Каталог получил название в честь своего автора – французского астронома Шарля Мессье – и в первом издании включал 45 объектов (на сегодняшний день каталог состоит из 110). Шарля Мессье прозвали «охотником за кометами»: он посвятил их изучению более 1000 ночей, наблюдал 44 кометы и был первооткрывателем 15 из них.
Кометы подчиняются законам тяготения, но движутся как в прямом, так и в обратном направлениях по сильно вытянутым орбитам, наклоненным к эклиптике под различными углами. Ядро кометы состоит из водяного льда с примесью замерзших углекислоты, аммиака и пыли. Когда комета приближается к Солнцу, ее ядро нагревается, лед испаряется. Образовавшийся газ разлетается от ядра, унося с собой пылинки и создавая облако. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. Юпитер для Земли играет роль щита: его мощная гравитация, превышающая земную в два с половиной раза, притягивает кометы и астероиды, некоторые попадают в его атмосферу и сгорают.
Поверхность Земли начинается с литосферы (географической оболочки), где выступает рельеф, формирующий горы и равнины; и гидросферы, состоящей из океанов, морей и рек. Наша планета окутана плотными слоями атмосферы, состоящий на 77 % из азота, на 21 % из кислорода и еще на 1 % из различных газов. Атмосфера Земли содержит самое большое количество кислорода по сравнению со всеми известными на данный момент планетами во Вселенной.
Как образовалось ядро Земли? На этот вопрос ученые предлагают две гипотезы. Согласно первой версии вещество непосредственно после возникновения Земли было однородным. Оно целиком состояло из микрочастиц, которые можно сегодня наблюдать в метеоритах. Но по прошествии определенного промежутка времени эта однородная масса разделилась на тяжелое ядро, куда стекло все железо, и более легкую силикатную мантию. Иными словами, капли расплавленного железа и сопутствовавшие ему тяжелые химические соединения оседали к центру нашей планеты и образовывали там ядро, которое и в наши дни остается в значительной степени расплавленным. В соответствии со второй гипотезой ядро Земли сформировалось из железных метеоритов, которые сталкивались с поверхностью планеты, позже оно обросло силикатной оболочкой из каменных метеоритов и сформировало мантию.
Многие объекты в Магеллановых Облаках, спутниках нашей галактики, исследуются порой успешнее, чем объекты Млечного Пути. Магеллановы Облака изобилуют переменными звездами различных типов. В Большом Облаке насчитывается 4700 сверхгигантов с излучением мощнее, чем 10 000 солнц; там находятся рекордсмены по светимости среди известных нам звезд. Только в этих двух галактиках, не считая нашей, можно в настоящее время наблюдать долгопериодические и коротко-периодические цефеиды. Это очень важно для выработки правильных способов определения внегалактических расстояний.
Самая яркая сверхновая звезда за всю историю астрономии. Она удалена от нас на 3,8 млрд световых лет. Свет от вспышки этой сверхновой ярче нашего Солнца в 570 млрд раз и в несколько раз сильнее всех известных до этого сверхновых.
Близкая к нам планетарная туманность, всего в 650 световых годах от нашей системы, в созвездии Водолея. На основе скорости ее расширения был определен возраст Улитки: 10600 лет. Размеры колоссального «глаза» достигают 2,5 световых года.
Обсерватория расположена на пике горы Мауна Кеа, в жерле спящего вулкана. Телескопы обсерватории оснащены адаптивной оптикой, устраняющей атмосферные искажения.
Часть комплекса американской национальной обсерватории NOAO. Профессиональные астрономы из любой страны мира могут подать заявку на использование телескопов, управляемых NOAO, согласно политике «открытого неба» NSF.
Этот мощный телескоп в Антарктиде служит, в первую очередь, для изучения реликтового излучения.
