Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Gustavo Ernesto Pineiro

Наука. Величайшие теории: выпуск 30: Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Пер. с итал. — М: Де Агостини, 2015. — 168 с.

ISSN 2409-0069

© Gustavo Ernesto Pineiro, 2012 (текст)

© RBA Collecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Еженедельное издание

Введение

Когда в звездную безлунную ночь вдали от городских огней мы любуемся восхитительным зрелищем, в глубине души рождается тревожное чувство: насколько же мала наша планета в сравнении с бесконечностью!

Бесконечность — не только сложное математическое понятие. Дуализм бесконечного — того, что буквально «не имеет конца», — и его противоположности, конечного — того, что рано или поздно заканчивается, — вероятно, сопровождал человечество с тех самых пор, когда первый Homo sapiens задумался, есть ли предел у неба, можно ли достичь горизонта, действительно ли заканчивается наша жизнь или каким-то образом непрерывно продолжается.

Но бесконечность также способна вызывать головокружение и, согласно древнегреческому философу Зенону Элейскому, парализовать всю Вселенную. В VI веке до н.э. Парменид Элейский — некоторые историки считают его отцом западной метафизики — постулировал существование бытия, главная характеристика которого сводится к тому, что оно существует. Бытие существует, оно есть.

Отталкиваясь от этого, Парменид заключил, что бытие вмещает в себя весь мир, ибо будь в нем некий участок, где его нет, это означало бы, что бытия в нем не существует. Это является терминологическим противоречием, то есть такое невозможно. Следовательно, бытие вмещает в себя всю Вселенную. Другими словами, вся она, включая нас, составляет бытие. Бытие неизменно, оно не может меняться. Предположим, что оно перешло из состояния А в состояние В. В таком случае оно перестало существовать в состоянии А, а это невозможно, потому что бытие не может прекратить свое существование. Следовательно, бытие и вся Вселенная неизменны. Это означает, что хотя, как нам кажется, мы наблюдаем изменения и движение, на самом деле их не существует. Даже времени не существует: у бытия нет ни прошлого, ни будущего — только настоящее.

Ученик Парменида Зенон выдвинул целый ряд заключений, парадоксов. Как и его учитель, он утверждал: изменений и движения не существует. То, что мы видим, — заблуждение, в которое нас вводят органы чувств, а разум и логика в состоянии это доказать.

Во всех парадоксах Зенона так или иначе присутствует понятие бесконечности. В одном из них утверждается, что если мы бросим камень в дерево, растущее в одном метре от нас, вопреки увиденному камень никогда не попадет в него, более того, он так и останется у нас в руке.

Зенон рассуждал следующим образом: чтобы долететь до дерева, камень должен преодолеть расстояние в полметра, а до этого — четверть метра, а еще раньше — восьмую часть метра, шестнадцатую и так далее. Чтобы угодить в дерево, камню придется совершить бесконечное число переходов. Но невозможно выполнить бесконечное количество движений за конечное время. Поэтому, заключает Зенон, камень никогда не коснется дерева. Эти же рассуждения справедливы и для миллиметрового масштаба, и для тысячной доли миллиметра. Действительно, получается, что камень никогда не отделится от нашей руки. Таким образом, по Зенону, бесконечное позволяет показать, что Вселенная неизменна.

В IV веке до н.э. Аристотель, заложивший основы систематического изучения логики и науки в целом, написал трактат «Физика». Среди прочих вопросов в нем исследовалось и движение тел. Но сначала Аристотелю предстояло доказать, что движение вообще существует в действительности, а значит, опровергнуть доводы Парменида и Зенона.

Если бытие не может не существовать, то как оно способно изменять свое состояние, переставать быть? Аристотель говорит, что оно есть, но иногда оно состоит в потенции, а иногда — в действии. Когда ребенок вырастает и оказывается взрослым, он не перестает быть ребенком, ребенок — это взрослый в потенции, который становится взрослым в действии. Ребенок изменился, но не прекратил существовать. Зерно — это растение в потенции, белый лист — текст в потенции и так далее. Несколько веков спустя Микеланджело Буонаротти высказал похожую мысль: в глыбе мрамора уже содержится скульптура, и нужно только отсечь все лишнее. Так Аристотель совместил представление Парменида о бытии с возможностью изменения.

