Во-первых, оказалось, что излучение некоторых рентгеновских пульсаров иногда «выключается», а потом появляется вновь. Это явление можно объяснить затмениями в двойной системе, когда обычная звезда закрывает от нас нейтронную, преграждая путь ее рентгеновскому излучению. Разумеется, такие затмения могут происходить только в тех случаях, когда Земля расположена в той же плоскости, в которой движутся вокруг центра масс оба члена двойной системы.
Второе свидетельство в пользу двойных систем — периодические изменения частоты импульсов, испускаемых рентгеновским пульсаром. Обращаясь в двойной системе, нейтринная звезда то приближается к нам, то удаляется. Поэтому и рентгеновские импульсы приходят то чаще, то реже.
Правда, оба эти свидетельства являются в какой-то мере косвенными, однако в дальнейшем были получены и прямые подтверждения. С помощью оптических телескопов удалось обнаружить светящиеся звезды, составляющие пары с невидимыми нейтронными источниками рентгеновского излучения.
Не надо думать, что рентгеновский пульсар в двойной системе — это нечто абсолютно стабильное, раз навсегда данное. Как считают астрофизики, взаимодействие вещества, выброшенного обычной звездой, с магнитосферой нейтронной звезды проходит ряд последовательных этапов. Сперва генерируется импульсное радиоизлучение, похожее на радиоизлучение одиночного пульсара.
Но, видимо, развитие физических процессов в двойных системах далеко не всегда протекает строго последовательно.
В 1967 г. в созвездии Центавра неожиданно вспыхнул новый рентгеновский источник. В течение некоторого времени интенсивность его излучения постепенно нарастала, а затем стала также постепенно убывать. Затем тот же источник обнаружил себя еще дважды — в 1969 и 1974 гг. В последнем случае он наблюдался на протяжении десяти суток. При этом были обнаружены периодические колебания его «рентгеновской яркости» с периодом около семи минут. Иными словами, был открыт «кратковременный» рентгеновский пульсар.
Но самый интересный «кратковременный» рентгеновский источник был зарегистрирован в созвездии Единорога 3 августа 1975 г. Сперва он был едва заметен, однако уже через пять суток его блеск в рентгеновских лучах превзошел блеск самого яркого объекта рентгеновского неба — источника Скорпион Х-1, а через следующие пять суток он светил еще в пять раз ярче. Ничего подобного за все годы рентгеновских наблюдений Вселенной астрономы не отмечали.
А еще через несколько дней в том же месте была обнаружена слабенькая звездочка. Ее стали усиленно изучать и пришли к выводу, что и возникновение «кратковременных» рентгеновских источников также связано с какими-то физическими явлениями именно в двойных системах, где одним из компонентов является компактный объект, собирающий на себя вещество, выбрасываемое второй звездой. Вероятно, время от времени в силу еще не известных нам причин скорость аккреции может изменяться. В тех случаях, когда она резко возрастает, создаются условия, способствующие кратковременной вспышке рентгеновского излучения.
Правда, наблюдательных данных, прямо доказывающих, что все «кратковременные» источники рентгеновского излучения связаны с двойными системами, пока нет. И все же большинство астрономов склонны придерживаться именно такого объяснения. Тем более что мы не знаем вообще ни одного источника рентгеновского космического излучения в нашей Галактике, о котором можно было бы с уверенностью утверждать, что он является «одиночкой», т. е. не входит в двойную систему.
Но какие события в двойной системе могут вызвать усиление аккреции и кратковременную вспышку рентгеновского излучения?
Одно из возможных объяснений состоит в том, что соседом нейтронной звезды в двойной системе является пульсирующая звезда, которая то сжимается, то расширяется. В момент расширения такая звезда выбрасывает большое количество вещества, которое, попадая на нейтронную звезду, генерирует излучение в рентгеновском диапазоне.
Возможно также, что нейтронная звезда движется вокруг обычной по сильно вытянутой орбите, то удаляясь от нее, то приближаясь, вызывая тем самым периодические усиления и ослабления аккреции.
