Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Pro темную материю - Виктор де Касто на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Нобелевские лауреаты Брайан Шмидт, Сол Перлмуттер и Адам Рисс

Сол Перлмуттер не смотрел в телескоп, не рисовал схем движения звезд по ночному небу, не мечтал о том, чтобы забраться на вершину самой высокой горы и вести наблюдения оттуда. Его коллега Карл Пеннипакер тоже не собирался в детстве стать астрономом, хотя его кандидатская диссертация по физике написана на тему «инфракрасной астрономии». Другие члены их группы тоже не были астрономами. Они приехали в Национальную лабораторию Лоуренса не для того, чтобы заниматься астрономией. Да и лаборатория создавалась совсем не в этих целях. Но Калифорнийский университет в Беркли только что выиграл конкурс на создание нового крупного исследовательского центра, финансируемого правительством. Он получил название «Центр астрофизики частиц», хотя его вполне могли назвать «Центром темной материи» – и назвали бы, как в дальнейшем сказал первый директор центра, если бы хорошо подумали.

К началу 1980-х годов ученые уже знали, что Вселенная расширяется. Имелось вполне разумное объяснение (принятое большинством ученых) того, как Вселенная появилась и дошла до этого момента в истории – Большой взрыв. И теперь ученые естественно задались вопросом: а что будет дальше? Что будет с нашей Вселенной и, соответственно, нами? Достаточно ли материи, чтобы замедлить расширение, в результате чего однажды во Вселенной, растянутой настолько, насколько можно, начнется обратный процесс – сжатия? В таком случае космос является конечным и способным сворачиваться. Или во Вселенной так мало материи, что расширение будет продолжаться вечно? В таком случае космос бесконечен и способен только развертываться. Или во Вселенной как раз столько материи, сколько нужно, чтобы замедлить расширение, чтобы оно в конце концов прекратилось, остановилось, замерло? В таком случае космос является бесконечным и плоским.

Астрономы обладают своеобразным чувством юмора и дали свои названия вариантам окончательной судьбы Вселенной – Большой хлопок (если материи слишком много и произойдет сжатие), Большой мороз (если материи мало), а третий вариант (то, что надо) Вселенная Златовласки.

Астрономы знали еще до 1980-х, что количество материи во Вселенной будет влиять на скорость ее расширения. Но не знали, что не учитывают около 90 %, а то и больше, материи. Возможные космологические последствия осознания этого стали очевидны с самого начала. Как сказала Вера Рубин, пока мы не знаем характеристики темной материи и ее распределение в пространстве, мы не можем говорить об истинной плотности Вселенной. Если плотность высокая, то расширение в конце концов прекратится, и Вселенная начнет сжиматься. Если же плотность низкая, расширение будет продолжаться вечно. Именно плотность Вселенной требовалась для определения ее веса, формы и судьбы. За измерение этого параметра взялись Перлмуттер и Пеннипакер.

Вопрос «конца Вселенной» стар, как мир. Но ученые ХХ века могли выполнить жизненно важные измерения. Более того, открытие температуры 3К, которая оказалась соответствующей предсказанной на основании теории Большого взрыва, научило астрономов уважительно относиться к космологии, которую в конце концов признали наукой. Но если вы хотите понять историю и строение мироздания, то есть заняться космологией, то следует подумать о гравитации в масштабах Вселенной.

Нельзя сказать, что астрономы всегда игнорировали взаимоотношение гравитации и Вселенной. Современная физика, можно сказать, вышла из эпических попыток Ньютона вывести закон всемирного тяготения, который считается универсальным. Ньютон принял вызов Платона и произвел на бумаге расчеты, которые соответствовали движениям небесных тел. Телескоп стал инструментом, который позволил астрономам фиксировать все больше и больше движений этих звезд. Математика Ньютона тоже служила инструментом, позволявшим понимать эти движения, которые они наблюдали с помощью телескопа. Закон всемирного тяготения делал возможным существование науки космологии.

Но возникали и проблемы. Вселенная заполнена материей. Материя притягивает другую материю с помощью гравитации. Поэтому Вселенная должна сжиматься. Так почему она не сжимается? Первым этот вопрос Ньютону задал Ричард Бентли (1662–1742), английский богослов, филолог и критик, в 1692 году. Первым ответом Ньютона было равновесие частиц в бесконечном космосе – они находятся в строго определенных местах. Однако в одном из более поздних изданий «Математических начал натуральной философии» Ньютон говорил о божественном участии: «чтобы звездные системы не упали друг на друга в результате работы силы притяжения, Он расположил их на огромных расстояниях друг от друга». Космологию вначале не хотели признавать наукой как раз из-за допуска сверхъестественной причины, предлагаемой для объяснения какого-то явления. Ньютоновская физика – это по сути причина и следствие, материя и движение. Тем не менее в данном единственном случае Ньютон говорил об отсутствии гравитационного взаимодействия между телами в космосе. Сила притяжения действует на расстоянии, а тут сам Ньютон предполагал, что не действует! То есть ньютоновский закон всемирного тяготения не работает на гигантских расстояниях?..

