Достаточно слегка щелкнуть пальцем по когереру, как сопротивление опилок, заключенных в его трубке, снова отмечает, что ток идет через опилки беспрепятственно… Это странное вмешательство искр индукционной катушки было большой помехой для исследований Бранли, и он стал проводить свои опыты лишь в те дни, когда соседний кабинет пустовал и не шипел разрядник катушки Румкорфа.
Закончив свои исследования над сопротивлением электрической цепи, над созданием своего «радиокондуктора», Бранли в 1891 году опубликовал их результаты в журнале Французской академии наук. В своей статье он описал и свою трубку для изучения сопротивления таких несовершенных проводников, как металлические опилки. Будучи добросовестным ученым, в конце статьи он предупредил своих коллег, которые надумают заняться исследованием сопротивления металлических опилок, о помехах, встреченных им во время своих опытов. Он писал: «На сопротивление металлических опилок влияют электрические разряды, производимые на некотором расстоянии от них. Под действием этих разрядов опилки резко меняют свое сопротивление и проводят ток».
Эти строчки, совершенно неожиданно для самого Бранли, увековечили его имя на страницах истории техники. Английский физик Оливер Лодж долго занимался изучением природы электрических колебаний. Как и Попов, он неоднократно воспроизводил опыты Герца, совершенствуя его приборы и добиваясь увеличения дальности приема электромагнитных волн.
Лодж построил оригинальный «сферический вибратор» для излучения электромагнитных волн. В этом вибраторе было два искровых промежутка – между маленькими латунными шариками и большим полым медным шаром. Свой вибратор Лодж заключил в металлический ящик с круглым отверстием. Одновременно он придумал целый ряд резонаторов. Особенно чувствительный оказался резонатор, состоявший из железной спирали, касавшейся свободным концом алюминиевой пластинки. Этот резонатор, однако, быстро расстраивался, и Лодж заменил его другим, более грубым, но зато отличавшимся точной настройкой. Этот резонатор состоял из согнутой алюминиевой проволоки, заключенной в костяную трубку, которая имела два продольных разреза: настройки производились микрометрическим винтом.
Приборы Лоджа были незаменимы для лабораторных исследований явлений, вызываемых электромагнитными волнами, но не годились для демонстрирования на лекциях.
Однажды, просматривая журнал Французской академии наук, Лодж находит сообщение об опытах Бранли. Он внимательно вчитывался в описание когерера, изготавливает этот прибор и включает его в схему резонатора.
Действия когерера превосходят все ожидания. Если раньше опыты Герца едва удавались при установке вибратора и резонатора на одном и том же столе, то теперь резонатор отзывается на волны вибратора уже на расстоянии нескольких метров.
Лодж, как и Герц, и Бранли, вовсе не думал о применении своего прибора для телеграфирования без проводов. Лодж не пошел дальше использования своего прибора на лекционных опытах. Являясь кабинетным ученым, Лодж не смог применить достижения науки на практике.
Попов изобрел новую схему автоматического восстановления чувствительности когерера. В цепь с когерером было включено реле, обеспечивавшее подключение исполнительного устройства – электрического звонка, молоточек которого бил по трубочке, встряхивая опилки и восстанавливая сопротивление когерера после приема каждой посылки затухающих электромагнитных колебаний. В зависимости от замыкания телеграфного ключа прерывателя посылка могла быть короткой или продолжительной. Задача обеспечения беспроводной связи была принципиально решена.
Волшебные опилки у Попова. Принимаем грозу!
Была ранняя весна 1895 года. В Минном классе шли обычные занятия. Кроме преподавательской работы, Попов продолжал свои опыты. Он тщательно следил за развитием науки в других странах. В одном из номеров английского журнала «Электришен» он прочитал статью Оливера Лоджа о трубке Бранли.
– Это то, чего нам до сих пор недоставало! – заявил Александр Степанович. – Маленькая стеклянная трубка с железными опилками… Да, этой малютке обеспечено великое будущее! – Он раскрыл шкаф, достал оттуда отрезок стеклянной трубки и банку с железными опилками.
– Металлические пробки!.. Трубку следует заткнуть металлическими пробками… – шептал он, просматривая описание когерера.
– Что ж, займемся токарным ремеслом! – предложил Рыбкин и уже направился к небольшому токарному станку, стоявшему в другой комнате.
– Постойте, Петр Николаевич, – остановил его Попов. Александру Степановичу хотелось поскорее испытать когерер, и он решил на первый раз для быстроты заменить пробки чем-нибудь таким, что было под рукой.