Таким образом, появление космических аппаратов, сделавших возможными наблюдения в рентгеновских и гамма-лучах, привело к открытию нового физического эффекта — механизма аккреции в двойных системах, который может оказаться ключом к объяснению целого ряда необычных явлений во Вселенной. Наблюдения с помощью гамма-аппаратуры на борту межпланетных станций «Венера-11» и «Венера-12» подтвердили это предположение.
Как уже говорилось, гамма-всплеск 5 марта оказался очень мощным — в течение четверти секунды поток гамма-излучения из созвездия Золотой Рыбы в несколько тысяч раз превосходил свечение в гамма-диапазоне всего неба! Затем в течение следующих шести минут излучение сделалось примерно в сто раз слабее, и в этот промежуток времени была отмечена его пульсация с периодом 8,1 с.
Таким образом, к тем одиннадцати рентгеновским пульсарам, которые считались надежно зарегистрированными к марту 1979 г., прибавился еще один пульсар, открытый советскими учеными. Но пульсар совершенно особого типа, первый космический объект подобного рода, обнаруженный астрофизиками.
Многое из того, что относится к этому объекту, связано со словом «впервые». Впервые зарегистрирована гамма-вспышка, при которой светимость источника нарастала столь стремительно — за тысячные доли секунды она увеличилась в три тысячи раз! Впервые был зафиксирован повторный гамма-всплеск от одного и того же объекта с интервалом всего четырнадцать часов! И наконец, впервые удалось прояснить физическую природу источника гамма-вспышки. Анализ полученных данных не оставлял никакого сомнения в том, что во время вспышки 5 марта действовал тот же самый физический механизм, который порождает и рентгеновские пульсары, — аккреция вещества, выброшенного одной из звезд в двойной системе, на нейтронную звезду.
Что же касается повторной вспышки, которая была примерно в сто раз слабее первой, то ее возникновение, по-видимому, связано с термоядерным процессом. При падении на нейтронную звезду вещество может разгоняться до огромных скоростей, достигающих одной трети скорости света. В результате удара вещества с такой скоростью о поверхность звезды выделяется колоссальная энергия. Вероятно, этот процесс аккреции и породил гамма-излучение, зарегистрированное 5 марта. Но вещество обычной звезды, падающее на нейтронную, — это главным образом водород и гелий. Оказавшись на поверхности нейтронной звезды, они нагреваются до очень высоких температур, при которых возникают термоядерные реакции. Правда, водородная реакция протекает довольно медленно, зато гелиевая может приводить к кратковременному выделению энергии, как раз примерно в сто раз меньшей, чем энергия, выделяющаяся при аккреции. Вполне возможно, что именно гелиевая термоядерная вспышка и породила повторный гамма-всплеск 6 марта.
В эти дни был впервые получен еще один чрезвычайно интересный результат. Дело в том, что одновременные наблюдения с борта нескольких космических станций, находящихся на значительных расстояниях друг от друга, позволяют намного повысить точность, с которой определяются положения источников гамма-излучения на небесной сфере.
Кроме «Венер» в космосе в это же время находился и советский искусственный спутник Земли «Прогноз-7», также оснащенный гамма-аппаратурой.
Гамма-всплеск 5 марта был отмечен всеми тремя космическими аппаратами. Благодаря этому удалось выяснить, что источник излучения находится в районе созвездия Золотой Рыбы и проецируется на окраинный район одной из ближайших к нам галактик — Большого Магелланова Облака. Но где источник расположен на самом деле — в нашей Галактике или в соседней?
Современные приборы еще не позволяют получить прямой ответ на этот вопрос. Поэтому приходится прибегнуть к логическим соображениям. Предположим, что источник гамма-всплеска 5 марта находится в Большом Магеллановом Облаке. Исходя из мощности зарегистрированного сигнала и зная расстояние до Большого Магелланова Облака, нетрудно подсчитать, что в подобном случае этот источник во время вспышки должен был излучать 1044 эрг/с (1037 Вт) — чудовищную энергию, в несколько тысяч раз превосходящую энергию излучения Большого Магелланова Облака во всех диапазонах электромагнитных волн, вместе взятых! А ведь эта галактика состоит из миллиардов звезд. Очевидно, что подобное предположение выглядит весьма фантастично. Таким образом, скорее всего, счастливым обладателем этого феномена является наша собственная Галактика.