В следующие десятилетия и столетия астрономы открывали все больше фактов о звездных системах. Во-первых, Ньютон считал, что звездные системы неподвижны, но астрономы следующих поколений показали, что звезды находятся в движении относительно друг друга, и вся система не неподвижных звезд, наша галактика, вращается вокруг общего центра, так что про бездействие на дальних расстояниях следовало забыть.

Эйнштейн внес небольшие поправки в теорию Ньютона. Его расчеты на бумаге более точно соответствовали движению небесных тел. Тем не менее ему также требовалось объяснить, почему Вселенная не обрушивается и не сжимается. И Эйнштейн ввел в свою общую теорию относительности греческий символ лямбда (иногда его называют лямбда-член), который означал «в настоящее время неизвестно». Прошло менее десятилетия, и появилась «Вселенная Хаббла» – неожиданное решение проблемы: Вселенная не рушится под собственным весом, потому что она расширяется. То есть можно было обойтись без «божественного вмешательства» Ньютона и лямбды Эйнштейна.


Альберт Эйнштейн и Эдвин Хаббл в обсерватории Маунт-Вильсон

В 1931 году Эйнштейн отправился в обсерваторию Маунт-Вильсон на северо-востоке Пасадены и познакомился с Хабблом. Изучив данные по расширению, Эйнштейн отказался от своей лямбды. В дальнейшем физики со склонностью к философствованию пришли к пониманию проблемы космологии. Она состояла не в предложении сверхъестественной причины («божественного участия»), не в нелогичном следствии (отсутствие действия на расстоянии), а в предположении о статичности Вселенной. Даже Эйнштейн предполагал, что Вселенная со временем не меняется. Но Вселенная снова оказалась не тем, чем казалась! Она не была статичной. Она расширялась, и скорость расширения, по крайней мере в настоящее время, превышает скорость действия силы тяжести.

А что будет дальше? Мы принимаем, что Вселенная расширяется, она заполнена материей, и эта материя притягивает другую материю с помощью силы тяжести, поэтому расширение должно замедляться. Вопрос о том, почему Вселенная не рушится, больше не стоял. Вставал другой: а когда-нибудь вообще придет конец Вселенной?


Джеймс Чедвик, британский физик, открывший нейтрон и фотоядерную реакцию (1981–1974)

Еще со времен открытия Хабблом расширения Вселенной астрономы знали, как измерять замедление расширения, по крайней мере, в принципе. Хаббл использовал соотношение между периодом пульсации цефеид и абсолютной яркостью переменной звезды (чем дольше период, тем ярче переменная звезда), открытое Генриеттой Суон Ливитт, для определения расстояний до ближайших галактик. Он также использовал красное смещение для этих галактик как эквивалент их скоростей, когда они удалялись от нас. Построив график этих расстояний и скоростей, Хаббл пришел к выводу, что они прямо пропорциональны друг другу: чем больше расстояние, тем выше скорость. Чем дальше галактика, тем быстрее она удаляется. Но расширяется ли Вселенная на одной и той же скорости? У Хаббла получилась прямая линия под углом 45 градусов, и если скорость расширения Вселенной постоянна, она должна оставаться такой, отражая расстояния, видимые в телескоп.

Но Вселенная заполнена материей, и материя притягивается к другой материи, так что расширение не может быть единообразным. Галактики нарушат прямую линию Хаббла. И то, насколько они отклоняются от прямой линии, скажет, насколько они ярче в этом конкретном красном смещении, чем были бы, если бы Вселенная расширялась на постоянной скорости. А то, насколько они ярче, подскажет, насколько замедляется расширение.

Требовалось и дальше составлять графики соотношения расстояния и скорости. Для оси скорости ученые все еще могли использовать красное смещение, однако с расстоянием возникли проблемы. Переменные звезды видны только в относительно близких галактиках. Для наблюдений на дальние расстояния астрономам требовался другой источник света со стандартной яркостью, небесные тела, которые можно поместить в закон Ньютона.


