Основываясь на результатах наблюдений, астрономы пришли к выводу, что в горячих пятнах газ с электронами и магнитным полем находится от десяти тысяч до миллиона лет — срок по космическим масштабам сравнительно небольшой. А в облаках этот срок достигает ста миллионов лет. За это время в них накапливается чудовищная энергия. Например, в источнике Лебедь А она эквивалентна полной энергии, заключенной в массе ста миллионов звезд.
У некоторых галактик в радиодиапазоне интенсивно излучает центральная часть звездной системы — ядро. Вокруг такой компактной области может располагаться гало — гигантский радиоореол. А если наряду с компактным источником в центре имеются и «боковые» радиокомпоненты, то мы наблюдаем тройной радиоисточник на небе. В настоящее время методы радиоинтерферометрии позволяют с необыкновенной точностью исследовать структуру многих внегалактических радиоисточников.
Примером источника с весьма сложной структурой является космическая «радиостанция» в созвездии Персея. У этого источника очень маленькое компактное «радиоядро», окруженное «оболочкой» сравнительно небольших размеров. Эти детали в свою очередь погружены в более протяженную радиоизлучающую область — гало, которое охватывает еще две соседние небольшие радиогалактики. Предполагается, что возникновение столь сложной структуры связано о тем, что основная активная галактика, которая является ядром радиоисточника, движется с высокой скоростью через плотный межгалактический газ в скоплении галактик. Выброшенное активной галактикой вещество дробится по мере того, как оно «пробивается» через межгалактическую среду.
С помощью радиоинтерферометров удалось установить, что ядра радиоисточников — это не какие-то однородные образования: они обладают внутренней структурой, имеют определенные детали. К сожалению, размеры этих деталей настолько невелики, что для их выявления нужны были бы радиоинтерферометры с разрешающей способностью до нескольких тысячных долей секунды дуги.
Любопытно, что у горячих пятен, о которых говорилось выше, какие-либо мелкомасштабные детали отсутствуют.
И наблюдатели и теоретики много работают над тем, чтобы объяснить явления, происходящие в выбросах, определенными физическими причинами. Но главное — поиски ответа на вопрос о том, какие физические процессы порождают выделение колоссальных количеств энергии в ядрах активных галактик и квазарах, в частности, порождают выбросы и на протяжении длительного времени питают их все новыми и новыми порциями газа. Это одна из фундаментальных проблем современной астрофизики.
У наиболее мощных радиоисточников интенсивность выбросов настолько велика, что для их поддержания ежегодно требуется энергия, эквивалентная энергии, которая выделилась бы при полном превращении в излучение массы нескольких звезд.
Если иметь в виду обычные эволюционные процессы, происходящие в галактиках, то они, по-видимому, способны обеспечить не более десятой части этой энергии.
Поэтому приходится предположить, что процессы, ответственные за возникновение выбросов, связаны с какими-то необычными физическими явлениями.
По мнению члена-корреспондента АН СССР И. С. Шкловского активные процессы «порождаются какими-то особенностями (сингулярностями) в ядрах галактик. Выяснение природы этих сингулярностей — одна из важнейших, пока еще окончательно не решенных проблем современной астрофизики»[8]).
Есть веские основания предполагать, что физические процессы, порождающие выбросы, происходят в сравнительно небольших областях размером всего в несколько световых лет. Например, было замечено, что некоторые из наиболее активных источников космического радиоизлучения изо дня в день изменяют свою оптическую яркость. Но это значит, что поперечник такого источника должен быть сравнительно небольшим — не больше того расстояния, на которое физический процесс может распространиться в течение суток. Если учесть, что максимальная скорость такого распространения — это скорость света, то получается, что поперечник источника радиоизлучения весьма невелик.