Итак, накапливается все больше данных, говорящих о том, что механизм аккреции в двойных системах является весьма универсальным, порождающим многие явления, наблюдаемые во Вселенной. Причем такие явления, которые сопровождаются выделением огромного количества энергии и, следовательно, оказывают особое воздействие на состояние космической среды.
Действие этого механизма может в разных конкретных условиях вызывать различные следствия. Этим, видимо, объясняется и различный характер возникающего электромагнитного излучения: в одних случаях правильно-переменное рентгеновское излучение (рентгеновские пульсары), в других — кратковременные вспышки в рентгеновском диапазоне, в третьих — мощные всплески гамма-излучения. При этом различие в физических условиях, влияющих на картину явления, должно быть очень заметным. Это видно хотя бы из того, что рентгеновские пульсары излучают на протяжении миллионов лет, а при гамма-вспышках вся энергия выплескивается почти мгновенно.
Для объяснения явлений, о которых идет речь, было предложено немало других гипотез, не связанных с двойными системами, Оригинальную попытку объяснить природу гамма-вспышек предприняла группа советских ученых из Института прикладной математики АН СССР и Института космических исследований АН СССР.
По современным представлениям, нейтронная звезда в момент образования имеет очень высокую температуру — порядка 1011 кельвинов. Затем в результате бурного выброса нейтрино происходит довольно быстрое остывание звезды — буквально за несколько дней температура ее поверхности снижается до 1010, а за десяток лет — до 109 кельвинов. Потом этот процесс протекает несколько медленнее. Когда температура снизится до 108-109 кельвинов, поверхностные слои нейтронной звезды становятся твердыми, возникает своеобразная кристаллическая корка. Иногда она может растрескиваться.
Таковы существующие представления. А гипотеза, о которой идет речь, состоит в следующем. Время от времени в подкорковом слое накапливается потенциально радиоактивное вещество. «Потенциально радиоактивное» — потому что, по предположению авторов гипотезы, в недрах нейтронной звезды в силу некоторых причин радиоактивный распад не идет. Однако при землетрясениях такое вещество по трещинам может выплескиваться на поверхность. Оказавшись снаружи, оно бурно распадается, этот распад сопровождается мощным гамма-излучением, которое и регистрируется на Земле как гамма-вспышка.
И все же объяснение, связанное с аккрецией вещества в двойных системах, выглядит более убедительно. Особенно после результата, полученного межпланетными станциями «Венера». А также потому, что с помощью механизма аккреции удается с единой точки зрения объяснить целый комплекс хотя и внешне разнородных явлений, но вызывающих сходные следствия — рентгеновское и гамма-излучение.
Разумеется, еще предстоит ответить на ряд фундаментальных вопросов. Какой физический процесс способен вызвать усиление рентгеновской светимости источника в десятки тысяч раз за тысячные доли секунды? Связаны ли гамма-вспышки с изменением скорости аккреции? Если да, то почему эта скорость может изменяться?
И так далее…
Разумеется, отдельные космические объекты, расположенные на огромных расстояниях от Земли, практически не оказывают на земные условия никакого влияния. Но Вселенная — это совокупность колоссального множества различных объектов, в том числе и проявляющих разные степени активности. Их совокупная «деятельность» во многом определяет физическое состояние космической среды нашего обитания. Поэтому изучение подобных объектов представляет для нас особый интерес.
Загадочный фон
Наблюдая Вселенную в световых лучах, мы видим звезды, галактики, скопления галактик. Оптические объекты нашей Вселенной сгруппированы в определенные структурные образования. Аналогичную картину мы обнаруживаем в инфракрасном, ультрафиолетовом и радиодиапазонах электромагнитных волн. Исключение составляет уже знакомое нам реликтовое излучение, обладающее изотропным характером.
Однако существует и еще одно исключение подобного же рода — фоновое рентгеновское излучение. Это излучение, обнаруженное в 60-е годы, подобно реликтовому, также равномерно заполняет все небо.
Невольно напрашивается предположение о какой-либо связи, существующей между этими двумя изотропными «свечениями» Вселенной. Однако подобное предположение приходится сразу отвергнуть — ведь ультракоротковолновое радиоизлучение и рентгеновское излучение порождаются в природе совершенно различными физическими процессами.