Обсерватория на горе Паломар, середина 1930-х

С весьма интересным предложением выступил уже упоминавшийся Фриц Цвикки, который изучал взаимодействие галактик и нейтронные звезды и вместе с немецким астрономом и астрофизиком Вальтером Бааде (1893–1960) предположил, что они являются остатками взрывов сверхновых. Ученые пришли к выводу, что при определенных обстоятельствах в центре звезды может произойти цепь ядерных реакций – и произойдет схлопывание звезды. Схлопывание будет происходить на скорости 40000 миль в секунду, создаст сильнейшую ударную волну, которая приведет к взрыву внешних оболочек звезды. Ультракомпактная звезда будет составлять не более 60 миль в диаметре и состоять из нейтронов Чедвика (в то время нейтроны называли таким образом в честь человека, который открыл нейтрон – Джеймса Чедвика, удостоенного Нобелевской премии по физике в 1935 году как раз за это открытие).

К этому времени астрономы уже определили класс звезд, которые внезапно начинали светиться ярче, затем тускнели, это явление получило название «нова» или «новая звезда», потому что внезапное более яркое свечение могло означать, что она новая для нас. Цвикки и Бааде решили, что схлопывающиеся звезды заслуживают отдельного названия – сверхновые. Цвикки тут же занялся поиском сверхновых, спроектировал 460-миллиметровый телескоп, который стал первым на горе Паломар астрономическим инструментом, а газеты и журналы на всей территории США рассказывали о том, сколько «звездных самоубийств» ему удалось обнаружить.

Тем временем Бааде предположил, что сверхновые, возможно, могут использоваться как «стандартные свечи», поскольку относятся к тому же классу объектов, что и другие звезды, однако должно пройти какое-то количество лет перед тем, как в распоряжении ученых появятся необходимые данные.

Проект «Сверхновые для космологии»

Ожидание затянулось на полвека. Для организации Центра астрофизики частиц Национальный Фонд содействия развитию науки в 1988 году выделил Калифорнийскому университету 6 млн долларов. Этот Центр начал использовать различные подходы к раскрытию тайны темной материи. Один из них – обнаружение частиц темной материи в лаборатории. Другой – поиск темной материи в космосе. Третья группа ученых исследовала темную материю на основе имеющихся теорий. Четвертая попыталась определить, сколько темной материи во Вселенной, и сколько вообще материи.

Группа под руководством Сола Перлмуттера и Карла Пеннипакера (первого официального руководителя группы) работала над космологическим проектом «Сверхновые», который также называется «Сверхновые для космологии» или «Космологический проект по изучению сверхновых». Его основной целью было определение космологических параметров Вселенной по наблюдениям далеких сверхновых типа Ia. Дело в том, что сверхновые типа Ia обладают замечательным постоянством в максимуме блеска и поэтому их можно использовать в качестве «стандартных свечей» – объектов, истинная мощность излучения которых известна, и следовательно, их можно применять для точных оценок расстояний. Если пронаблюдать кривую блеска далекой сверхновой и найти ее видимую звездную величину в момент максимума блеска, то, сравнив эту величину с истинной светимостью, можно легко определить расстояние до звезды. С другой стороны, расстояние до этой же звезды можно оценить по ее красному смещению и по задаваемой космологической модели. Сопоставив данные для множества сверхновых в широком диапазоне, можно оценить основные параметры Вселенной – значение постоянной Хаббла, плотность вещества, кривизну пространства.

Что такое сверхновая? Можно сказать, «сверхновая звезда» или «вспышка сверхновой». Это явление, в ходе которого звезда резко меняет свою яркость на 4–8 порядков, то есть десятков звездных величин, затем происходит сравнительно медленное затухание вспышки. Оно происходит в конце эволюции некоторых звезд и сопровождается выделением огромной энергии. Это природный катаклизм. Сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло, а излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Предлагалось и предлагается много сценариев, приводящих к подобным катаклизмам. Сверхновой дается название, которое составляется из букв SN (supernova – сверхновая на английском), после которых ставят год открытия, а потом одно– или двухбуквенное обозначение. Первые 26 сверхновых текущего года (то есть открытых в текущем году) получают однобуквенные обозначения из заглавных букв от A до Z (буквы английского и латинского алфавита). Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab… az, ba, bb… bz и так далее. Неподтвержденные сверхновые обозначают буквами PSN (possible supernova – возможная сверхновая) с небесными координатами.