В настоящее время большинство ученых считают, что основными источниками грандиозных физических процессов, происходящих в активных ядрах галактик и квазарах, являются компактные массивные тела с поперечником не более-0,1 светового года. Таковы, например, размеры компактного объекта, расположенного в ядре галактики М 87. Его масса — около 6 млрд. солнечных масс. Аналогичный объект с массой в несколько миллиардов солнечных масс обнаружен и в радиогалактике NGC6251.
Возможно, что на такое тело происходит натекание газа. В результате вокруг компактного объекта образуется вращающийся намагниченный газовый диск. Дальнейшее падение струй вещества на такой диск приводит к его разогреву до очень высокой температуры, выбрасыванию сгустков плазмы и релятивистских частиц. Если эта модель справедлива, то источником энергии квазаров и ядер галактик является энергия взаимодействия плазмы и компактных массивных образований, расположенных внутри этих объектов.
Что же касается физической природы подобных образований, то она все еще остается неясной. К этому вопросу мы еще вернемся.
Другим возможным механизмом, способным обеспечивать «подпитывание» космических выбросов, является «всасывание» одной из галактик вещества соседней, менее массивной галактики. Явление это получило название «каннибализма». Галактика-«каннибал» уничтожает соседнюю галактику-«миссионера». О возможности существования подобного процесса говорят наблюдения галактик с двойными ядрами.
Вообще замечено, что далекие радиогалактики, как правило, объединяются друг с другом. Не говорит ли это о том, что развитие в центральных частях галактик активных и физических процессов, порождающих радиоизлучение, есть в какой-то мере результат взаимодействия соседних звездных, систем?
В самом деле, как показывают статистические подсчеты, вероятность того, что та или иная галактика может оказаться источником радиоизлучения, значительно возрастает, когда мы обращаемся к более ранним этапам эволюции Вселенной. Например, для Вселенной, вчетверо более молодой, чем современная, эта вероятность в 1000 раз выше. Но ведь в прошлом галактики были расположены ближе друг к другу.
В заключение заметим, что сравнительно недавно в центральной области нашей Галактики был обнаружен точечный радиоисточник неизвестной природы с очень высокой радиосветимостью. Не исключена возможность, что этот источник связан с каким-то массивным компактным объектом в ядре. Правда, такое предположение пока что не получило подтверждения в радиоастрономических наблюдениях. Однако следует иметь в виду, что интерпретация результатов астрономических наблюдений, в особенности наблюдений за пределами оптического диапазона электромагнитных волн, всегда обладает некоторой степенью неопределенности. Это связано прежде всего с тем, что в принципе различные физические процессы могут порождать электромагнитные излучения с приблизительно одинаковыми свойствами. Возможны и другие причины, ведущие к неоднозначности в истолковании астрономических данных.
Это заставляет с определенной осторожностью относиться к выводам, сделанным на основе, скажем, радионаблюдений в тех случаях, когда речь идет об исследовании сложных и неясных космических процессов. В подобных ситуациях необходима многократная тщательная проверка полученных данных, а также их интерпретации, независимыми методами.
Очередная загадка!
Вселенная неистощима на сюрпризы! Особенно щедро она их нам преподносит в последние десятилетия с развитием всеволновой астрономии. Но даже на этом впечатляющем фоне выделяется загадочный объект, обнаруженный в 1978 г. в созвездии Водолея и получивший обозначение SS 433.
Первая загадка, связанная с SS 433, возникла тогда, когда астрономы занялись тщательным изучением его спектра. Необычное состояло в том, что у SS 433 часть линий была смещена к красному концу спектра, а часть — к фиолетовому. Это было удивительно и на первый взгляд необъяснимо, так как означало, что объект SS 433 удаляется от нас со скоростью около 80 000 км/с и одновременно… приближается к нам со столь же высокой скоростью.
Но материальное тело в реальном мире не может в одно и то же время перемещаться в двух противоположных направлениях. Так способна вести себя только сложная система, различные части которой движутся по-разному.
Вскоре обнаружился новый, не менее удивительный факт. Оказалось, что линии в спектре SS 433 меняют свое положение с периодом, равным 164 суткам.
