поведение Homo sapiens от 12 до 18 лет объясняется тем, что их мозг претерпевает плановые возрастные изменения.
Исследования на крысах показали, что в период полового созревания в стриатуме (часть системы поощрения, где проходит много дофаминовых "дорожек") и прилежащем ядре производится огромное количество дофаминовых рецепторов: их на 30–45 % больше, чем в мозгу взрослых [61]. Позже лишние рецепторы уничтожаются – этот процесс называется прунингом, и по такой схеме созревают очень многие отделы мозга. У людей, по очевидным причинам, сложнее сравнивать число рецепторов в мозгу в разном возрасте, но исследования на погибших подтверждают, что, например, у детей и подростков их намного больше, чем у взрослых [62].
Повышенная плотность дофаминовых рецепторов в системе поощрения вкупе с недозрелой префронтальной корой (как вы помните, она заканчивает развиваться примерно к 20 годам) заставляют подростков принимать неадекватные решения. Что именно работает не так, до конца неясно. По одной из теорий, мозг юных созданий гиперчувствителен к дофаминовым сигналам и излишне бурно реагирует на любое раздражение. По другой теории, все ровно наоборот, и система поощрения молодых людей недостаточно чувствительна к дофамину, поэтому подросткам нужны более серьезные стимулы, чем людям постарше [63]. Но какая бы из версий ни оказалась в итоге верной, очевидно, что по внутреннему содержанию головы подростки отличаются от взрослых едва ли не больше, чем снаружи. А так как система поощрения участвует в оценке вообще всех действий, не стоит удивляться, что молодые люди так ловко превращают любую безобидную ситуацию в потенциально опасную. Более того, из-за другого строения мозга подростки легче "подсаживаются" на все что угодно – от сигарет и спиртного до компьютерных игр.
Переедание
Риск набрать лишний вес очень во многом определяется генами
Зависимость от еды, она же болезненное переедание, считается самой безобидной из всех зависимостей. И напрасно. По данным ВОЗ, с 1980 года количество людей с ожирением удвоилось. В 2014 году лишний вес был у 1,9 миллиарда взрослых (это почти в два раза превосходит население Европы и США вместе взятое), а у более чем 600 тысяч из них имелся диагноз "ожирение" разной степени. Сегодня в мире – впервые за всю историю человечества – больше людей с лишним весом, чем голодающих. Высокий индекс массы тела (ИМТ, подробнее о нем дальше) – главный фактор риска диабета и заболеваний сердечно-сосудистой системы. Последние убивают больше людей, чем любые другие болезни, ставшие причиной смерти.
Общественное мнение и врачи старой закалки уверены, что причины избыточного веса – исключительно распущенность и лень пациента. Однако данные исследований говорят иное: вклад наследственности в развитие ожирения и просто высокий ИМТ оценивается от 64 до 84 % [64], [65 и ссылки внутри]. Безусловно, доступность высококалорийных продуктов и преимущественно сидячий образ жизни увеличивают риск набрать лишнего для всех, но люди с генетической предрасположенностью страдают от повсеместного засилья еды больше других.
Многие из условных "генов ожирения" определяют, как организм усваивает и запасает энергию
В серии классических экспериментов 1990 года исследователи в течение 100 дней заставляли 12 пар однояйцевых близнецов ежедневно съедать на 1000 ккал больше, чем нужно для поддержания нормальной работы организма (в опыте участвовали только мужчины). Кажется, что это жестокий эксперимент и испытуемых кормили на убой, но в действительности обычный человек, живущий в большом городе, переедает примерно на столько же. И при этом большинство людей на 25 % недооценивают, сколько калорий они реально потребляют [66]. Но вернемся к близнецам: за три с небольшим месяца они набрали от 3 до 12 кг. Самым надежным показателем, который позволял предсказать, как сильно потяжелеет каждый из участников, была прибавка в весе у его брата. Разница в "прибытке" между парами и внутри каждой пары варьировала более чем в три раза [67]. Другими словами, если два человека едят одну и ту же пищу и занимаются спортом по идентичным программам, количество набранных или потерянных килограммов зависит в первую очередь от их генов. Те же авторы, которые откармливали близнецов, подсчитали, что до 40 % отличий в том, сколько калорий организм сжигает в покое и сколько энергии извлекает из еды, зависит от наследственных особенностей метаболизма. Так что не стоит доверять диетам из глянцевых журналов, которые обещают, что, если вы будете строго придерживаться рекомендаций, то сбросите ровно Х килограммов за неделю. Может, сбросите, а может, и нет: универсальной формулы, по которой можно было бы рассчитать, как быстро вы будете худеть, не существует.