После того как было доказано, что бытие способно изменяться, как можно опровергнуть аргументы Зенона? Во всех его парадоксах предполагается, что пространство и время бесконечно делимы. В примере с деревом между деревом и рукой имеется бесконечное количество переходов. Тогда Аристотель сказал, что бесконечности не существует. Точнее, она существует только в потенции и никогда — в действии. Идея бесконечности в потенции подразумевает, что некое количество может возрастать сколько угодно, но все равно в итоге будет конечным, идея бесконечности в действии — что это количество на самом деле бесконечно. Это различие очень важное, и мы еще к нему вернемся. По Аристотелю, можно допустить наличие количества, которое возрастает неопределенным образом, но всегда будет конечным, однако нельзя принять идею действительно бесконечного количества. Допустимо разделить расстояние между рукой и деревом на десять, сто, тысячу частей или на любое конечное количество каких угодно единиц измерения, но нельзя утверждать, что оно делится на действительно бесконечное количество фрагментов.

Аристотель не ограничился постулированием несуществования актуальной бесконечности, он привел несколько аргументов в поддержку этого тезиса, которые мы рассмотрим далее. Тем не менее необходимо сказать, что аристотелевское отрицание актуальной бесконечности оказывало влияние на европейскую философию на протяжении двух тысячелетий.

Помимо силы доводов столь длительное господство его идеи объясняется двумя причинами.

Прежде всего, человеческий разум не в состоянии представить себе актуальную бесконечность, поэтому нам проще принять то, что на самом деле ее не существует. Мы скорее представим потенциальную бесконечность — количество, которое бесконечно возрастает, — но не актуальную бесконечность. Как выглядела бы, например, прямая действительно бесконечной длины? Нужно представить себе линию целиком (то есть то, что мы «видим» в воображении, не должно быть отрезком прямой), но при этом бесконечную. Однако наш разум неспособен создать такой образ. Мы можем представить линию, которая уходит за горизонт, и сказать, что она продолжается до бесконечности, но в таком случае мы «видим» прямую с длиной, «бесконечной в потенции», так как наше зрение охватывает только ее часть. Или же возьмем числа 0,1,2,3,4,5 и так далее. Представить этот ряд как действительно бесконечный значило бы представить все числа без исключений в одном списке, но при этом этот список не должен кончаться. Нашему разуму это не под силу.

Вторая причина, по которой аристотелевский подход к бесконечности имел такой успех, состоит в том, что, рассуждая о бесконечности как о реальности, нельзя не столкнуться с логическими противоречиями или прийти к странным выводам — как Зенон, заключивший, что изменений и движения не существует. Еще один пример относится к XVII веку, когда перед Галилео Галилеем возникли противоречия, впоследствии приведшие его к отрицанию актуальной бесконечности. В XIX веке чешский математик Бернард Больцано попытался развить теорию математической бесконечности, но и он обнаружил парадоксы, для которых не смог найти удовлетворительного решения. Далее мы разберем оба случая.

Не все соглашались с идеей Аристотеля. Так, в I веке римский философ и поэт Лукреций в своей учебной поэме De rerum natura («О природе вещей») провозгласил, что Вселенная бесконечна. В противном случае, отмечал он, у нее была бы граница, и если мы бросим камень с силой, достаточной, чтобы он пролетел через нее, то камень будет существовать уже вне Вселенной. А это невозможно, так как ничто не существует за ее пределами по определению. Сегодня мы знаем, что аргументация Лукреция ошибочна и Вселенная может быть конечной, не имея при этом границы, как поверхность шара — конечная, но без предела. Согласно современным космологическим теориям, вполне вероятно, что Вселенная конечна. Тем не менее возражения Аристотелю были редки, и, как уже было сказано, его идеи господствовали в философии и математике примерно до 1870 года. Тогда русско-немецкий математик Георг Кантор, как он сам признавал, фактически против воли следуя логике собственных исследований, ввел в математику изучение актуальной бесконечности. Задача была непростой, не столько из-за сложности, сколько из-за резкого неприятия ее многими коллегами. Речь шла о нарушении тысячелетней традиции. Ученого даже называли «шарлатаном» и «развратителем молодежи».