– Дайте-ка разновесы, – попросил он у Рыбкина. Не прошло и минуты, как когерер был готов. Двадцатиграммовые гирьки оказались прекрасными пробками для трубки с опилками. Приемный прибор Лоджа был очень простым. Он состоял из когерера, пары гальванических элементов и небольшого гальванометра. Все это было последовательно соединено проводником.
Николай Петрович Рыбкин писал в своей статье «Воспоминания об изобретателе беспроволочного телеграфа Александре Степановиче Попове»: «Я до сих пор помню, с каким волнением показывал мне Александр Степанович номер журнала The Electrician, в котором была помещена статья Лоджа, где он описывал свои знаменитые опыты по применению открытия Бранли к устройству когерера для обнаружения при помощи его электрических колебаний. В этой области, в которой работал А. С. десять лет, сделано было ценное достижение. А. С. сейчас же принимается воспроизводить, и в процессе этой работы создает свою знаменитую схему первой приемной станции, положившей начало беспроволочному телеграфу».
Пока Попов соединял все части прибора в общую цепь, Рыбкин установил на одном из многочисленных столиков физического кабинета вибратор.
И вот начались опыты. Петр Николаевич включил вибратор. Стрелка гальванометра приемного аппарата резко отклонилась и застыла. Александр Степанович, находясь у приемника, слегка щелкнул по когереру пальцем. Стрелка рванулась к нулю, но потом снова метнулась в сторону и оставалась неподвижной до тех пор, пока Попов не встряхивал стеклянной трубкой.
Именно так обстояло дело во время опытов Бранли. Такой же примитивный способ изменения сопротивления опилок описал и Лодж.
Попову не нравилось щелкать пальцами по когереру после приема каждого сигнала. Лодж писал, что когерер можно приводить в равновесие также и механически – при помощи особого устройства, приводимого в действие часовым механизмом. Но и это не удовлетворяло Попова.
– Нет, нет, надо не только автоматизировать удары, но и сделать так, чтобы приемник приходил в равновесие вполне самостоятельно.
Попов задумался и стал ходить по комнатам физического кабинета, скользя взором по многочисленным приборам, которые были расставлены в больших стеклянных шкафах.
Вдруг он резко остановился и принялся рассматривать один из приборов с таким неподдельным интересом, будто видел его впервые, тогда как это был давно знакомый сильно потрепанный на лекциях обыкновенный гальванометр д'Арсонваля.
– Вот то, что нам нужно! – указал Попов на гальванометр.
Гальванометр д'Арсонваля отличается от других приборов такого рода тем, что вместо вертикальной имеет горизонтальную стрелку, которая укреплена на особой, горизонтальной же подвижной рамке.
Попов высыпал опилки из стеклянной трубки когерера на небольшой листок слюды, который положил на рамку гальванометра. Затем короткими отрезками мягкого звонкового проводника он включил эту щепотку опилок в цепь приемного устройства, по прежнему состоявшую из последовательно соединенных гальванометра, опилок и гальванической батареи.
– Опыты продолжаются, – спокойно, как на лекции, произнес Попов.
Рыбкин сразу же включил вибратор.
– Нет, Петр Николаевич, останьтесь у вибратора, – торопливо сказал Александр Степанович, едва Рыбкин сделал шаг в его сторону, чтобы взглянуть на работу нового приемника.
Попов волновался. Дрожащими руками он то снимал со слюдяного листка немного опилок, то снова подсыпал их.
– Ну теперь, кажется, все в порядке, – наконец облегченно произнес он. – Станьте, Петр Николаевич, у выключателя и слушайте мою команду… Включите!
Рыбкин включил вибратор.
– Выключайте!
Золотистая искра между шариками вибратора исчезла.
– Включайте!.. Выключайте!.. Включайте!..
Больше ничего не было слышно. Только эти два слова. Они следовали друг за другом то с такой быстротой, что Рыбкин едва успевал выполнять приказания, то между ними наступала длинная пауза.
Схема «прибора для обнаружения и регистрирования электрических колебаний», продемонстрированного А. С. Поповым в действии на заседании Физического отделения РФХО 25 апреля (7 мая) 1895 г.
Все это время Попов не спускал глаз с подвижной рамки гальванометра. Она металась из стороны в сторону. Но в этих на первый взгляд беспорядочных движениях чувствовалась определенная закономерность. Казалось, что гальванометр был живым существом и чутко прислушивался к приказаниям склонившегося над ним ученого. Качаясь, рамка еле слышно пощелкивала, и эти звуки были необычайно похожи на постукивание телеграфного аппарата, чертящего на узкой ленте точки и тире азбуки Морзе.