Но для оценки параметров Вселенной вначале сверхновую нужно открыть (это можно сделать и на небольшом телескопе, так как в максимуме блеска она может затмить излучение целой галактики), потом получить ее спектр, убедиться, что она относится к нужному типу, и построить кривую блеска, чтобы с хорошей точностью оценить ее блеск в максимуме. Однако для дальнейшей работы требуются уже крупные телескопы. Но дело в том, что время работы на крупных телескопах, количество которых весьма ограничено, распределено на полгода, а то и на год вперед. Никто не может заранее сказать, когда вспыхнет та сверхновая, для изучения которой понадобится крупный телескоп. Блеск сверхновой нарастает очень быстро – если повезет, то до максимума блеска у наблюдателей есть лишь 1–2 недели.

Решение проблемы с крупными телескопами предложил Сол Перлмуттер. Поскольку Луна делает невозможными наблюдения слабых далеких объектов, начинать работу следует вскоре после новолуния. Относительно небольшие телескопы, которые имелись в распоряжении группы практически в любое время, использовались для получения снимков нескольких десятков участков на небе, причем для увеличения числа объектов следовало наблюдать далекие скопления галактик. Затем, в начале следующего новолуния, эти области снова наблюдали и, используя имеющуюся аппаратуру, сравнивали изображения и выделяли появившиеся за это время точечные объекты.

После исключения возможных дефектов изображений и следов космических частиц остаются кандидаты в сверхновые звезды. Эти кандидаты тут же исследуют на крупном телескопе, время работы на котором было заранее заказано на нужные даты. Такой подход позволяет почти гарантированно открывать вновь возникшие сверхновые, причем, чем больше галактик попало в исследуемую область неба, тем больше вероятность открыть сверхновую. Группа под руководством Перлмуттера успешно использовала эту методику.

Вначале они работали на Канарских островах, ведя наблюдения с помощью двух телескопов, 2,5-метрового и 4,2-метрового, и открыли самую далекую на тот момент сверхновую. В дальнейшем поиск сверхновых производился на 4-метровых телескопах в Австралии и в Чили, а спектральные наблюдения – на одном из 10-метровых телескопов-близнецов в обсерватории на Гавайях. В 1994 году у Перлмуттера уже были результаты наблюдений семи открытых его группой далеких сверхновых. С такими результатами стало легче получать время на крупных телескопах.


Эрнест Лоуренс, американский физик-ядерщик (1901–1958)

Но в Национальной лаборатории в Беркли над раскрытием тайны темной материи работали и другими методами. В конце 1920-х годов физик Эрнест Лоуренс, в честь которого лаборатория была названа, придумал ускоритель частиц, в котором частицы выстреливались не по прямой линии, как в линейных ускорителях, а двигались кругами. Изобретение получило официальное название циклотрон, и неофициальное – «карусель для протонов».

Диаметр первого циклотрона составлял 13 см и его легко могли установить в любой физической лаборатории. В 1940 году диаметр циклотрона достиг уже 4,7 м. Одним из самых известных ученых, работавших в этом направлении и оказавших большое содействие Перлмуттеру, был Луис Альварес, физик-экспериментатор, которого интересовали ускорители частиц, физика элементарных частиц, атомная и ядерная физика, оптика, радиолокация и многое другое. Он – лауреат Нобелевской премии по физике, но широкой общественности скорее известен другими своими достижениями, хотя и сделанными с помощью физики. Например, покадровый анализ так называемого фильма Запрудера – любительской съемки в Далласе в день убийства Джона Кеннеди.

Альварес хотел разобраться, мог ли президента в самом деле убить один человек одним выстрелом, и оказалось, что да. Он участвовал в экспедиции в Египет и при помощи космических лучей попытался выяснить, существуют ли еще ненайденные потайные комнаты в пирамиде Хефрена. В 1980 году он вместе со своим сыном Уолтером, геологом, предложил метеоритную гипотезу исчезновения динозавров. Именно благодаря динозаврам началась совместная работа Альвареса, Ричарда Мюллера, его бывшего аспиранта, и Сола Перлмуттера, который, в свою очередь, был аспирантом Мюллера.


184–дюймовый циклотрон Лоуренса в радиационной лаборатории Беркли, 1942

Альварес с сыном заявили, что динозавры исчезли 65 млн лет назад после того, как в результате падения кометы или астероида на Землю (хотя теория называется метеоритной) нарушилась экосистема на всей планете. Но в 1983 году группа палеонтологов обнаружила свидетельства массового исчезновения видов с определенной цикличностью: каждые 26 млн лет. На следующий год Мюллер высказал предположение о существовании парной звезды у нашего Солнца – Немезиды. Каждые 26 млн лет (27 – по другой версии) Немезида, которая движется по очень сильно вытянутой орбите, подходит относительно близко к Солнцу, и оказываемое ею гравитационное влияние притягивает кометы из самых дальних концов Солнечной системы на орбиты ближайших к Солнцу планет, одной из которых является Земля. Это вызывает глобальные катастрофы каждые 26 или 27 миллионов лет, а они соответствуют графику массовых вымираний на нашей планете. Эту идею можно считать вполне разумной.