Неполадки с веществами, которые регулируют энергетический обмен, приводят к набору веса
Человеческий организм – очень сложная машина, для работы которой постоянно нужно топливо, т. е. еда. Для того чтобы извлекать энергию из мамонтов и бутербродов с сыром, часть ее немедленно использовать, а часть откладывать про запас, в организме есть особая система. Ее главные компоненты – гормоны лептин, грелин и меланокортин. Лептин, который часто называют "гормоном сытости", вырабатывается в жировой ткани и, воздействуя на гипоталамус, подавляет чувство голода. "Оппонент" лептина, гормон грелин, синтезируется пустым желудком, тоже действует на гипоталамус и стимулирует аппетит. Если по каким-то причинам эти гормоны работают неправильно, человек все время хочет есть, хотя поглощает намного больше калорий, чем ему нужно. Сбои в системе лептина – грелина могут быть связаны с неоптимальными генными вариантами. Чаще всего их носители начинают патологически набирать вес уже в раннем детстве, а к подростковому возрасту имеют какую-нибудь стадию ожирения.
При этом часть изменений системы энергетического обмена завязана на то, чему во многом посвящена эта книга – на систему поощрения и определяемое ею удовольствие от еды. Лептин воздействует на чувство голода не напрямую, а через посредничество гормона меланокортина, который гипоталамус синтезирует, получив лептиновый сигнал. Рецепторы к меланокортину есть во многих отделах мозга, в том числе в самом гипоталамусе и мезолимбической системе, и когда гормон связывается со своими рецепторами, по организму распространяется приятное чувство сытости. А, как мы помним, за приятные ощущения отвечает как раз система поощрения. "Неудачные" варианты генов, кодирующих меланокортиновые рецепторы (MCR), – частая причина ожирения. Например, различные изменения в гене рецептора четвертого типа MCR4ответственны за 5,8 % всех случаев детского ожирения. Когда детям, гомозиготным по "плохому" аллелю гена MCR4, разрешали съесть столько, сколько хочется, они за один прием истребляли в четыре раза больше калорий, чем дети с "классической" версией гена, и в два раза больше, чем носители одного измененного варианта29. Правда, дети с плохо работающим лептином ели еще больше [68].
Нездоровое пищевое поведение определяется тем, как устроена система поощрения в мозгу
Радикальные поломки вроде описанных выше изменений в гене рецептора меланокортина – не единственные генетические причины, которые заставляют людей запихивать в себя в разы больше еды, чем нужно. Желание все время есть вкусняшки по крайней мере в некоторых случаях связано с неполадками в дофаминовой системе – системы, контролирующие энергетический обмен, при этом могут быть совершенно здоровыми. Исследования показывают, что люди, у которых есть проблемы с весом, гораздо более чувствительны к тому удовольствию, что дает нам еда. Иначе говоря, они поглощают съестное даже тогда, когда не голодны, особенно если видят что-нибудь вкусненькое, а не сваренную на воде овсянку. Еда для таких людей – не средство, чтобы удовлетворить естественные потребности организма в питательных веществах, а способ доставить себе удовольствие. Подобное поведение указывает на неполадки в системе поощрения, которая в свою очередь завязана на гены нейромедиаторных систем. Тем более, что чаще всего неприятные цифры на весах видят те, кто не только получает кайф от еды, но и в целом не очень хорошо умеет сдерживать себя [69]. Сочетание этих двух факторов – наслаждения от еды и повышенной импульсивности – предвестник будущих проблем с весом, даже если пока их нет.