Выяснилось также, что загадочный объект интенсивно излучает в рентгеновском диапазоне, является переменным источником инфракрасного излучения и радиоисточником с чрезвычайно сложной структурой…
Что же представляет собой SS 433? Какова физическая природа этого загадочного объекта?
Наиболее привлекательна так называемая кинематическая модель. Суть ее состоит в следующем. Из центральной части объекта с большой скоростью выбрасываются две струи газа. Одна из них движется по направлению к земному наблюдателю, другая — от нас. Именно этим объясняется таинственное «раздвоение» SS 433, о котором шла речь выше.
В центральной же части объекта находится плотное аккреционное[9] облако — газовый диск, вращающийся вокруг центрального массивного тела. При этом струи газа движутся в направлении, образующем с осью вращения диска угол около 20 градусов. Таким образом, вся система приобретает свойства наклонного волчка.
Из механики известно, что ось вращения такой системы должна медленно менять свое положение в пространстве — испытывать так называемую прецессию. Благодаря этому положение газовых струй относительно земного наблюдателя будет с течением времени медленно изменяться. Таково возможное объяснение второй загадки SS 433 — 164-суточной периодичности в перемещении спектральных линий в его спектре…
Остается, однако, не вполне ясным вопрос, за счет каких сил движение газа в струях оказывается таким постоянным и упорядоченным. Не исключено, что здесь существенную роль играют мощные магнитные поля. А массивное тело, находящееся в центре аккреционного диска, представляет собой двойную систему — комбинацию нейтронной звезды или черной дыры и обычной массивной звезды-гиганта.
Загадок очень много. Не выяснено, в частности, даже точное расстояние до объекта. Оценки колеблются от 3500 парсеков (11 000 световых лет) до 5000 парсеков (17 000 световых лет), что, впрочем, свидетельствует о том, что объект находится в нашей Галактике.
Бросается в глаза и определенное сходство между тем, что происходит в SS 433, и явлениями, протекающими в радиогалактиках и некоторых квазарах, где, как мы уже знаем, тоже наблюдаются выбросы газовых струй. А ведь SS 433 — не ядро галактики, обладающее массой порядка миллиарда солнечных масс, а всего лишь двойная система! Это говорит о том, что космические выбросы — явление достаточно распространенное во Вселенной и что масштабы подобных процессов могут колебаться в весьма широких пределах.
Впрочем, расход массы у SS 433 очень велик. Ежегодно в струях здесь выбрасывается около 10-6 солнечной массы. Поэтому современная стадия SS 433 вряд ли может быть достаточно продолжительной. Возможно, именно этим объясняется уникальность SS 433. Других подобных объектов обнаружить не удалось.
Не исключено, что нам просто повезло и мы оказались современниками редчайшего явления, изучение которого может пролить свет на природу физических процессов, порождающих многие активные явления, происходящие во Вселенной.
Излучение из прошлого
В 1947 г. известный физик-теоретик Г. Гамов выдвинул идею, согласно которой наша Вселенная на начальной стадии своего существования была «горячей». Она возникла в результате расширения сверхплотной горячей плазмы, обладавшей колоссальной температурой порядка десятков, а возможно, и сотен миллиардов кельвинов и чудовищной плотностью около 1095 г/см3, что на 81 порядок выше плотности атомного ядра.
Это был не обычный взрыв, который начинается из определенного центра и постепенно охватывает все большие области пространства, а взрыв, который, по образному выражению известного американского физика-теоретика С. Вайнберга, произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы [10]).
Иными словами, другого пространства, кроме того, которое было первоначально занято исходным веществом, не существовало. И начальный взрыв был не расширением материи в окружающее пространство, а расширением самого пространства.
Дальнейшее формирование структуры Вселенной связано с расширением сверхплотного состояния — расширением, которое началось около 15–20 млрд. лет назад — и с теми физическими процессами, которыми оно сопровождалось.