Новые технологии
Наша планета не такая уж большая. Вот один пример. Двоюродный дедушка Бориса Сунцеффа учился в школе вместе с Отто Струве (1897–1963) в царской России. Струве из семьи потомственных звездочетов, его дед, отец и дядя были астрономами. Семья бежала из России во время революции и оказалась в Турции, а потом в США, где Отто Струве стал директором обсерватории в Висконсине. Семья Сунцеффа тоже бежала из России, хотя в другом направлении, в Китай, а в конце концов они оказались в Сан-Франциско. Там бабушка Сунцеффа встретилась с Отто Струве.
Ник Сунцефф продолжил семейную традицию и учился у Алана Сандаджа, который в свою очередь был учеником, помощником и преемником Хаббла в Маунт-Вильсон, где в 1923 году Хаббл понял, что Млечный Путь – одна из множества галактик Вселенной, а в 1920 – что Вселенная расширяется. Сандадж стал работать в обсерватории Института Карнеги в 1948 году, а Сунцефф в 1982. Вначале оба занимались постоянной Хаббла (которую Сандадж обычно называл параметром Хаббла).
Постоянная Хаббла – коэффициент, связывающий расстояние до внегалактического объекта (например, другой галактики) со скоростью его удаления, выражается в км/с на мегапарсек (Мпк). В настоящее время две галактики, разделенные расстоянием в 1 Мпк, в среднем разлетаются со скоростью около 70 км/с. В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.
Напомню, как было сделано это открытие. В 1929 году Эдвин Хаббл выдвинул предположение о том, что звезды, находящиеся за пределами нашей галактики, удаляются от нас с огромной скоростью. Он основывал свое предположение на многочисленных измерениях величин красного смещения в спектрах далеких от нашей галактики цефеид, а также на представлениях Христиана Доплера о непосредственной связи изменения длин световых волн со скоростью и вектором движения источника излучения. Хаббл обнаружил, что смещение спектральных линий одних тех же элементов в спектрах внегалактических объектов в красную сторону (красное смещение) пропорционально расстоянию до этих объектов, и пришел к выводу: чем дальше находится источник излучения, тем больше скорость его удаления, равно как и скорость удаления Земли от наблюдаемого объекта. Постоянная Хаббла считается оценкой скорости расширения пространства и определяет величину приращения этой скорости на один мегапарсек расстояния до наблюдаемых источников электромагнитного излучения. В 1980-е годы, когда Сунцефф оказался в обсерватории института Карнеги, считалось, что постоянная Хаббла находится в диапазоне от 50 до 55 (км/с)/Мпк (сейчас 71 ± 4 (км/с)/Мпк).
Как раз когда Сунцефф прибыл в институт Карнеги, Сандадж заинтересовался сверхновыми (вместе с Густавом Тамманном). Несколько раз они вместе работали в Чили, на двух разных телескопах, и Сандадж просил Сунцеффа проверить, удалось ли ему обнаружить сверхновую. Таким образом Сунцефф тоже заинтересовался сверхновыми, и всякий раз, когда погода не позволяла вести наблюдения, отправлялся в библиотеку изучать материалы о сверхновых. И вскоре ему пришлось сменить своего учителя, потому что тот ослеп на правый глаз, который служил его рабочим инструментом на протяжении четырех десятилетий.
К тому времени изменилась практическая астрономия – в том виде, в котором она существовала на протяжении двухсот лет после изобретения телескопа. Все эти две сотни лет астрономы полагались только на свет, который бил им в глаза в какой-то момент, а затем этот свет исчез. Раньше астрономы могли нарисовать то, что увидели, они могли описать это словами. Они могли сделать замеры для определения местоположения объекта или описания его движения. Но теперь то, что они видели – сам свет, визуальную репрезентацию объекта в какой-то момент времени – исчезло.