Еда должна приносить удовольствие. Пожевать что-нибудь вкусненькое – одно из самых приятных переживаний для большинства людей, и это нормально. Эволюция потратила много сил, чтобы заставить живых существ, во-первых, полюбить еду, а во-вторых, стремиться ее добывать, – иначе они бы не стали напрягать себя трудоемкими поисками съестного. Вспомните крыс с разрушенными дофаминовыми нейронами из начала этой главы. Хотя им нравился сахар, подниматься с теплых опилок и тащиться в страшную даль в другой конец клетки, чтобы сгрызть его, они не собирались. Но если в системе поощрения что-то нарушается "в другую сторону", желание поесть может превратиться в навязчивую идею.
Ученые нашли в мозгу таких людей особенности, которых нет у счастливчиков, спокойно живущих на заполненной вкусными продуктами планете и не становящихся их рабами. Например, стриатум толстяков, которые испытывают большое удовольствие от пищи, оказался усеян дофаминовыми рецепторами намного гуще, чем стриатум людей, равнодушных к вкусненькому [70]. При этом на полосатых телах (так стриатум называют по-русски) очень полных людей на грани депрессии, которые постоянно "заедают" свою тоску, наоборот, почти нет рецепторов к дофамину [71]. Очевидно, эти результаты противоречат друг другу, и кроме того, каждый из них можно трактовать двояко. Например, сниженное количество рецепторов к дофамину в мозгу грустных любителей поесть может быть как причиной их ожирения (мало рецепторов, значит, мозг плохо воспринимает дофамин, людям не хватает предвкушения чего-то приятного, и они компенсируют эмоциональный голод, поедая вкусняшки), так и его следствием (количество рецепторов уменьшилось из-за депрессии, вызванной другими причинами, и заедание возникло уже вторично как компенсация). Какая из этих версий верна, исследователям только предстоит выяснить, и не исключено, что обе они окажутся правомерными. Но ясно, что как минимум в части случаев причина переедания – проблемы в дофаминовой системе мозга. А они, в свою очередь, вызываются изменениями в генах.
Генетически обусловленные нарушения в работе дофаминовой системы проявляются не только в экстремальных формах вроде наркомании или болезненного переедания. Как выясняется, они влияют даже на такую, казалось бы, не связанную с аддикциями вещь как успехи в учебе. Довольно долго было принято считать, что школьные оценки зависят прежде всего от способностей – хотя пока никто толком не придумал, как их измерить. Знаменитый IQ, он же коэффициент интеллекта – на самом деле очень грубый и неточный критерий, который позволяет лишь примерно оценить некоторые подходы, при помощи которых человек анализирует окружающий мир (в основном логическое и пространственное мышление). И тем не менее это лучший из имеющихся инструментов оценки интеллектуальных возможностей, поэтому его регулярно используют в исследованиях. К удивлению ученых, раз за разом оказывалось, что, хотя связь между IQ и успеваемостью есть, она весьма шаткая и уж точно не определяющая. Зато обнаружился признак, который куда надежнее предсказывал, двойки или пятерки будут в аттестате школьника. Этот признак – самоконтроль, и он в два раза точнее IQ коррелирует с оценками в дневниках [72].
А самоконтроль завязан на гены, регулирующие обмен дофамина. И по количеству "проблемных" генетических вариантов можно неплохо предсказать, насколько хорошо будет учиться ребенок. В ходе масштабного национального исследования здоровья американских подростков AddHealth ученые смотрели, есть ли связь между успеваемостью и "вредными" аллелями генов дофаминовых рецепторов DRD2 и DRD4 и гена DAT1, кодирующего белок-транспортер, который затаскивает нейромедиатор из синаптической щели обратно в дофаминергические нейроны. Авторы изучали оценки школьников по математике, английскому языку, истории и естественным наукам. И выяснилось, что даже одна "неправильная" версия любого из трех генов заметно снижает средний балл. По сравнению с носителями "удачных" вариантов у девочек с тремя "плохими" генами средняя оценка была ниже на 14 %, а у мальчиков – на 11 % [73].