Однако Кантора это не остановило: он был убежден в вероятности и даже необходимости создания математической теории бесконечности. Благодаря своей непреклонной логике он развил одну из самых удивительных на сегодняшний день теорий и использовал новый подход к математике — более свободный и дающий множество возможностей. Одной из самых оригинальных концепций Кантора стали ординалы — числа, позволяющие вести исчисление за пределами бесконечности. После бесконечного ряда чисел 0, 1,2, 3, 4, 5,..., по утверждению Кантора, следует трансфинитное (то есть ординальное) число ω. Затем идут ω + 1, ω + 2, ω + 3,..., а после этого ряда ω + ω + 1, ω + ω + 2,... и так далее.

Но правильно ли «изобретать» эти числа таким произвольным способом? Что обозначает число ω? До XIX века все понятия, которыми оперировали математики, были тесно связаны с более или менее конкретными задачами, с ситуациями, представляемыми или связанными с реальностью. Например, описание физических явлений, изучение свойств геометрических объектов или конечных рядов чисел (1, 2, 3, 4,...). Так, 0, обозначающий «количество, которого нет», не сразу был признан полноценным числом, на это ушло несколько столетий. То же самое и с отрицательными числами: еще в XVIII веке Лейбниц не считал их существующими. В целом числа признавались, только если они так или иначе обозначали некое количество, которое можно зрительно представить.

Число ω обозначает актуально бесконечное количество; ни один предмет, ни одно физическое явление не поможет представить его, оно есть только в нашем сознании. Тем не менее Кантор со своими строго логическими рассуждениями «заставил» нас принять его за существующее, для чего ученому пришлось изменить подход к математике. Сегодня к математическим концепциям больше не предъявляются требования соответствовать реальности или представлять конкретное явление. Они только должны быть логически последовательными. За исключением этого ограничения, математики абсолютно вольны создавать, исследовать, анализировать, играть с понятиями, идеями и теориями.

После Кантора сущность математики изменилась, и он с большим удовлетворением принял бы нынешнее положение вещей — когда ученые могут свободно выдвигать теории и концепции. Ведь он утверждал, что чистая математика должна называться свободной. Говоря его словами, «сущность математики — в ее свободе».

1845 3 марта в Санкт-Петербурге у Георга Вальдемара Кантора и Марии Анны Бойм рождается сын Георг Фердинанд Людвиг Филипп Кантор.

1856 Семья переезжает в Германию.

1862 Георг хочет изучать математику, но отец противится желанию сына, и юноша поступает на инженерный факультет Высшей технической школы в Цюрихе. Несколько месяцев спустя отец все-таки разрешает ему заниматься математикой в том же учебном заведении.

1863 Умирает отец Кантора. Семья переезжает в Берлин, где юный Георг завершает свое математическое образование.

1867 Получает докторскую степень в Берлинском университете.

1869 Кантор поступает на работу в Галльский университет.

1872 Знакомится с Рихардом Дедекиндом. Многие идеи о бесконечности будут впервые высказаны Кантором в письмах Дедекинду.

1874 Кантор женится на Валли Гутман; у них будет шестеро детей. В том же году он публикует статью Ober eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»), в которой впервые появляются его идеи о бесконечности, хотя по совету Карла Вейерштрасса он и завуалировал их.

1878 Кантор публикует Ein Beitrag zur Мапnigfaltigkeitslehre (4К учению о многообразиях»), где открыто излагает свои идеи о бесконечности. Леопольд Кронекер использует все свое влияние, чтобы воспрепятствовать изданию статьи.

1883 Выходит в свет работа Grundlagen einer allgemeinen Mannigfaltigkeitslehre (4 Основы общего учения о многообразиях»), апогей математического творчества Кантора.

1884 В мае у Кантора случается приступ депрессии. Он полностью оставляет занятия математикой более чем на пять лет.

1890 Создается Deutsche MathematikerVereinigung (4Немецкое математическое общество»), и Кантор становится его первым президентом.

1892 Кантор публикует работу Ober eine elemental Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»), в которой представлен его знаменитый диагональный метод.