Изобретение фотографии в середине 1800-х годов радикально изменило связь наблюдателей и их наблюдений. Фотографии имели очевидное преимущество для астрономии в сравнении с тем, что видит человеческий глаз. На фотографии сохранялось то, что видел астроном. Сохранялся сам свет, а следовательно, и образ объекта в определенный момент. Астрономы смогли ссылаться не только на свои рисунки, словесные описания и математические расчеты, а на фактически увиденное и зафиксированное. И это мог сделать любой другой астроном, а не только проводивший наблюдения.
Более того, фотография позволяла ученым не только собирать свет, она позволяла это делать на протяжении какого-то времени. Свет не просто «приземлялся» на фотографическую пластинку, он приземлялся и оставался на ней, а потом к нему добавлялся другой свет. Источники света были такими слабыми, что человек не мог их видеть не то что невооруженным глазом, а и с помощью телескопа, но это могла фотопластинка, которая работала как губка. Она могла всю ночь впитывать свет.
В астрономии фотопластинки использовались более ста лет для наблюдений за небесными телами и в спектрометрии. Их важным достоинством перед пленкой долгое время оставалось полное отсутствие усадки после лабораторной обработки и сушки. Это позволяло проводить достоверные измерения некоторых величин по изображению. В астрономии пластинки использовались до 1990-х годов. Фактически это фотоматериал на стеклянной подложке – плоскопараллельная стеклянная пластинка с нанесенной на нее светочувствительной эмульсией. Фотографические пластинки сменили ПЗС-матрицы (приборы с зарядовой связью – сокращение по первым буквам), которые также именуют CCD-матрицами, используя сокращение от английского Charge-Coupled Device. Это специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию приборов с зарядовой связью. В этих приборах кремний собирает свет, один фотон создает один электрический заряд. Фотопластинка чувствительна всего лишь к 1–2% доступных фотонов, а ПЗС могут достигать 100 % – преимущество очевидно для любого аспекта астрономии. Это цифровая технология – обработку изображений можно делать с помощью компьютера, а больше света означает, что можно видеть дальше и собирать данные быстрее.
Польза сверхновой для космологии в большой степени зависит от кривой блеска, которая показывает усиление и уменьшение яркости сверхновой на протяжении какого-то периода времени. Кривая блеска каждой сверхновой резко поднимается в течение нескольких дней, пока сверхновая идет к максимальной яркости, а потом постепенно падает по мере того, как сверхновая тускнеет. Но поскольку каждый тип сверхновых высвобождает свой собственный набор элементов (например, водород может быть, а может и не быть), появляется он в результате специфического процесса (взрыв или схлопывание), то кривая блеска поднимается и падает особым образом для каждого типа. Чтобы выяснить эту схему, нужно знать, когда кривая достигает пика, то есть яркость достигает максимума, так что вам нужно обнаружить сверхновую, пока яркость усиливается. Потом нужно за ней следить – чем больше наблюдений, чем больше данных можно зафиксировать на графике, а чем больше данных, тем надежнее кривая. Но эти наблюдения будут верны, только если вы уверены в яркости света сверхновой, а точность измерений зависит от того, насколько хорошо вы способны отличить свет сверхновой от света галактики, в которой она находится. Технология, позволяющая делать больше наблюдений, а потом увеличивать эти наблюдения пиксель за пикселем, помогает уменьшить количество ошибок. Скорость и точность ПЗС-технологии в этом помогают лучше всего, а работа фотометриста, такого как Сунцефф, становится искусством.
Сунцефф начал работать с ПЗС-технологиями вместе с Марком Филипсом, с которым они вместе учились в Калифорнийском университете в 1970-е годы. Их первым заданием была установка ПЗС на телескопе и проверка оборудования на сверхновой 1986G. Сунцефф должен был заниматься наблюдениями и фотометрией, а Филипс сравнениями с кривыми блеска других сверхновых.