Происхождение реликтового излучения к настоящему времени изучено достаточно хорошо. Что же касается рентгеновского фона, то его природа до сих пор остается загадкой.
Проще всего было бы предположить, что диффузный рентгеновский фон обязан своим происхождением тормозному излучению электронов в разреженной высокотемпературной плазме, заполняющей межгалактическое пространство. Однако непосредственные доказательства того, что такая плазма существует, в распоряжении современной астрономии отсутствуют.
Кстати, если бы подобный механизм в самом деле действовал, то это привело бы нас к фундаментальным выводам относительно дальнейшей эволюции нашей Вселенной. Предварительные подсчеты показывают, что межгалактическая плазма, порождающая фактически наблюдаемое рентгеновское фоновое излучение, должна была бы обладать плотностью, близкой к «критической», т. е. к тому значению средней плотности материи во Вселенной, которое согласно общей теории относительности необходимо для того, чтобы остановить разбегание галактик.
Если источник того или иного излучения нам неизвестен, и мы вынуждены судить о его природе косвенным путем, то прежде всего необходимо обратить внимание на свойства этого излучения. В пределах точности, доступной лучшим современным приемникам рентгеновского излучения, никаких колебаний интенсивности рентгеновского фона обнаружить не удалось. О чем говорит подобная изотропия излучения? О том, что его источник либо расположен в непосредственной близости от нас, и мы находимся «внутри» его излучения, либо на очень и очень большом удалении. Поскольку наличие мощного рентгеновского источника в окрестностях Солнечной системы заведомо исключается, то остается только вторая возможность.
Но вспомним: чем с больших космических расстояний приходит к нам то или иное излучение, тем более отдаленные в прошлое явления оно отражает. Поэтому есть веские основания предполагать, что возникновение рентгеновского фона (подобно возникновению реликтового излучения) связано с какими-то космологическими процессами, обусловившими формирование крупномасштабной структуры Вселенной.
В частности, существует гипотеза, согласно которой диффузное рентгеновское излучение порождается большим числом достаточно мощных дискретных рентгеновских источников, более или менее равномерно распределенных на небесной сфере и расположенных на очень больших расстояниях от Земли.
Но тогда возникает новый вопрос: что могут представлять собой эти источники, какова их природа? Галактики здесь не годятся. Они состоят из звезд, а изучение Солнца показало, что обычные, нормальные звезды являются весьма слабыми источниками рентгеновского излучения. Поэтому даже сотни миллиардов звезд, входящих в галактики, не могли бы обеспечить наблюдаемой интенсивности рентгеновского фона. Правда, в последние годы было установлено, что богатые скопления галактик являются источниками рентгеновского излучения, которое порождается механизмом тормозного излучения в горячей плазме, заполняющей объем таких скоплений. Однако, если учесть концентрацию скоплений галактик во Вселенной, то и этот источник оказывается явно недостаточным… Значит — не галактики.
Больше всего на роль дискретных рентгеновских источников, необходимых для генерирования диффузного рентгеновского фона, подходят квазары. Как показывают наблюдения, большинство квазаров являются мощными генераторами рентгеновского излучения. Достаточно сказать, что один квазар излучает в рентгеновском диапазоне в 1000 раз больше энергии, чем ее излучают в оптическом диапазоне все звезды нашей Галактики.
Квазары — весьма удаленные объекты. Некоторые из них расположены на расстояниях, намного превосходящих расстояния до самых далеких галактик. Поэтому, вероятно, большинство квазаров недоступно наблюдению современными средствами. Однако статистические подсчеты, основанные на распределении в пространстве известных нам квазаров, говорят о том, что значительная доля рентгеновского фона (а возможно, и весь этот фон) генерируется именно далекими квазарами, которые мы по отдельности наблюдать пока не можем.
В нейтринном «свете»
В этой главе мы познакомились с некоторыми результатами изучения Вселенной в различных диапазонах электромагнитных волн и могли убедиться в том, что освоение каждого нового канала космической информации вело к новым интереснейшим открытиям.