"Вредные" аллели генов дофаминовой системы радикально увеличивают шансы человека набрать лишний вес
Одна из причин пониженной плотности дофаминовых рецепторов – вездесущий вариант DRD2/ANKK1 A1. У людей с выраженным ожирением (индекс массы тела больше 3530) он встречается в среднем с частотой 45 % [74], причем чем позже у человека проявляется нездоровая тяга к еде, тем выше шанс, что в его генах обнаружится DRD2/ANKK1 A1. Ученые полагают, что носители этого аллеля набирают вес не из-за проблем с усвоением жиров или сахара, а именно из-за болезненной тяги к еде, которая превращается в зависимость. Проблемы с метаболизмом питательных веществ проявляются еще в детстве, и тот факт, что обладатели одной или двух копий DRD2/ANKK1 A1 начинают толстеть во взрослом возрасте, указывает, что причина именно в неисправной системе поощрения. Освободившись от родительского контроля, такие люди срываются и начинают есть все подряд, чтобы получить долгожданное чувство удовольствия. Что характерно, носители варианта A1 больше остальных людей любят углеводы и фастфуд – вероятно из-за того, что подобная еда быстрее дает организму глюкозу, которая "удовлетворяет" систему поощрения. В среднем среди носителей аллеля A1 любителей булочек и ход-догов примерно 64 %. Среди людей с другими версиями гена таких всего 21 % [74].
Вариант DRD2/ANKK1 A1 – не какая-то экзотика, в разных регионах мира он встречается с частотой от 15–20 % до 70 % и больше. Есть данные, что у пациентов с диабетом его частота повышена [75]. Это, скорее всего, связано с тем, что именно неумеренность в еде чаще всего приводит к диабету второго типа, поэтому у больных частота опасного аллеля выше. Среди азиатов "нехороший" вариант, в среднем, обнаруживается чаще, чем у белых и темнокожих. Например, в Малайзии его несет каждый второй, а у некоторых народностей Тайваня опасный вариант присутствует в 60 % случаев [76]. Ученые, исследовавшие генотипы китайцев, нашли аллель A1 у 70 % [77]. Это не означает, что все носители одного, а тем более двух аллелей DRD2/ANKK1 A1 рано или поздно наберут лишний вес: как минимум у части из них могут оказаться "удачные" варианты генов, управляющих метаболизмом жиров и углеводов, которые компенсируют умеренное или даже значительное переедание. Кроме того, не все обладателиDRD2/ANKK1 A1 "западают" именно на еду – как мы обсуждали в предыдущих главах, у курильщиков, алкоголиков и наркоманов его частота также заметно выше, чем в среднем по популяции.
К нездоровым пищевым привычкам оказался причастен и уже знакомый нам ген DRD4, кодирующий рецепторы к дофамину. Напомню, он содержит участок с повторяющимися кусочками ДНК, и в зависимости от числа этих повторов рецептор работает хуже или лучше. Самый неудачный вариант включает семь повторов, и его носители любят покурить, выпить в компании, заняться сексом на стороне – и поесть вредной еды. Исследование канадских малышей показало, что обладатели этой версии гена DRD4 уже в четыре года предпочитают более жирную пищу и за раз съедают больше мороженого, чем носители других вариантов. В целом такие дети едят меньше овощей, орехов и цельнозернового хлеба. В более старшем возрасте подобные пищевые привычки с высокой вероятностью приводят к проблемам с весом [78]. Когда носители этого варианта DRD4 видят еду, они хотят съесть ее гораздо сильнее, чем обладатели других версий гена [79].
Конечно, не все носители одной и даже двух копий злокозненных аллелей непременно закончат в клинике по коррекции нарушений питания или вытрезвителе. Любое из "сложных" расстройств силы воли – всегда компот из различных генетических и социальных факторов. Например, у склонного к неконтролируемому перееданию человека может быть "быстрый" метаболизм, который сжигает все запихиваемые внутрь горы продуктов. Или такой человек живет в нищей стране и при всем желании не может реализовать свою страсть. Или, наоборот, он очень богат и компенсирует восьмиразовое питание спортзалом и косметологическими операциями. Но при прочих равных "неправильные" аллели генов дофаминовой системы существенно повышают шансы тяжелых расстройств самоконтроля.