Попов механически повторял все те же слова: «Включайте… выключайте…». Его глаза, серьезные и спокойные, были устремлены на щепотку железных опилок. Вдруг в глазах засветилась радость.
Александр Степанович перенес приемник с одного места на другое. Попов определил, что сконструированный им прибор с автоматическим встряхиванием опилок безотказно принимает электромагнитные волны на расстоянии до 12 метров.
Уже одно это было большим достижением: приемник, построенный по схеме Лоджа, прекратил прием в 8 метрах от передатчика. В первый же день опытов с когерером Попову удалось не только обнаружить слабое место схемы Лоджа – необходимость самому встряхивать опилки, но и добиться полной автоматической работы приемника.
Наспех собранный прибор не удовлетворял еще Попова в полной мере, но принцип, положенный в его основу, казался ученому правильным. Поэтому он решил довольствоваться этим приемником, переключив все свое внимание на изучение и улучшение его основной части – когерера.
В декабре 1895 года Попов написал статью «Прибор для обнаружения и регистрации электрических колебаний», в которой подробно описал свои опыты с прибором Лоджа.
«Прежде всего я пожелал дать такую форму прибору с опилками, чтобы иметь возможное постоянство чувствительности. При этом… надо было испытывать такое расположение частей цепи, содержащей опилки, чтобы увеличить шансы образования нитей металла по линиям тока. Лучшие результаты получились в следующих комбинациях:
1) Внутри стеклянной трубки длиною около 7 сантиметров и диаметром около 1 сантиметра сквозь пробки натянуты две параллельные проволоки, не касающиеся между собой. Опилки насыпаны в трубку так, что они только немного ее заполняют…
2) Железные опилки, висящие на маленьком прямом магните в виде кисти, опирающейся на металлическую пластинку или чашку. В этом случае нити опилок уже образованы магнитными силами, и электрический разряд только дает им проводимость…
Во всех опытах как на величину, так и на постоянство чувствительности влияют размеры зерен металлического порошка в вещество его…»
Изготовленный А. С. Поповым «цепочечный детектор» для лекционных и учебных занятий
Далее подробно описываются свойства ряда металлов, влияющие на изменение сопротивления в когерере. Подводя итоги своих опытов, Попов пишет: «Ограничиваясь описанием этих опытов, я опускаю различные мои попытки устроить прибор с достаточным постоянством чувствительности при малом числе контактов (цепочки, комбинации, аналогичные микрофонам, и т. п.); в подобных формах приборы могут достигать чувствительности, значительно превосходящей трубки с опилками, но постоянства чувствительности я пока не мог добиться…»
Сад Минного офицерского класса, в котором А. С. Попов весной 1895 г. провел первые опыты со своими радиоприборами
Попов упорно работал над усовершенствованием когерера – этой основы его приемника. Однажды во время опытов он случайно увидел лабораторные весы, чашки которых были подвешены на тонких медных цепочках. В памяти встали картины далекого детства. Попов вспомнил о своем первом изобретении – электрическом будильнике – и о странном его поведении во время грозы. Теперь ему стало ясно, что будильник принимал электромагнитные волны, а цепочка ходиков была когерером. Попов снял одну цепочку с весов и включил ее в цепь приемника вместо когерера.
Приемник стал более чувствительным, чем с опилками, но, как пишет Попов в своей статье, ему не удалось добиться постоянства чувствительности цепочки.
Так наблюдения, произведенные в детстве, дали в руки ученого остроумный прибор для ясного объяснения одного из туманнейших вопросов первых лет радиотелеграфии…
После недель напряженной работы Попову удалось построить совершенно новый тип когерера. Приемник даже отдаленно не напоминал ни приборов Лоджа, ни тем более резонатора Герца. Это был совершенно новый, оригинальный приемный аппарат, тот аппарат, которому суждено было стать прообразом всех современных радиостанций. «Добившись удовлетворительного постоянства чувствительности при употреблении трубки с платиновыми листочками и железным порошком, я поставил себе еще другую задачу: добиться такой комбинации, чтобы связь между опилками, вызванная электрическим колебанием, разрушалась немедленно автоматически».
Получаемый сигналы приемника отмечал звоном электрического звонка. Своим громким звоном он привлекал в физический кабинет целую толпу вахтеров, дежуривших в разных помещениях Минного класса. Отставные матросы с удивлением смотрели на двух преподавателей, которые бегали по комнатам и кричали:
– Работает!
– И здесь работает!
На следующий день Попов и Рыбкин принесли целую гроздь детских воздушных шариков. С приемником они вышли в садик Минного класса.
– Устинов, принесите-ка, дружок, лестницу, – попросил Попов одного из вахтеров.