1895 Выходит в свет первая часть Beitrage zur Begmndung der transfi niten Mengenlehre («К обоснованию учения о трансфинитных множествах»), вторая часть будет опубликована в 1897 году.

1899 16 декабря умирает 13-летний сын Кантора. У ученого начинается душевное расстройство, от которого он так и не оправится до конца жизни.

1918 6 января Кантор умирает в психиатрической лечебнице в Галле.

ГЛАВА 1

Где начинается бесконечность

Есть вопросы, которыми человечество задается с тех самых пор, когда первые мужчины и женщины усаживались у огня и принимались размышлять и изучать то, что их окружало. Существовал ли мир всегда или у него было начало? Он перестанет существовать когда-нибудь? Есть ли предел у неба или оно не имеет преград?

В основе всех этих вопросов лежит одно из самых невероятных и глубоких понятий — бесконечность.

Почти все области математики являются результатом долгих исторических процессов, десятки или сотни лет они развивались благодаря множеству ученых, и трудно, если не невозможно, однозначно указать на одного зачинателя. Так, корни геометрии и алгебры уходят в Древний Египет и Месопотамию, а более «молодые» разделы науки, например методы счисления, выведены в конце XVII века одновременно и независимо друг от друга англичанином Исааком Ньютоном и немцем Готфридом Вильгельмом фон Лейбницем. Правда, они выразили идеи, которые их предшественники изучали веками (мы подробнее рассмотрим это в главе 3).

Однако математическая теория бесконечности (и теория множеств — как мы увидим, в сущности это одно и то же) появилась благодаря таланту и воображению единственного человека, создавшего ее фактически из ничего, — математика русско-немецкого происхождения Георга Кантора.

Можно даже назвать конкретную дату, когда произошел творческий прорыв, приведший Кантора к этой теории. Он писал 5 ноября 1882 года своему другу и коллеге Рихарду Дедекинду: 

«[...] после наших недавних встреч в Гарцбурге и Эйзенахе [немецких городах, где они виделись в сентябре 1882 года] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел [он имеет в виду, как мы увидим в главе 4, бесконечные числа]. Скажу больше, я нашел то, что бродило во мне в течение долгих лет». 

Как же Кантор пришел к этим «удивительным открытиям»? Что послужило началом «брожения»? Чтобы понять это, мы шаг за шагом проследим путь его идей. Начнем, как и полагается, сначала.

ИЗ САНКТ-ПЕТЕРБУРГА В ГАЛЛЕ

Георг Фердинанд Людвиг Филипп Кантор родился 3 марта 1845 года в Санкт-Петербурге. Его отец, Георг Вальдемар Кантор, успешный торговец, датчанин по происхождению, был очень религиозен и ценил культуру и искусства. Мать, Мария Анна Бойм, дочь русских скрипачей, сама виртуозно играла на скрипке. Георг унаследовал ее музыкальный талант и годы спустя, то ли в шутку, то ли всерьез, сокрушался, что отец не позволил ему стать профессиональным скрипачом.

Музыка и искусство всегда были важны для Кантора. Он считал, что математика и искусство не так уж далеки друг друга и что математик должен обладать и творческой жилкой (это мнение разделяли многие его современники, а также автор этих строк). Так, в 1833 году он написал статью, в которой упоминал об «удивительных открытиях» (позже он рассказал о них в письме Дедекинду); среди прочего в ней были такие слова: «Вся общность математики заключается в ее свободе» (курсив Кантора). В ней же он писал: 

«В силу этого исключительного положения, отличающего ее от всех других наук и объясняющего сравнительную легкость и отсутствие принуждения в занятии ею, она заслуживает совершенно особенным образом имени свободной математики — название, которое, будь мне предоставлен выбор, я дал бы охотнее, чем ставшее обычным наименование «чистая» математика». 

Таким образом, математик может отпустить свое воображение в «свободный полет» и оперировать понятиями как ему вздумается — при условии, что они не ведут к логическим противоречиям. И если противоречий нет, то, как утверждал Кантор, можно быть уверенными, что эти объекты действительно существуют. Выходит, математик, способный выводить новые понятия, одновременно и ученый и художник. Эти идеи не просто отражали мысль Кантора, они, особенно в этой знаковой статье, играли стратегическую роль, о чем мы поговорим в следующих главах.