Сунцефф ожидал получить исторический результат. Они с Филипсом считали, что их кривая блеска будет первой «современной кривой», то есть первой, полученной с помощью ПЗС. Но результат разочаровал. Кривая блеска 1986G оказалась существенно отличающейся от других кривых блеска типа Ia. Сверхновая оказалась более тусклой, чем следовало при красном смещении, а кривая блеска выглядела так, будто поднималась и падала резче, чем в случае других сверхновых типа Ia.
Сунцефф и Филипс были первопроходцами и поэтому могли сравнивать полученную ими кривую блеска только с кривыми, зафиксированными с помощью фотографических пластинок. Они не знали, говорит ли их кривая блеска на основе ПЗС-технологии больше о сверхновых типа Ia – или больше о ПЗС-технологии. Но ученые были уверены в своих данных и опубликовали статью, в которой сделали вывод, что сверхновые типа Ia, вероятно, слишком сильно отличаются по яркости, чтобы служить «стандартными свечами» – объектами, светимость которых известна. Сунцефф и Филипс решили, что теперь они должны или убедить сообщество, что сверхновые типа Ia точно не являются «стандартными свечами», или, наоборот, признать свою ошибку.
23 февраля 1987 года (через год после начала работы) появилась сверхновая 1987А в Большом Магеллановом Облаке, фактически над головой – это одна из немногих галактик, видимых невооруженным глазом, но только из Южного полушария. Это была первая сверхновая с 1604 года, видимая невооруженным глазом. Она относилась к типу II, то есть схлопывающемуся, а не типу Ia, которым ученые занимались ранее. Конечно, эта сверхновая привлекала внимание астрономов со всего мира, а в Калифорнийском университете собрались почти все имеющиеся в мире специалисты по сверхновым – 50 человек. В частности, там выступил швейцарский астроном Бруно Лейбундгут, который считал сверхновые типа Ia «стандартными свечами». Он изучал только тип Ia, а Сунцефф и Филипс в последнее время занимались типом II, сверхновой 1987А. Они решили использовать одну из ближайших сверхновых типа Ia для измерения параметра Хаббла – скорости расширения Вселенной на тот момент. А если разработанная ими программа сработает, они смогут перейти к более дальним сверхновым и измерить другой параметр – скорость замедления расширения Вселенной.
К Сунцеффу и Филипсу в чилийской обсерватории Серро-Тололо присоединился Марио Хамуй, который приехал работать ассистентом всего через три дня после того, как 1987А зажглась в Большом Магеллановом Облаке, и очень быстро увлекся сверхновыми. Существовало два варианта: телескоп, на который нельзя установить ПЗС, но с камерой с широким полем охвата, – или телескоп с ПЗС, но с малым полем охвата. Было выбрано широкое поле охвата, потому что требовалось поймать как можно больше галактик за раз – при поиске сверхновых количество важнее качества.
Ученые работали каждую ночь, с заката и до рассвета, на рассвете фотопластинки отправлялись в Сантьяго на грузовике, а потом пассажирском автобусе, путь занимал 8 часов. Там их забирал Хосе Маза, у которого Хамуй учился в Чилийском университете, и относил ассистентам в лабораторию для сравнения с данными за несколько недель. К вечеру следующего дня Сунцефф, Филипс и Хамуй уже знали, за какими кандидатами в сверхновые им следует охотиться с помощью ПЗС-технологий.
Эта работа позволяла не только открывать сверхновые, но и улучшить качество наблюдений и последующего анализа, причем это касалось всех сверхновых, открытых профессиональными астрономами и любителями. Группа в частности занималась двумя странными сверхновыми 1991 года – очень яркой 1991Т и поразительно тусклой 1991bg. Эти сверхновые только усилили подозрение Сунцеффа и Филипса о том, что сверхновые не являются «стандартными свечами». Несоответствие было видно сразу же – кривые блеска очень сильно отличались. Кривая блеска поразительно яркой 1991Т шла вверх и опускалась более плавно и постепенно, чем типичная кривая блеска типа Ia. Кривая блеска поразительно тусклой 1991bg шла вверх и опускалась гораздо более резко, чем кривая блеска типичной сверхновой типа Ia.