На фоне этих открытий достижения нейтринной астрофизики выглядят, быть может, намного скромнее. В сущности говоря, пока что получен только один реальный результат: поток солнечных нейтрино, которые должны рождаться в недрах нашего дневного светила в ходе термоядерных реакций, оказался значительно менее интенсивным, чем следует из теоретических соображений.
Результат, что и говорить, весьма интригующий и все еще ожидающий своего объяснения. В чем тут дело — в несовершенстве ли наших представлений о внутреннем строении Солнца или в том, что не учитываются некоторые свойства самих нейтрино, в частности, возможность того, что эти частицы обладают массой покоя, пока неясно.
Но изучение Солнца отнюдь не исчерпывает заманчивых возможностей нейтринной астрономии. Вообще, нормальные звезды являются источниками нейтрино низких энергий, и если учесть огромные расстояния до этих небесных тел, то регистрация потоков нейтрино от отдельных звезд представляется весьма трудноразрешимой в техническом отношении задачей: ведь эти частицы очень слабо взаимодействуют с веществом.
Правда, на заключительных этапах существования массивных звезд с массой в 20 — 30 масс Солнца при гравитационном коллапсе этих объектов, как показал Я, Б. Зельдович, могут возникать условия, при которых генерируются кратковременные нейтринные вспышки длительностью около 20 секунд. При этом испускаются нейтрино с энергией порядка 10–15 МэВ. Такие вспышки в принципе могут быть зарегистрированы.
Но, пожалуй, наиболее перспективна нейтринная астрономия высоких энергий — от 50 — 100 ГэВ и выше. Эта астрономия пока еще только зарождается, но о том, какого рода сведения она способна нам принести, можно судить уже сейчас, поскольку физические процессы, способные порождать нейтрино подобных энергий, нам известны. Такие нейтрино должны рождаться в результате взаимодействия ускоренных высокоэнергичных частиц с газом или электромагнитным излучением.
Где во Вселенной это может происходить? Например, при прохождении протонов высоких энергий, которые входят в состав космических лучей, через большие толщи газа. Столкновение таких протонов с атомными ядрами приводит к рождению заряженных пи-мезонов (пионов), при распаде которых появляются нейтрино.
Возможен и другой процесс. Многие космические объекты являются источниками интенсивных электромагнитных излучений. Вблизи этих объектов плотность фотонов может быть настолько велика, что протоны высоких энергий, многократно сталкиваясь с ними, растрачивают всю свою энергию. Это также приводит к рождению пионов, а затем и появлению нейтрино.
Важно отметить, что механизмы, о которых идет речь, рождают не только нейтрино, но и гамма-излучение. Однако при всей своей энергии гамма-фотоны не всегда достигают Земли. Потому ли, что объект, где они возникают, для гамма-излучения непрозрачен, или же в связи с расстоянием, столь большим, что гамма-фотоны поглощаются в межгалактическом пространстве прежде, чем дойдут до нас. В подобных случаях нейтринный вестник космических процессов может принести особенно интересную информацию.
Что же касается тех космических объектов, которые способны ускорять заряженные частицы и порождать протоны высоких энергий, то они могут иметь различную природу. Вообще говоря, ускорителями частиц являются все сколько-нибудь активные космические объекты. Частицы могут ускоряться в межзвездной и межпланетной среде, на Солнце, в магнитосфере Юпитера и даже Земли. Но особенно мощными ускорителями заряженных частиц являются вспышки сверхновых звезд и активные физические процессы, происходящие в ядрах галактик и квазарах.
Большой интерес представила бы также регистрация реликтовых нейтрино, которые согласно существующей теории могли возникать на некоторых этапах ранней стадии эволюции Вселенной. Изучение подобных нейтрино не только позволило бы еще раз проверить справедливость этой теории, но и помогло бы глубже разобраться в тонкостях происходивших в отдаленном прошлом физических процессов.
Новое тело в Солнечной системе
До сих пор в этой главе речь шла о тех новых данных, которые принесло современной астрономии овладение методами наблюдений в различных диапазонах электромагнитных излучений. Конечно, и эти данные, как и любые данные наблюдений, «вливаются» в общую картину Вселенной только тогда, когда их удаётся осмыслить с позиций определенных научных теорий. Но есть и такие проблемы, в которых теоретические исследования играют особенно важную роль, и именно они ведут к новым открытиям.