Изучение звезд, подобных Солнцу, показало, что примерно 84 % являются частями бинарных систем, а это означает, что если Солнце – одиночная планета, не имеющая «компаньонки», то это аномалия. Мюллер поручил своему аспиранту Перлмуттеру поиск Немезиды, которую в средствах массовой информации стали также называть Звездой смерти. В 1986 году Перлмуттер завершил диссертацию, которая называлась «Астрометрический поиск звездного компаньона Солнца».


Луис Альварес, американский физик-экспериментатор с очень широкой сферой научных интересов (1911–1988)

Для нас также важно то, что Альварес заинтересовался программированием телескопов, так называемой «автоматической астрономией» и поиском сверхновых после того, как прочитал статью о том, что один его знакомый, Стирлинг Колгейт (1925–2013), наследник бизнеса по производству зубной пасты, но физик по собственному выбору, установил автоматизированный телескоп в пустыне штата Нью-Мексико. Идея автоматизированного наблюдения за сверхновыми принадлежит Альваресу. Альварес, Мюллер и Перлмуттер неоднократно работали вместе на одном и том же телескопе (пусть и по разным проектам), а также на других инструментах, в создании которых участвовал Перлмуттер. В 1984 году группа, работавшая над поиском сверхновых в Беркли, стала называться БАСС (BASS), английское сокращение расшифровывается как «команда, занимающаяся автоматическим поиском сверхновых в Беркли». БАСС открыла первую сверхновую 17 мая 1986 года, так что ко времени начала работы по проекту «Сверхновые для космологии» в 1988 году они все давно и хорошо знали друг друга.

Группа, занимавшаяся поиском сверхновых, в процессе работы совершила несколько изобретений, которые оказались полезны для охоты на сверхновые. Первым из них был оптический прибор под названием компаратор, который обеспечивал быстрое переключение между двумя снимками галактики, сделанными с разницей в несколько недель. При использовании компаратора членам группы приходилось полагаться на свои глаза. Однако ему на смену быстро пришли новые компьютерные технологии. Например, одна такая технология позволяла астрономам убрать весь свет из первого снимка, а потом удалить тот же свет из второго, более позднего. Если какое-то свечение на втором снимке оставалось, компьютер подавал сигнал, и тогда уже живой человек принимался за изучение данных. Иногда это были астероиды, кометы, переменные звезды, иногда на инструмент попадал космический луч, но порой свечение вызывала взрывающаяся звезда, выделявшаяся на фоне десятков или сотен миллиардов других звезд, то есть сверхновая.

В 1981 году предсказывали, что астрономы будут открывать примерно по сотне сверхновых в год, но это оказалось слишком оптимистичным предположением. Сверхновые, которыми занималась группа БАСС, находились относительно близко, поэтому не подходили для ответа на вопрос, поставленный в 1988 году. Нельзя определить изменения в скорости расширения Вселенной, пока астрономы не найдут «стандартные свечи» в галактиках, находящихся значительно дальше взятой для примера Хабблом, и чем дальше, чем лучше. То, насколько эти сверхновые – и поэтому их галактики – отклоняются от прямой линии Хаббла, даст астрономам скорость «торможения Вселенной», то есть покажет, как замедляется ее расширение.

Работая в группе БАСС Пеннипакер и Перлмуттер занялись автоматическим поиском сверхновых. Таким образом в 1986 году были открыты еще две сверхновые и одна год спустя. Но вставал вопрос, возможно ли проводить автоматический поиск сверхновых на значительных расстояниях с точки зрения космологии? Мюллер считал этот проект преждевременным, с другой стороны, это был человек, много лет работавший рядом с Луисом Альваресом, обладателем колоссального воображения, а сам он был готов рискнуть своей репутацией в научных кругах, занимаясь поиском Звезды смерти. В результате он дал свое согласие и не прогадал: Центр астрофизики частиц получил миллионы долларов на проведение исследований от Национального Фонда содействия развитию науки.

Отмечу, что хотя официально поиск сверхновых был предложен Ричардом Мюллером и Карлом Пеннипакером, поиск судьбы Вселенной с самого начала связан с именами Перлмуттера и Пеннипакера.