Яркая опускалась более плавно, тусклая – более резко. Ученые задумались о том, сохранится ли такой вариант кривых блеска, если проанализировать другие сверхновые. Может, типу Ia и не нужно быть идентичным, чтобы приносить пользу космологии? Может, то, насколько плавно или резко идет вверх и опускается кривая, служит надежным показателем яркости относительно других сверхновых типа Ia? А зная относительную яркость, можно вычислить и относительные расстояния.
Марк Филипс собирал кривые блеска на протяжении всего 1992 года, затем несколько месяцев их анализировал. В этот период Филипс жил в Чили. После того как Филипс опубликовал собранные данные, первым из астрономов ему написал Боб Киршнер – с поздравлениями. Филипс получил ответ на вопрос, подкрепив его надежными данными: нет, сверхновые типа Ia не являются «стандартными свечами». Однако они вполне могут служить свечами, которые поддаются стандартизации. Опускание кривой блеска связано с абсолютной величиной сверхновой.
Встал следующий вопрос: а можно ли открывать далекие сверхновые типа Ia на регулярной основе и с должной степенью надежности? Ответ дала группа из Беркли в марте 1994 года: да. Между декабрем 1993 года и февралем 1994 года они открыли шесть далеких сверхновых.
Группа под руководством Брайана Шмидта
Брайан Шмидт защитил диссертацию на тему сверхновых в Гарвард-Смитсоновском центре астрофизики. Ник Сунцефф работал в Межамериканской обсерватории Серро-Тололо в Чили и занимался сверхновыми с 1989 года. Поскольку они оба были специалистами по сверхновым, то следили за соответствующим проектом, над которым работала группа из Беркли.
Они встретились в Чили, и Шмидт сказал, что думает создать команду, конкурирующую с группой Перлмуттера. Сунцефф сразу же выразил желание к ней присоединиться. Шмидт отдавал должное группе из Беркли, лично Солу Перлмуттеру и признавал заслуги коллег. Благодаря развитию техники и технологий сверхновые наконец стало можно использовать на благо космологии. Группа Перлмуттера оказалась в нужное время и в нужном месте. Шмидт очень сомневался в том, что физики – и даже физики, превратившиеся в астрофизиков, смогут регулярно находить далекие сверхновые. Даже после того как группа из Беркли обнаружила свою первую сверхновую, Шмидт и другие астрономы сомневались в возможностях физиков обеспечить необходимые наблюдения, которые требуется проводить после обнаружения, и анализ полученных данных.
Шмидт и Сунцефф считали, что смогут открывать по три сверхновые типа Ia в месяц, потом согласились на одну. Но вскоре установили новый рекорд по сверхновым – красное смещение открытой ими сверхновой составляло 0,48, а это значило, что она находится на расстоянии 4,9 млрд световых лет. Пока они не могли сказать, относится ли она к типу Ia и будет ли полезна в определении скорости замедления расширения Вселенной. Но это все равно был рекорд.
Группа из Беркли, уже без Карла Пеннипакера, выяснила, как находить сверхновые на регулярной основе через три года после того, как они доказали сами себе, что могут находить дальние сверхновые. Они открыли три в начале 1994 года с помощью телескопа «Исаак Ньютон» (диаметр 2,4 м), потом еще три с помощью 4-метрового телескопа в обсерватории Китт-Пик, в Аризоне. К июню 1995 года у них в портфеле было в целом 11 открытых далеких сверхновых типа Ia. Они представили четыре доклада на конференции, посвященной рождению сверхновых звезд, которая проходила в Испании, в Айгуаблаве. Их метод, разработанный Солом Перлмуттером, описан выше – это работа в периоды вокруг новолуния.