Одной из таких проблем является вопрос о «пределах» планетной семьи Солнца.
Как известно, каждая из планет Солнечной системы, перемещаясь по своей орбите, испытывает притяжение не только со стороны Солнца, но и со стороны других планет, обращающихся вокруг дневного светила. Благодаря этому наблюдаются так называемые возмущения — небольшие отклонения планетных орбит от тех, по которым двигалась бы каждая из планет, находись она в одиночестве.
Так как взаимное расположение планет постоянно изменяется, то и картина возмущений планетных движений весьма сложна и в целом не поддается абсолютно точному расчету. Однако при некоторых упрощающих предположениях возмущения, по крайней мере со стороны ближайших планет, могут быть вычислены. Возможно решение и обратной задачи — по наблюдениям возмущений орбиты той или иной планеты можно определить массу и положение в пространстве возмущающего тела.
Именно таким путем была в свое время открыта восьмая планета Солнечной системы — Нептун. К концу первой половины XIX в. в движении седьмой планеты — Урана были обнаружены такие отклонения, которые никак нельзя было объяснить притяжением уже известных планет, обращающихся вокруг Солнца. Оставалось предположить, что на Уран влияет какая-то еще неизвестная «заурановая» планета. Исходя из этого, французский ученый У. Леверье и английский ученый Дж. Адамс рассчитали, где и когда должна находиться неизвестная планета. Следуя этим указаниям, немецкий астроном И. Галле действительно обнаружил новую планету, которая и получила название Нептун. В начале текущего века американский астроном П. Ловелл по возмущениям орбиты Нептуна вычислил орбиту девятой планеты — Плутона, которая и была открыта в 1930 г.
Однако возмущения, вызываемые Плутоном, не могут объяснить всех тех возмущений, которые наблюдаются в движении Нептуна. Зарегистрированы «незапланированные» возмущения и у орбиты самого Плутона. Это давало основания предполагать, что за орбитой 9-й планеты Солнечной системы существует еще какое-то неизвестное тело. Тем не менее обнаружить это тело или получить о нем какие-либо более точные сведения долгое время не удавалось. Однако наблюдения за траекториями движения американских космических аппаратов «Пионер» и «Вояджер» обнаружили довольно значительные отклонения от расчетных орбит. Последующие вычисления показали, что эти отклонения с большой степенью вероятности могут быть объяснены воздействием со стороны неизвестного объекта, расположенного за орбитой Плутона, с массой, превосходящей массу Земли и, быть может, достигающей массы Солнца. Согласно предварительным данным находится это тело на расстоянии от нескольких сотен миллиардов до триллиона километров от Солнца. Это в несколько десятков тысяч раз больше, чем расстояние Земли от Солнца.
Интересно отметить, что несколько лет назад был обнаружен еще один любопытный эффект, возможно, также указывающий на существование в окрестностях Солнечной системы какого-то массивного тела. Этот эффект связан с наблюдением пульсаров. Пульсары — это быстровращающиеся нейтронные звезды. Вследствие вращения регистрируемое радиотелескопами остронаправленное радиоизлучение таких звезд представляет собой серии радиоимпульсов, следующих один за другим (рис. 10). Но так как со временем скорость вращения пульсаров изменяется, то изменяется и частота принимаемых на Земле радиоимпульсов.
Было замечено, что у пульсаров, расположенных в одной половине небесной сферы, эта частота изменяется медленнее, чем у пульсаров, расположенных в другой ее половине. Совершенно очевидно, что подобный эффект не может быть присущ самим пульсарам, а как-то связан с условиями их наблюдения. Одной из возможных причин и является присутствие в окрестностях Солнечной системы достаточно массивного тела. Если такое тело действительно существует, то Солнечная система должна определенным образом смещаться относительно центра масс системы «Солнце — массивное тело». Именно это ускоренное движение и может вызывать тот эффект в наблюдаемом радиоизлучении пульсаров, о котором идет речь.