В Центр астрофизики частиц и группу по поиску сверхновых также был приглашен Герсон Голдхабер (1924–2010). Его семья покинула Германию до начала Второй мировой войны, он жил в Каире, Иерусалиме, затем перебрался в США, где защитил диссертацию в Вашингтонском университете. В Беркли он работал с 1953 года, занимался физикой частиц, участвовал в создании Беватрона и сотрудничал со многими учеными, которые в дальнейшем стали нобелевскими лауреатами.

Сверхновые оставались привлекательными потенциальными «стандартными свечами» по ряду причин. Они достаточно яркие, чтобы быть видимыми из самых удаленных участков космоса, а это означает, что астрономы могут использовать их для глубокого исследования истории Вселенной. И «действуют» они во временных рамках, доступных для работы одного человека – это не миллионы лет, яркость усиливается и спадает в течение всего нескольких недель, в отличие от большинства астрономических явлений, например формирования Солнечной системы или скоплений галактик. Астрономы могут фактически наблюдать за «жизнью» сверхновой.

Но есть и проблемы их наблюдения. Сверхновые встречаются редко, нет никакой системы или схемы их появления – неизвестно, когда и куда смотреть, все происходит очень быстро. В нашей галактике Млечный Путь сверхновые появляются в среднем один раз в сто лет. Так что астрономам, занимающимся сверхновыми, приходится наблюдать за большим количеством галактик. И при обнаружении сверхновой действовать нужно быстро, о чем я уже говорил выше.


Сол Перлмуттер, американский астрофизик (род. в 1959)

Группа Перлмуттера и Пеннипакера столкнулась и с чисто техническими проблемами. Основная работа велась в Австралии, где они получили доступ к нужному телескопу. Но компьютеры там были недостаточно мощными для целей проекта, не было широкополосного Интернета, поэтому данные отправлялись в аэропорт Сиднея, там кто-то из группы строчил сотню бумаг и отправлял груз в Сан-Франциско. В США представитель Центра тоже заполнял формуляры, получал груз и вез в Беркли. На одну доставку с места на место уходило двое суток. Потом еще два дня физики в Беркли искали кандидатов на сверхновые и еще день изучали карты звездного неба, на которых отмечены все известные объекты в этом участке неба, – чтобы проверить, действительно ли обнаружена сверхновая. Пять дней – это невероятно долго, если имеешь дело с быстро исчезающим объектом. В дальнейшем группе помогли специалисты из НАСА – они взяли на себя передачу данных из Австралии.

Но за два с половиной года работы группа Пеннипакера и Перлмуттера не обнаружила ни одной сверхновой. Каждые несколько месяцев поиск сверхновых следовало как-то оправдывать, как и траты немалых средств, выделявшихся на это. Отчет принимал внутренний Консультативный совет Центра астрофизики частиц. После того как Пеннипакер (руководитель группы на тот момент) израсходовал лишние средства, а надежды покрыть их из следующего транша растаяли, встал вопрос о новом руководителе. Следующей кандидатурой стал Сол Перлмуттер. Этот человек отличался настойчивостью, умением убеждать и невосприимчивостью к отказам и оскорблениям. Ответ «нет» он не принимал. Кто-то смеялся над ним, у кого-то он вызывал злость и ярость. Но обычно он получал то, что требовалось.

Перлмуттер стал руководителем группы – и вскоре нашлась сверхновая, правда, повода для радости еще не было: данные не имеют значения для космологии, пока не определено, насколько далеко находится сверхновая, то есть ее красное смещение. Для этого требовалось провести спектроскопический анализ. Астрономы четырех обсерваторий в разных точках Земли, имевших необходимое оборудование, двенадцать раз соглашались провести необходимые наблюдения и помочь команде. В одиннадцати случаях это не позволили погодные условия, в двенадцатый раз сломалась аппаратура. Сол Перлмуттер сказал тогда, что их группа напоминает золотоискателей, которые блуждают по пустыне в поисках драгоценного металла, наконец находят его, но золотая пыль сыплется у них между пальцев, и ее уносит ветер.

Помощь, которую уже не ждали, пришла от британца Ричарда Эллиса, который искал сверхновые вместе с датчанами. С ним и связался Перлмуттер. Эллис согласился провести наблюдения 29 августа 1992 года. Старые данные по красному смещению, обнаруженные датчанами, составляли 0,31, что примерно соответствует 3,5 млрд лет назад. Новые данные по красному смещению составили 0,458 или 4,7 млрд лет назад. Группа Перлмуттера осталась в игре.