Курение
Знаменитый писатель как жертва вредной привычки
"Нет ничего проще, чем бросить курить. Я точно знаю – я делал это тысячи раз", – говаривал Сэмюэл Лэнгхорн Клеменс, он же Марк Твен. Писатель начал курить в восемь лет и не прекращал до самой смерти. В день Твен выкуривал больше 20 сигар: по воспоминаниям друзей, он зажигал первую еще до того, как встать с постели, и нередко засыпал с сигарой во рту. Писатель знал, что курение вредит здоровью, хотя в те времена у врачей еще не было такой исчерпывающей статистики по болезням, которые провоцируются сигаретами. Он обожал курить и не мог жить без никотина. Твен курил все, даже окурки. Вот как он описывает подобный эпизод в автобиографии: "Я не курил уже целых три месяца, и невозможно описать словами, насколько сильно я жаждал вдохнуть дым… Я курил и был совершенно счастлив… Не знаю, что за бренд это был. Наверно, это была не самая хорошая сигара, иначе бы тот, кто курил ее до меня не выбросил ее так быстро. Но для меня это была лучшая сигара, когда-либо сделанная в мире. Куривший ее до меня счел бы точно так же, если бы перед этим был три месяца лишен табака. Я смолил окурок, не ощущая никакого стыда – в те времена я был куда менее благородным, чем нынче. Но и сегодня я выкурил бы его точно так же" [80].
По данным ВОЗ на 2015 год, в мире насчитывается 1,1 млрд курильщиков, 6 млн из которых ежегодно расплачиваются за свою привычку жизнью. Несмотря на то что многие начинают курить под давлением социума – например, тот же Марк Твен вырос в городке Ганнибал, где производство сигар было одной из важнейших отраслей промышленности, а их курение – главным способом проводить досуг, исследования показывают, что риск заработать зависимость от никотина определяется генами минимум на 50 % [81].
Никотин приятен потому, что стимулирует дофаминовую систему
Непреодолимая тяга курильщиков к сигаретам обусловлена тем, что никотин возбуждает дофаминовую систему. Так случилось, что его молекулы очень похожи на нейромедиатор ацетилхолин, поэтому они замечательно обманывают ацетилхолиновые рецепторы в мозгу. Таких рецепторов особенно много в мезолимбическом тракте – дофаминергическом нервном пути, который, в частности, "обслуживает" систему поощрения (мы подробно говорили о нем в главе 3). Когда вы затягиваетесь сигаретой, никотин из дыма проникает в кровеносные сосуды в легких и оттуда поступает в мозг, где связывается с ацетилхолиновыми рецепторами и стимулирует выброс дофамина. Никотин присоединяется к рецепторам в мозгу у любого, кто вдохнул табачный дым, но вот мощность дофаминового ответа и его эффект определяются генами конкретного человека – в первую очередь теми, которые контролируют дофаминовую систему. В итоге кто-то, пару раз покурив за компанию в школьном туалете, бросает это дело, удивляясь, что такого находят в сигаретах другие, а у кого-то формируется зависимость.
Обладатели неправильных дофаминовых рецепторов все время пытаются получить порцию нейромедиатора – и сигареты им в этом помогают
Один из генов, виновных в повышенной тяге к никотину, – ген дофаминового рецептора DRD3. Кодируемые этим геном рецепторы типа D3 в большом количестве синтезируются в разных частях системы поощрения, и в первую очередь в прилежащем ядре. Никотин стимулирует ацетилхолиновые рецепторы, сидящие на нервных клетках в вентральной области покрышки – средоточии дофаминергических нейронов. Возбудившись от стимуляции ацетилхолиновых рецепторов, они выбрасывают нейромедиатор. Как вы помните, дофамин выделяется из кончиков длинных отростков под названием "аксоны", которые тянутся по всему мезолимбическому тракту. В итоге пара затяжек – и дофамин буквально заливает прилежащее ядро, главный "центральный процессор" системы поощрения. Здесь молекулы дофамина связываются с рецепторами типов D3и D1. Рецепторы D3, которые кодируются одним из "минорных" вариантов гена DRD3, сильнее удерживают нейромедиатор, то ли продлевая приятный эффект от затяжки, то ли стимулируя человека затянуться вновь (если вспомнить гипотезу, что дофамин сам по себе не дает чувства удовольствия)31. У белых обладателей таких рецепторов быстрее формируется зависимость, и им сложнее отказаться от сигарет. Для афроамериканцев с двумя "нехорошими" вариантами риск никотиновой зависимости не отличался от среднего по популяции [82]. Почему полиморфизмы DRD3 по-разному проявляют себя у белых и темнокожих, неясно. Одной из возможных причин может быть "генетический фон", который модулирует работу "неправильного" аллеля и отличается у представителей разных групп. Кроме того, разные условия для проявления "неудачного" варианта могут создавать культурные различия. Это не означает, что темнокожие курят меньше белых – во многих странах со смешанным населением ситуация ровно обратная [83]. Никотиновая зависимость – сложная черта, которая может сформироваться из-за разных биохимических сбоев. С другой стороны, риск начать и особенно риск продолжить курить сильно зависит от среды [81] – подробнее о том, как она может модулировать значимость генетического вклада, мы поговорим в главе 5.