Естественно возникает вопрос: что представляет собой неизвестное тело, какова его физическая природа? Пока на этот счет можно только строить предположения. В частности, не исключено, что загадочный объект является черной дырой.
Согласно расчетам И. Д. Новикова и Н. С. Кардашева, одна из черных дыр, возможно, образовавшихся на ранней стадии эволюции Вселенной и обладающих сравнительно небольшими массами, может находиться как раз на таком расстоянии от Солнца, на каком предположительно расположено то неизвестное тело, о котором мы только что говорили. Но черные дыры можно наблюдать только по некоторым побочным эффектам, например по эффектам, возникающим вследствие падения на них окружающего вещества. Однако в той области пространства, где находится неизвестное тело, межзвездная среда настолько сильно разрежена, что обнаружить подобный эффект практически невозможно.
Прежде всего, астрономам предстоит по имеющимся данным определить, в каком направлении относительно Солнца находится неизвестный объект, и постараться его непосредственно обнаружить. Если это не черная дыра, а обычное космическое тело — такая задача в принципе вполне разрешима.
Если предварительные выводы ученых подтвердятся, изменит ли это что-либо в окружающем нас мире? Внешне как будто ничего. Но это позволит лучше понять прошлое нашей Солнечной системы, историю ее образования. В частности, академик О. Ю. Шмидт — автор широко известной теории происхождения Земли и планет из холодного газово-пылевого облака — первоначально считал, что это облако было захвачено Солнцем во время его «путешествия» по Галактике. Однако в дальнейшем Шмидт отказался от этой идеи, поскольку, согласно законам механики, захват в системе двух тел невозможен, а в те годы, когда Шмидт создавал свою теорию, реального кандидата на роль «третьего» тела, которое обладало бы необходимой массой и находилось на достаточно близком расстоянии от Солнца и облака, в науке не существовало.
Но если подтвердится, что Солнце в самом деле является одним из компонентов двойной системы и неизвестное тело сравнимо с ним по массе, то положение кардинальным образом изменится и захват облака в принципе может оказаться возможным…
Присутствие массивного тела в Солнечной системе должно оказать определенное влияние на ее дальнейшую эволюцию, и хотя это влияние, скорее всего, может сказаться лишь в очень отдаленном будущем, а может и вообще оказаться несущественным, астрономам в своих расчетах придется принимать его во внимание. Это сделает прогнозирование будущих состояний Солнечной системы более точным и надежным.
Черные дыры
«Первый свой опыт я проделал над куском белой шерстяной материи. До чего же странно было видеть, как эта белая материя постепенно таяла, как струя пара, и затем совершенно исчезла! Мне не верилось, что я это сделал. Я сунул руку в пустоту и нащупал материю, столь же плотную, как и раньше. Я нечаянно дернул ее и она упала на пол. Я не сразу ее нашел»[12]).
Так герой научно-фантастического романа знаменитого английского писателя Герберта Уэллса осуществляет свой первый опыт. Он изобрел способ делать невидимыми различные тела, а затем превратил в невидимку и самого себя.
Любой предмет мы видим потому, что он отражает некоторую часть падающего на него света. Предмет, который бы никаких лучей не отражал, а был для них абсолютно прозрачен, оказался бы невидимым. Однако материальных объектов, удовлетворяющих подобным условиям и существующих в нашем обыденном мире, мы не знаем.
Тем не менее объекты-невидимки, полностью поглощающие любые излучения, а сами абсолютно ничего не излучающие, в принципе могут существовать!..
Двадцатый век принес с собой целый ряд удивительных открытий в области физики и астрономии. Многие из них с трудом укладываются в наши обыденные представления об устройстве окружающего мира, а иногда и вступают с этими представлениями в прямое противоречие.
Но таков закономерный путь развития естествознания. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений еще более поразительных…
К числу таких явлений, оказавшихся в последние годы в центре внимания современной астрофизики, относятся и черные дыры. Одно название чего стоит: дыры во Вселенной, да еще черные!..