Типы сверхновых

В этой книге нельзя не упомянуть Роберта Киршнера, который занимается изучением сверхновых с 1970 года и считается учителем уже нескольких поколений специалистов. Он работает в Гарвард-Смитсоновском центре астрофизики и имеет большой опыт «выбивания средств» из Национального Фонда содействия развитию науки и бронирования времени работы на лучших телескопах мира. К нему обращаются из редакций научных журналов для рецензирования статей на тему сверхновых и написания комментариев к ним.

Именно он комментировал статью датчан по предварительным результатам наблюдений (в журнале Nature), а также статью Перлмуттера с соавторами об обнаруженной в 1992 году сверхновой в «Астрофизическом журнале». Он обладает огромным опытом, знаниями и великолепным чувством юмора. Но у этого человека есть свои принципы – в том, что касается исследования сверхновых. Например, если вы хотите заниматься сверхновыми, вы должны знать спектроскопию – уметь провести анализ спектра излучения астрономического объекта, чтобы определить его химический состав, а также направление его движения. Вы должны знать фотометрию – уметь распознать яркость объекта, что часто трудно и утомительно. Вы должны уметь объяснить пыль или в галактике сверхновой, или на пути между сверхновой и наблюдателем (иногда пыль есть, иногда нет. Если она присутствует, то свет, идущий от сверхновой, будет более тусклым или более красным. А если вы не знаете, в какой степени пыль загрязняет свет, то вашим данным нельзя доверять).


Роберт Киршнер, американский астроном, специалист по сверхновым (род. в 1949)

К группе из Беркли Киршнер относился с особым скептицизмом и считал, что работу они выполняют из рук вон плохо. Физикам, специалистам по физике частиц, не стоит заниматься астрономией, в особенности если они относятся к ней как к хобби, а не к науке, которой другие люди посвящают свою жизнь. Ричард Мюллер, искавший Немезиду, а потом перепоручивший это Перлмуттеру, по мнению Киршнера, только отнимал у других время работы на телескопе. Даже если бы он открыл звезду-компаньонку Солнца, это не привело бы ни к каким серьезным последствиям, так что это можно считать капризом.

Затем в 1989 году Мюллер, Пеннипакер и Перлмуттер заявили о своем выводе относительно сверхновой 1987А – первой сверхновой, которую можно было наблюдать невооруженным глазом. Ученые заявили, что она оставила после себя пульсар, нейтронную звезду, совершающую сотни вращений в секунду. Заявление привлекло внимание астрономов, но оказалось ошибочным. На это были потрачены сотни тысяч долларов, которые могли бы пойти на дюжины более скромных, но имеющих практическое значение проектов.

Киршнер считал, что для начала следует ответить на вопрос: а стоит ли искать далекие сверхновые? Они действительно могут служить как «стандартные свечи»? Эдвин Хаббл обнаружил доказательства расширения Вселенной, а последние двадцать лет жизни работал, предполагая, что галактики могут быть «стандартными свечами», хотя они не являются полностью единообразными. Алан Сандадж, протеже Хаббла и его преемник в обсерватории Маунт-Вильсон, и швейцарский астроном Густав Тамманн считали, что если сами галактики недостаточно единообразны, то единообразными могут быть скопления галактик, а если точнее – самая яркая внутри скопления. Но это предположение тоже было неправильным из-за недостаточного понимания механики галактик. Некоторые галактики становятся более тусклыми с возрастом, когда умирают их звезды, другие наоборот, с возрастом становятся ярче, поскольку соединяются с меньшими галактиками. Сандадж и Тамманн не могли их отличить.


Редкое космическое явление – рождение нейтронной звезды на месте взрыва сверхновой

Ко времени начала работы группы из Беркли астрономы уже определили, что сверхновые могут относиться к двум классам, возможно, больше. Один класс предсказали Цвикки и Бааде – когда в результате рождается нейтронная звезда. Цвикки предположил, что нашел их в 1930-е годы при изучении «самоубийств звезд». Однако в 1940 году германо-американский астрофизик Рудольф Минковский (1895–1976) изучал спектр сверхновой в Маунт-Вильсон, и результаты анализа оказались отличными от спектроскопического анализа сверхновой Цвикки. Сверхновая Минковского показала присутствие водорода, а у Цвикки он отсутствовал. То есть это определенно были различные типы сверхновых.