По этой стремянке Попов и Рыбкин забрались на крышу беседки, стоявшей в саду, и, привязав к воздушным шарам тончайшую проволоку, отпустили их.
Шары поднимались все выше и выше, а за ними тянулась золотистая нить проволоки, присоединенной к приемнику. Еще во время испытаний, проведенных накануне, когда оказалось, что новому приемнику тесно в здании и опыты пришлось перенести на улицу, Попов присоединил к когереру тонкий двухметровый медный стержень. Этот стержень был антенной.
Теперь свою антенну Попов решил поднять как можно выше и использовал для этого игрушечные воздушные шары.
Грозоотметчик А. С. Попова. 1895 г.
Попов знал, что есть еще одна «радиостанция», более мощная, чем его передатчик. Это были атмосферные разряды.
Неделю продолжались опыты за которыми следили любопытные кронштадтцы. Вдруг звонок залился звонкой трелью. До этого он издавал только слабые отрывистые звуки. Попов записал: «От 1 до 2 часов дня – сплошные звонки…»
Рыбкин получил из физической обсерватории, с которой он продолжал поддерживать связь, бюллетень погоды. Просмотрев его, выяснилось: в тот день, когда звонко заливался звонок, «…в атмосфере происходили грозовые разряды».
– Мы принимаем грозу! – сказал Рыбкин.
– В таком случае, Петр Николаевич, давайте переделывать прибор.
Изобретатели присоединили к приемнику регистрирующий аппарат. Перо заскользило по барабану, отмечая грозу, разразившуюся где-то невдалеке от Кронштадта.
Так получились первые радиотелеграфные записи. Так был изобретен «грозоотметчик» – приемник, принимавший единственную в то время в мире передающую радиостанцию – грозовые разряды атмосферы. Атмосферные разряды, которые теперь так мешают радистам, сослужили немалую службу в деле изобретения радио.
«Громовая машина» М. В. Ломоносова
До этого в 1752 году заряды электрического тока с небес принимал американский ученый и изобретатель Б. Франклин (Benjamin Franklin, 1706–1790). Для выяснения электрической природы молнии он на веревке запускал воздушные змеи в грозовые облака и обнаружил, что змей собирает электрические заряды. Фраклин нашел практическое применение своему открытие: он изобрел громоотвод.
Репродукция с иллюстрации М. В. Ломоносова из его доклада в Академии наук: стрелки показывают конвекцию в воздушной оболочке Земли, приводящую к образованию атмосферного электричества
Независимо от него в России великий русский ученый Михаил Васильевич Ломоносов (1711–1765) открыл электрическую природу грозовых разрядов в 1753 году. Тогда же он впервые заявил о тождественности искусственного и атмосферного электричества, происхождение которого он связывал с потоками воздуха, нисходящими от грозовых туч и восходящими обратно. В одном из своих опытов М. В. Ломоносов применял «громовую машину», состоящую из высоко поднятой на крыше дома «электрической стрелы» – проволоки, изолированно спущенной в лабораторию и соединенной там с конденсатором – подводящей электричество мерной линейкой, опущенной концом в стеклянный сосуд с медными опилками на дне. С подходом или во время грозы атмосферное электричество заряжало конденсатор, и при приближении к линейке металлического предмета или руки из нее выскакивали искры. 26 ноября 1753 года М. В. Ломоносов выступил в Российской императорской академии наук с докладом «Слово о явлениях воздушных, от электрической силы происходящих» (на русском языке). В современном понимании «электрическая стрела» М. В. Ломоносова вполне может считаться первой в мире антенной: она представляла собою изолированный высоко поднятый провод, издали улавливающий электромагнитные колебания атмосферных разрядов.
П. Н. Рыбкин и А. С. Попов
Ломоносов, как и Франклин, и не подозревал, что молния, эта грандиозная электрическая искра, излучает какие-то волны. Он сделал только первую попытку приоткрыть завесу над тайной происхождения молнии, и «электрическая стрела» сослужила ему в этом немалую пользу.
Опыты Ломоносова настолько заинтересовали ученый мир России, что Академия наук решила установить «премию в 100 червонных» за разрешение задачи: «сыскать подлинную электрической силы причину и составить точную ее природу». Ни в установленный срок, 1 июня 1755 года, ни позже эта задача не была решена. Лишь в наше время наука нашла «подлинную электрической силы причину» – движение электронов в атоме вещества.
За 140 с лишком лет, прошедших со времени опытов Ломоносова, наука об электричестве достигла большого расцвета, и Попов, конечно, прекрасно знал, что молния – это сильная электрическая искра, излучающая электромагнитные волны.