Тот же эффект, что и "опасные" версии DRD3, дают два "плохих" варианта рецептора DRD1: их носители в среднем выкуривают на шесть сигарет больше, чем носители "безобидных" аллелей [84]. По до конца неясным причинам с проблемных версий считывается меньше молекул мРНК – рабочих "копий" нужных генов, которые ферменты, синтезирующие новые белки, используют в качестве источника информации. Соответственно в центре поощрения носителей таких версий оказывается меньше дофаминовых рецепторов. Стремясь получить хронически недостающие ощущения приятного, люди, которым не повезло с аллелями DRD1 и DRD3, добирают упущенное сигаретами.
Подсаженные на никотин крысы, которым вводили вещество-антагонист дофаминовых рецепторов, переставали нажимать на рычаг, чтобы получить дозу наркотика [85]. Молекулы антагониста очень похожи на молекулы, которые в норме возбуждают рецепторы, легко связываются с ними, но не активируют. После того как антагонист занял большую часть дофаминовых рецепторов, молекулам нейромедиатора, выброшенным после очередной затяжки, попросту некуда присоединиться. В будущем на основе таких антагонистов дофаминовых рецепторов можно будет создать лекарства, которые избавят людей от всевозможных зависимостей или, по крайней мере, сделают их менее тяжелыми.
Неправильным дофаминовым рецепторам могут помогать неканонические варианты других генов
Еще один ген, "неправильные" версии которого мешают человеку бросить курить, кодирует белок под названием нейротрофический фактор мозга, он же BDNF. Нейротрофические факторы необходимы для правильного развития нейронов, но помимо этого BDNF контролирует, насколько хорошо "подшефные" ему нервные клетки будут воспринимать дофамин. Минорная версия нейротрофического фактора "подкручивает" чувствительность нервных клеток к нейромедиатору, регулируя количество рецепторов типа D3 на их поверхности. Сигналом для выброса BDNF служит активация рецепторов D1 (как видите, в мозгу все взаимосвязано). Когда никотин регулярно поступает в мозг, рецепторы DRD3 и DRD1 в прилежащем ядре все время возбуждаются, в мезолимбическом тракте синтезируется больше BDNF – а значит, на поверхности нейронов "вылезает" больше рецепторов D3. Кроме того, много BDNF синтезируется в миндалине – главном отделе мозга, ответственном за эмоции. Никотин стимулирует миндалину, она впрыскивает BDNF в мезолимбический тракт, это активирует синтез рецепторов, они "просят" новую порцию дофамина, человек закуривает очередную сигарету – все повторяется. Несколько итераций, и зависимость сформирована [86]. А если у человека неканоническая версия BDNF, риск пристраститься к никотину и выкуривать больше сигарет, чем средний курильщик, заметно возрастает.
Особенно опасно, когда в ДНК сочетаются проблемные версии нескольких генов
Три этих гена – BDNF-DRD1-DRD3 – часто рассматривают вместе как единый кластер, ответственный за непреодолимую тягу некоторых людей к табаку. Сочетание их "неправильных" вариантов существенно повышает риск зависимости – намного больше, чем минорные варианты каждого из входящих в кластер генов по отдельности. Другими словами, среди тех, кто никак не может бросить курить, носителей проблемных аллелей BDNF-DRD1-DRD3 больше, чем в среднем по популяции. Что характерно, эти три гена причастны и к алкогольной зависимости: в ДНК людей, которым сложно ограничить себя в выпивке, часто встречаются "опасные" версии этих генов. Такое совпадение неудивительно: оно лишний раз доказывает, что как минимум в некоторых случаях зависимость от "веществ" определяется именно нарушениями в метаболизме дофамина.