Но вернемся к первым годам жизни Кантора. У его отца было слабое здоровье, и в 1856 году врачи посоветовали ему уехать от суровых петербургских зим в зону более благоприятного климата. Тогда Кантор-отец завершил все свои дела в России, и семья перебралась в Германию. Сначала они поселились в Висбадене, где Георг посещал гимназию, но вскоре переехали во Франкфурт. Ученый всегда с ностальгией вспоминал детство, проведенное в Санкт-Петербурге, и хотя всю оставшуюся жизнь прожил в Германии, никогда не ощущал себя там как дома. Насколько известно (и это очень похоже на его романтическую и даже экзальтированную натуру), после 1856 года он больше никогда не писал по-русски. По дневникам времен гимназии видна его все возрастающая склонность к математике. Хотя отец настаивал на том, чтобы Георг изучал инженерное дело, в 1863 году он поступил в Берлинский университет, желая посвятить себя своему настоящему призванию, и даже страсти, — математике. В то время это был один из главных мировых математических научных центров. Здесь преподавали знаменитые математики Карл Вейерштрасс и Эрнст Куммер, оба они стали учителями Кантора. Также его наставником был Леопольд Кронекер, со временем тот оказался одним из самых яростных противников теории бесконечности.

Кантор окончил Берлинский университет в 1867 году и спустя два года получил место профессора в Галльском университете. Забегая вперед, отметим, что именно в Галле ученый развил свою теорию математической бесконечности, именно там он сделал открытия, благодаря которым стал одной из важнейших фигур в математике. Его идеи не всегда встречали понимание и, напротив, часто вызывали отторжение. Мы уже упомянули о Кронекере, который сделал все возможное, чтобы воспрепятствовать распространению идей Кантора. Еще один пример относится к 1874 году, когда Кантор захотел опубликовать свои первые открытия в исследовании бесконечности. Черновик его статьи увидел Вейерштрасс и посоветовал Кантору не упоминать о самых радикальных выводах разбираемых теорем. Более того, он предложил вообще не говорить о бесконечности. Почему у Кантора было так много противников? Какие выводы следовали из статьи 1874 года и в чем заключалась их революционность? Чтобы ответить на эти вопросы, мы должны сначала ознакомиться с историей бесконечности.

ПОТЕНЦИАЛЬНАЯ ИЛИ АКТУАЛЬНАЯ

Что такое бесконечность? Точнее, что мы имеем в виду, когда утверждаем, что совокупность объектов бесконечна? Прежде всего уточним, что будем использовать слово «объект» в самом широком значении, включающем в себя и абстрактные, и воображаемые объекты. Например, эта группа может состоять из всех дней декабря 3000 года.

Проанализируем сперва противоположное понятие, которое нам гораздо ближе, — конечность. Что мы подразумеваем, говоря, что некая группа объектов конечна?

Само по себе это слово означает «то, что заканчивается», «то, что не продолжается бесконечно». В таком случае принято думать, что группа объектов конечна, если хотя бы теоретически их можно пересчитать по одному так, что в определенный момент подсчет завершится.


Родители Кантора — Георг Вольдемар Кантор, успешный предприниматель, и Мария Анна Бойм, виртуозная скрипачка.


Мемориальная доска на доме в Санкт- Петербурге, где родился Кантор.


Берлинский университет, 1880 год. Здесь в 1867 году Кантор получил степень доктора математики.

Совокупность всех дней декабря 3000 года, которую мы привели выше, конечна. Возьмем еще один пример: представим, что всех взрослых людей, населяющих Землю в данный момент, попросили герметически закрыть бутылки с водой. Количество молекул кислорода, содержащихся в миллиардах этих бутылок, все равно будет конечным. Разумеется, на практике в этом случае было бы чрезвычайно трудно подсчитать все объекты, входящие в эту группу, но конкретные сложности не имеют значения для понятия конечности. Главное, что теоретически рано или поздно подсчет завершился бы, даже если на это ушли бы века. Бесконечной же группа является, если при пересчете по одному всех составляющих его частей они никогда не закончатся. Подчеркнем, что в этом определении мы используем слово «никогда» не в метафорическом смысле, не как синоним «очень большого количества времени», его надо понимать буквально: «никогда, бесконечно».