Белые карлики не уменьшаются, достигнув этого состояния. Чем больше масса белого карлика, тем меньше его радиус

С тех пор астрономы считают, что есть тип сверхновых, являющийся результатом цепного ядерного процесса в звезде, масса которой в несколько раз превышает массу Солнца, что ведет к схлопыванию звезды со скоростью 40 000 миль в секунду. Этот тип наблюдал Минковский в 1940 году. Другой тип – тот, который наблюдал Цвикки, – начинает свое существование как богатая водородом звезда типа нашего Солнца. По мере старения Солнце будет сбрасывать своей внешний водородный слой, а внутренняя часть – сжиматься под давлением гравитационных сил. В конце останется только «сердцевина» – этакий сморщенный шар, который называют белым карликом, с массой Солнца, упакованной в размеры Земли. Если у такого белого карлика имеется звезда-компаньон (а у большинства звезд в нашей галактике они есть), на этом этапе карлик может начать перекачивать или отсасывать газ с другой звезды.

В 1930-е годы американский астрофизик, физик-теоретик и математик индийского происхождения Субраманьян Чандрасекар (1910–1995), лауреат Нобелевской премии по физике 1983 года, рассчитал, что когда звезда этого типа достигает определенного размера – 1,4 массы Солнца – она начинает схлопываться под собственным весом. Гравитационное давление дестабилизирует ее химический состав, что ведет к термоядерному взрыву.

Если смотреть в телескоп с Земли, то оба типа будут выглядеть одинаково, даже если в одном случае происходит схлопывание, а в другом – взрыв. Разницу показывает спектроскоп – есть водород или нет водорода, тип II или тип I. Астрономам единообразие сверхновых типа I говорило о том, что это может быть «стандартная свеча». Поскольку все эти сверхновые начинались как одиночные звезды, белые карлики, которые достигли одной и той же массы, которую вывел Чандрасекар, то, возможно, их взрывы имеют одну и ту же яркость. Однако в 1980-е годы четкое различие между типом I и типом II стало размытым.

Спектроскопический анализ трех сверхновых в 1983, 1984 и 1985 годах показал, что они состоят из больших количеств кальция и кислорода, как должно быть внутри массивных звезд, заканчивающих свою жизнь как сверхновые типа II, но в них нет водорода, как у белых карликов, которые умирают как сверхновые типа I. Некоторые астрономы, включая Киршнера, высказали предположение, что видят третий тип сверхновой, по сути гибрид первых двух. В данном случае происходит схлопывание уже одной середины, которая утратила внешнюю оболочку, – схлопывание без водорода. Этот тип назвали тип Ib, а изначальный тип I, где происходит термоядерный взрыв без водорода, теперь стали называть тип Iа.

13 апреля 1991 года пять астрономов-любителей в разных точках планеты обнаружили сверхновую, получившую название 1991Т. 9 декабря астроном-любитель из Японии открыл сверхновую, обозначенную 1991bg. Спектроскопический анализ проводили уже профессиональные астрономы, включая Киршнера (он занимался 1991Т 16 апреля), и этот анализ показал, что обе сверхновые относятся к типу Iа. Но их яркость очень сильно различалась. Сверхновая 1991Т была гораздо ярче, чем обычно сверхновые типа Iа на таком расстоянии (о неправильном расчете расстояния можно даже не говорить). Но эта сверхновая оказалась в 10 раз более тусклой, чем сверхновая, которую наблюдали в той же галактике в 1957 году.

Астрономы стали подозревать, что даже если все сверхновые во Вселенной относятся к типу Ia, Ib или II, сами типы – это, скорее, семьи. Сверхновые одной семьи имеют общие черты, но это скорее сестры, а не клоны. Для астрономов, которые надеялись считать сверхновые типа Iа стандартными свечами, проблема встала очень серьезно. Это нельзя было игнорировать. И группа из Беркли не игнорировала. Они признали, что отдельные сверхновые типа Iа не встраиваются в общую модель, но подавляющее большинство таких сверхновых поразительно похожи. Однако они так и не знали, является ли тип Iа «стандартными свечами». Их раскритиковал Киршнер – ведь они пока не обнаружили никакую сверхновую, у них были проблемы с фотометрией и они не могли объяснить пыль. В 1992 году группа открыла свою первую сверхновую. Киршнер опять их раскритиковал в «Астрофизическом журнале» – пыль так и не объяснили и по-прежнему не могут сказать, является ли тип Iа стандартными свечами. «Они так ничего и не знают о космологии», – заявил он. Нельзя предполагать, что взрывающиеся белые карлики – это «стандартные свечи». И они точно не являются идеальными «стандартными свечами».

Пополнение каталога Вселенной


Поделиться книгой:

На главную
Назад