Это не означает, что если вы сделаете генотипирование и обнаружите проблемные версии BDNF-DRD1-DRD3, то рано или поздно непременно станете курильщиком или алкоголиком. Однако шансов столкнуться с этими или другими проблемами с самоконтролем – скажем, подсесть на компьютерные игры или сладкое – у вас больше, чем у носителей других версий. Каждое "неправильное" изменение в любом из описанных выше генов слегка повышает вероятность того, что у вас не будет железной силы воли. Сочетание нескольких "нехороших" версий уже дает значительную корреляцию с нарушениями самоконтроля. А если результаты генотипирования выявят еще и неканонические версии ацетилхолиновых рецепторов CRNHA и CRNHB с разными номерами, тогда сигарет вам лучше избегать вовсе, потому что проблемы с силой воли, скорее всего, проявятся именно в отношении табака [87]. Что интересно, у носителей некоторых минорных версий генов ацетилхолиновых рецепторов риск начать курить не отличается от среднего, но если они уже обзавелись этой привычкой, то будут выкуривать больше сигарет, чем "нормальный" курильщик [88].
Агрессия
Изменения всего лишь в одном гене могут приводить к патологической неспособности сдерживать агрессию
Еще одно расстройство силы воли, у которого обнаружилась солидная генетическая подоплека, – агрессивное поведение, которое можно рассматривать как неспособность контролировать свои антисоциальные порывы. Проблемами агрессии особенно активно занимались исследователи-криминалисты, потому что такое поведение типично для преступников (впрочем, законопослушным гражданам несдержанность тоже здорово портит жизнь). И долгое время специалисты в этой области были уверены, что главная причина агрессии и в целом слабого контроля над эмоциями кроется в неправильном воспитании. Но в начале 2000-х, когда исследования ДНК стали обычным делом, выяснилось, что не все так просто.
Внимательно изучив генетические особенности агрессивных людей, ученые обнаружили, что у них чаще, чем в среднем, встречаются несколько вариантов гена моноаминоксидазы типа А (сокращенно МАОА). Кодируемый этим геном фермент разрушает нейромедиаторы класса моноаминов, к которым относятся в том числе адреналин, норадреналин, серотонин и дофамин. Если ген работает шустро и фермента много, нейромедиаторы вовремя утилизируются и все хорошо. Но если МАОА "подхалтуривает", то фермента не хватает и шкодливые вещества слишком долго хозяйничают в мозгу, жди беды. Впервые МАОА заподозрили в "потворстве" агрессии еще в 1993 году: ученые исследовали большую голландскую семью, известную тем, что чуть ли не половина происходящих из нее мужчин сидели в тюрьме за драки и изнасилования или в лучшем случае были готовы за любую мелочь дать обидчику в глаз. Исследователи обнаружили, что в семье из поколения в поколение передавалась мутация в гене МАОА, которая полностью "выключала" его [89]. Ген МАОА находится на X-хромосоме, поэтому, когда дефектная копия гена доставалась девочке, поломка фермента компенсировалась здоровой копией со второй X-хромосомы. А вот если неисправный ген оказывался в ДНК мальчика, тот вырастал опасным дебоширом: из 14 человек с мутацией пятеро были поджигателями, остальные "отличились" сексуальным насилием или попытками убийства.
Варианты, которые не полностью "выключают" ген МАОА, а всего лишь понижают его активность, встречаются намного чаще. В мозгу носителей таких версий меньше фермента, чем у обладателей "нормальных" аллелей. Исследования показали, что у мужчин со сниженной активностью МАОА в моменты эмоционального возбуждения излишне активируется миндалина (как мы обсуждали в главе 3, она отвечает за эмоциональную реакцию на события), а вот регуляторные участки префронтальной коры, напротив, тормозятся [90]. Кроме того, такие мужчины обычно более импульсивны, чем те, у кого MAOA работает нормально [91].