Когда Перлмуттер говорил о сверхновых, он использовал слова «редкие, быстро исчезающие, случайные, беспорядочные». Да, сверхновые являются именно такими, но команда Шмидта и Сунцеффа предпочитала делать упор на тусклости, удаленности и пыли. Они действительно тусклые – но потому что удаленные или из-за пыли? Физиков волновало, как найти дальние сверхновые, а астрономов беспокоило, что делать с этими дальними сверхновыми после того, как они будут обнаружены.
По крайней мере, одна дальняя сверхновая у группы Шмидта имелась, правда, ученые не были уверены, к какому типу она относится. Со Шмидтом, Филипсом и Сунцеффом сотрудничал Бруно Лейбундгут, в частности, он занимался изучением данных по «рекордной» сверхновой – удаленной на 4,9 млрд световых лет. И в одном из своих писем Шмидту он указал, что в спектре этой сверхновой «все еще много галактики» – это означало, что свет от явной сверхновой трудно отделить от света галактики, в которой она находится. Спектр может сказать вам красное смещение галактики, а поэтому и красное смещение находящейся в ней сверхновой. Но чтобы увидеть спектр самой сверхновой, нужно изолировать блеск.
Вначале это попытался сделать Марк Филипс. Через неделю после того как группа узнала о результатах расчетов Марио Хамуя (о том, что это самая дальняя из всех открытых сверхновых), Филипс был готов опустить руки. Он пришел к выводу, что в спектре этой сверхновой соотношение сигнал-шум, то есть полезный свет сверхновой против оптического эквивалента шума галактики, настолько мало, что определить тип сверхновой невозможно. Следующую попытку предпринял Лейбундгут, он попытался отделить свет сверхновой от света галактики несколькими способами, но тоже не смог подтвердить, что сверхновая относится к типу Ia. Филипс предложил Лейбундгуту «вычесть галактику». Это первое действие, которое следует предпринять, если вы пытаетесь получить спектр сверхновой.
Если вы хотите изолировать блеск сверхновой, возьмите спектр части галактики, в которой находится сверхновая, которая заполнена светом галактики, а затем определите спектр другой части галактики, вдали от сверхновой, а после вычтите второй результат из первого. В идеале получится спектр самой сверхновой.
Однако в данном случае свет галактики так подавлял сверхновую, что Лейбундгут не попробовал сделать очевидное. Никто не попробовал. Оказавшись дома в Мюнхене, Лейбундгут разделил интенсивность блеска галактики в целом на десять. Оснований делить именно на десять не было. Спектр галактики все равно останется тем же, качество данных не меняется.
Он просто изменил интенсивность, вычел этот спектр из спектра сверхновой (который также содержал спектр галактики) – и получил спектр сверхновой. Таким образом и Лейбундгут, и Филипс поняли, что имеют дело с настоящим типом Ia.
Тем временем произошли большие изменения в астрономии. Наукой больше нельзя было заниматься в одиночестве. Именно поэтому и формировались группы, в которые входили люди часто очень разных специальностей. Появлялись новые технологии, техника становилась все сложнее и сложнее, в одиночку невозможно стало охватить все. Нельзя было просто изучать небеса и все на них. Кто-то занимался планетами, а кто-то звездами, или галактиками, или Солнцем. И просто звезды уже никто не изучал. Основной упор стали делать на взорвавшиеся звезды, а из взорвавшихся надо было выбрать, например, тип Ia. Кто-то специализировался на механизме, ведущем к термоядерному взрыву, или на металлах, которые появляются в результате взрыва, или на том, как использовать свет этого взрыва для определения скорости замедления расширения Вселенной, на фотометрии или спектроскопии.