Понятие бесконечности — это замечание очень важно — трактуется двумя различными способами. Она может быть потенциальной или актуальной.

Чтобы понять разницу между ними, представим себе человека, который записывает все натуральные числа (числа, которые получаются путем прибавления 1, начиная с 0, то есть 0, 1, 2, 3, 4,...). Он начинает писать, в какой-то момент доходит до 100, потом до 1000, наконец до 10000. Работа, за которую он взялся, не закончится никогда, потому что когда он дойдет до 100000, ему надо будет продолжить со 100001, когда дойдет до 1000000 — с 1000001 и так далее. Он никогда не доберется до последнего натурального числа, просто потому что его не существует, эти числа никогда не закончатся.

Я против использования бесконечных величин как чего-либо законченного, это использование недопустимо в математике.

Карл Фридрих Гаусс, письмо от 1831 года

Писец поймет, что всей его жизни не хватит, чтобы завершить этот труд, и возьмет ученика, чтобы тот продолжил записывать числа после него. Этот второй писец, в свою очередь, возьмет еще одного ученика и так далее.

Будет ли список чисел, составленный всеми этими писцами, бесконечным? Ответ «да, будет, но только в потенции». Список чисел не является статичной группой, он постоянно растет, и этот рост никогда не закончится. На определенный момент времени — не важно, насколько далеко в будущем, — список будет конечным, но продолжит расти без ограничений.

Таким образом, потенциальная бесконечность — это бесконечность списка, который конечен на каждый момент времени, но может расти безгранично. В этом случае бесконечность приобретает негативный оттенок — это свойство, которое делает невозможным завершение работы.

Теперь возьмем группу, состоящую из всех натуральных чисел, абсолютно всех без исключения (вне зависимости от того, записаны они или нет). Разумеется, список будет бесконечным, только в таком случае мы имеем дело со статичной, завершенной бесконечностью. В эту группу входят все числа, к ней больше ничего не надо добавлять. Это и есть актуальная бесконечность.

Перенесем это понятие на такие величины, как вес, объем или длина. Например, если нарисовать отрезок (прямую, соединяющую точку А с точкой В), его длина, разумеется, будет конечной. Но геометрия говорит нам, что продолжать его можно сколько угодно. И если мы предположим, что это продолжение будет бесконечным, то получим линию с потенциально бесконечной длиной. Она всегда конечна, но способна бесконечно возрастать (см. рисунок 1).

Прямые, которые рассматриваются в современной геометрии, тем не менее имеют длину, считающуюся актуально бесконечной, и они тянутся непрерывно без начала и конца. Заметим, что такую линию невозможно изобразить.

Интересно, что все группы или величины, связанные с природными явлениями, никогда не являются актуально бесконечными, напротив, большинство из них конечны, и лишь очень малая часть — бесконечны, но только в потенции. Так, согласно принятым на сегодняшний день физическим теориям материя не является бесконечно делимой. Каждый атом состоит из определенного количества элементарных неделимых частиц. Возможно даже, что ни время, ни пространство не делимы бесконечно.

С другой стороны, космологи утверждают, что объем и диаметр Вселенной вполне могут быть потенциально бесконечными (диаметр Вселенной — это наибольшее расстояние, которое можно измерить, между двумя ее точками).

Число песчинок, содержащихся в шаре, равном миру, меньше тысячи единиц чисел «седьмых» [это единица с 51 нулем, огромное, но конечное число].

Архимед, «Псаммит»

Если верно, что Вселенная будет продолжать расширяться неопределенное количество времени, то и ее возраст в секундах будет потенциально бесконечен. Продолжая пример с писцами, представим, что они записывают по числу на каждую секунду, прошедшую с момента Большого взрыва. Список запротоколированных секунд постоянно возрастал бы, оставаясь при этом конечным.

Резюмируя, скажем, что время, материя и пространство были бы конечны или, максимум, бесконечны в потенции. Поэтому неудивительно, что в IV веке до н.э. Аристотель утверждал, будто актуальной бесконечности не существует.


РИС.1

БЕСКОНЕЧНОСТЬ ПО АРИСТОТЕЛЮ


Поделиться книгой:

На главную
Назад