В начале века А. Эйнштейн разработал одну из наиболее фундаментальных физических теорий — теорию относительности. Собственно говоря, существуют две теории относительности: специальная и общая. Специальная теория (СТО) занимается изучением явлений, происходящих при больших скоростях, близких к скорости света. Общая теория относительности (ОТО) — ее иногда называют эйнштейновской гравитационной теорией — это теория тяготения, пространства и времени, представляющая собой обобщение ньютоновской теории тяготения.
Одним из главных выводов этой теории является вывод о тесной связи между геометрическими свойствами пространства, темпом течения времени и распределением массы. В частности, любые массы искривляют пространство и тем сильнее, чем эти массы больше.
Как известно, классическая физика Ньютона рассматривала пространство Вселенной как пустое «вместилище», в котором расположены небесные тела, взаимодействующие по закону всемирного тяготения.
Если бы из мира исчезла вся материя, говорил Эйнштейн, формулируя для широкой публики различие между классической физикой и общей теорией относительности, то с точки зрения физики Ньютона пространство и время сохранились бы. С точки зрения общей теории относительности с исчезновением материи исчезли-бы пространство и время.
Нет абсолютного пространства и абсолютного времени, единых для всей Вселенной. И пространство, и время — формы существования материи.
Еще в довоенные годы физики рассмотрели любопытную теоретическую возможность: если очень большая масса вещества оказывается в сравнительно небольшом объеме, то под действием собственного тяготения это вещество начинает неудержимо сжиматься. Наступает катастрофа — гравитационный коллапс — падение вещества в точку, где плотность в принципе может достигнуть чуть ли не бес конечной величины…
В процессе коллапса растет концентрация массы, растет в соответствии с общей теорией относительности и кривизна. Дело в том, что сильные поля тяготения существенным образом искривляют пространство в сфере своего действия. Это может проявляться, например, в отклонении от прямолинейного распространения световых лучей вблизи каких-либо масс, в частности, в отклонении света далеких звезд при его прохождении вблизи Солнца.
В конце концов, в результате сжатия наступает момент, начиная с которого ни один физический сигнал не может «вырваться» изнутри коллапсирующего образования наружу, и для внешнего наблюдателя оно как бы перестает существовать. Вот такой объект и называется черной дырой. От него к нам не поступает никакая информация. Ведь любая информация должна иметь «материального носителя» — она не может распространяться сама собой.
Правда, тут следует сделать оговорку. Хотя непосредственно обнаружить черную дыру невозможно, она, строго говоря, невидимкой в том смысле, который вкладывал в это понятие Уэллс, все же не является: мы не можем видеть сквозь нее. Отсюда и название — черная дыра.
Возможно, именно по этой причине теоретическое исследование, о котором шла речь выше, было выполнено по принципу: «рассмотрим некоторую воображаемую ситуацию и попытаемся выяснить, что из нее получается….». О существовании во Вселенной реальных черных дыр в то время не было никаких фактических данных.
Заметим, кстати, что принципиальная возможность существования объектов типа черных дыр вытекает и из обычной классической механики. На это обратил внимание в конце XVIII в. П. Лаплас. Но полная теория физических процессов, происходящих в черных дырах, может быть построена только с позиций общей теории относительности.
В последние десятилетия в глубинах космоса был открыт целый ряд явлений, которые говорят о возможности концентрации огромных масс вещества в сравнительно небольших областях пространства. В связи с этим астрофизики снова вспомнили о гравитационном коллапсе и пришли к выводу, что существует ряд космических процессов, которые в принципе могут приводить к образованию черных дыр.
Черные дыры привлекают к себе внимание не только потому, что в них могут достигаться чудовищно большие плотности, но и потому, что в районе этих объектов, возможно, приобретают совершенно удивительные, экзотические свойства пространство и время.
Одно из существенных различий между теориями тяготения Ньютона и Эйнштейна состоит в том, что гравитационные силы определяются в этих теориях различными формулами. Формула, выражающая закон тяготения Ньютона, общеизвестна:
где G — постоянная тяготения, Mm — массы взаимодействующих тел, a R — расстояние между их центрами. Именно с такой силой, например, звезда массы
В теории тяготения Эйнштейна сила тяготения определяется иной формулой:
где
Различие этих формул определяет и разный характер поведения силы тяготения в тех или иных ситуациях. Рассмотрим, например, случай, когда звезда массы