Группа Шмидта и Сунцеффа, продолжившая работу, в сентябре 1994 года состояла из 12 человек в пяти учреждениях на трех континентах. Сунцефф заявил, что они должны привлекать к работе молодежь. Это могли быть выпускники вузов соответствующей специализации и аспиранты. В группе следили за справедливым распределением обязанностей и за тем, чтобы именно тот, кто выполнил большую часть работы по тому или иному направлению, указывался первым среди авторов соответствующих статей и ездил на конференции, потому что в научных кругах часто происходит наоборот: штатный профессор получает всю славу, а аспирант оказывается без работы. Выбранный подход способствовал быстрому продвижению вперед.
Позже к группе присоединился Адам Рисс, который в дальнейшем вместе с Брайаном Шмидтом и Солом Перлмуттером получил Нобелевскую премию по физике за открытие ускоренного расширения Вселенной посредством наблюдения дальних сверхновых. Его диссертация была посвящена исследованию сверхновых звезд типа Ia, он хотел решить проблему стандартизации сверхновых типа Ia. Как и у Филипса, форма кривой блеска Рисса позволяла определить яркость, присущую конкретной сверхновой, но, в отличие от метода Филипса, Рисс нашел способ определить степень ошибки, то есть качество результата оценивалось количественно. Но пока Рисс не имел возможности проверить свой метод на реальных данных и обратился к Марио Хумаю за данными. Вначале Хумай не хотел делиться наработками (до публикации они остаются вашими и только вашими), но не смог отказать настойчивому аспиранту. Рисс получил 13 кривых блеска, и через несколько недель Хумай в свою очередь получил письмо от Рисса с сообщением о том, что придуманный молодым человеком метод работает.
И статья Хумая по 13 сверхновым, и статья Рисса о его методе вышли в одном номере «Астрофизического журнала» в январе 1995 года. Оба автора также попытались вывести значение постоянной Хаббла. У Хумая получилось 62–67 (км/с)/Мпк, а у Рисса 67 ± 7 (км/с)/Мпк. Если постоянная Хаббла равна 50, это означает, что возраст Вселенной составляет около 20 млрд лет. Если постоянная Хаббла выше 60, это означает, что Вселенной около 10 млрд лет и она получается моложе своих самых старых звезд. Сандадж, наследник Хаббла, который очень трепетно относился к параметру своего учителя, настаивал, что постоянная Хаббла должна быть меньше 60, поскольку этого требует возраст Вселенной. Другие астрономы получали данные в диапазоне от 50 до 100 (км/с)/Мпк. Рисс и Киршнер опубликовали еще одну статью, используя данные Хумая, на этот раз – об изучении движения галактик.
Тем временем Брайан Шмидт приехал работать в Чили, где у группы было забронировано время для работы на телескопе в обсерватории Серро-Тололо. За осень 1995 года группа открыла 11 сверхновых. Конечно, астрономы все еще зависели от погодных условий, а в Чили еще время от времени случались землетрясения, но работать в целом, конечно, стало проще. Вселенная состоит из миллиардов галактик, звезды взрываются постоянно, так что сверхновых там тысячи, если не миллионы. Просто нужно было научиться их находить. Но теперь работа по открытию и анализу данных была, можно сказать, поставлена на конвейер.
Вселенная будет расширяться вечно
То же самое можно сказать и о группе Сола Перлмуттера, которая постоянно конкурировала с Брайаном Шмидтом. Используя метод Сола Перлмуттера, описанный выше, они открыли 22 дальние сверхновые, по большей части типа Ia. Они доказали, что могут предсказать дату открытия сверхновой и даже место ее нахождения среди тысяч галактик.
К осени 1997 года у двух групп было достаточно данных, чтобы попытаться найти, по крайней мере, предварительный ответ на вопрос, как сильно замедляется расширение Вселенной и к чему идет Вселенная – Большому хлопку или Большому морозу.
Группа под руководством Сола Перлмуттера заявила, что на основе изучения семи сверхновых типа Ia можно сделать вывод о том, что Вселенная плоская и она не будет вечно расширяться, но и не сожмется в конце концов. Правда, ученые заметили, что это лишь предварительный результат.