Об эпохе, закончившейся примерно через миллион лет после «Большого взрыва», мы получаем прямую информацию благодаря открытию реликтового излучения, возникшего на ранней стадии расширения.
История обнаружения этого излучения довольно любопытна. Его в некотором смысле случайно впервые зарегистрировали американские радиофизики А. Пензиас и Р. Вильсон, которым 13 лет спустя за это открытие была присуждена Нобелевская премия.
Первые попытки обнаружить радиоизлучение, идущее из глубины времен, и тем самым подтвердить теорию горячей расширяющейся Вселенной относятся к началу шестидесятых годов. Осенью 1964 г. известный американский физик Р. Дикке и его сотрудники в Принстонском университете приступили к созданию установки для обнаружения реликтового излучения.
В то же самое время Пензиас и Вильсон по заданию известной радиотелефонной фирмы «Белл» занимались изучением характеристик новой радиоастрономической антенны, предназначавшейся для системы радиосвязи через искусственные спутники Земли. Эта система и связанная с ней аппаратура отличались очень хорошей защитой от помех и низкой шумовой температурой, т. е. сами приемные устройства вносили в результаты измерений минимальные искажения. Такого результата удалось достичь благодаря специальной конструкции приемной аппаратуры с усилителем на рубиновом кристалле, охлажденном жидким гелием.
В процессе работы ученые обнаружили неожиданную помеху — непонятный шумовой фон на волне длиной 7,3 см. Дальнейшие измерения показали, что загадочный радиошум не зависит ни от направления системы, ни от времени суток и года. Это указывало на его космическое происхождение.
В мае 1965 г. статья Пензиаса и Вильсона, в которой сообщались результаты исследований неизвестного излучения, однако без объяснения его физической природы, была опубликована в «Астрофизическом журнале». Объяснение в том же номере журнала дала группа Р. Дикке, истолковавшая таинственный шумовой фон как реликтовое излучение.
Кстати сказать, образный термин «реликтовое» был предложен И. С. Шкловским.
Справедливость, однако, требует отметить, что еще до появления статей в «Астрофизическом журнале» была опубликована весьма интересная работа советских астрофизиков И. Д. Новикова и А. Г. Дорошкевича, в которой обосновывается возможность практической регистрации реликтового радиоизлучения. Авторы статьи впервые рассчитали весь спектр излучения от известных в то время источников радиоизлучения во Вселенной с учетом их эволюции в процессе расширения и показали, как на их фоне должно выглядеть реликтовое излучение. При этом они пришли к выводу, что в области сантиметровых и миллиметровых волн это излучение может быть практически обнаружено. Как мы видели, действительность подтвердила это предсказание.
Таким образом, открытие реликтового излучения является еще одним блестящим примером научного предвидения, которыми так богата история естествознания, в особенности физики и астрономии.
По мере расширения Вселенной реликтовое излучение постепенно остывало, и его современная температура составляет около 3 кельвинов.
В настоящее время его исследованиями занимаются радиоастрономы на многих радиотелескопах мира, в том числе на гигантском советском радиотелескопе РАТАН-600. Оно зарегистрировано на волнах длиной 20,7; 3,2; 1,5; 0,26 см. Температура реликтового излучения на всех длинах волн оказалась равна 3 К, максимум интенсивности лежит в области миллиметровых волн.
Многократные измерения интенсивности реликтового излучения в различных направлениях показали, что с точностью до десятых долей процента оно и изотропно. Это значит, что куда бы мы ни направили наш радиотелескоп, интенсивность реликтового излучения окажется практически одинаковой. Этот факт как раз и свидетельствует о том, что излучение, о котором идет речь, действительно является реликтовым, а не возникшим в каких-либо обособленных дискретных источниках.
Исследование физических характеристик реликтового излучения показало, что первоначальная плазма обладала чрезвычайно высокой температурой. Тем самым было получено важное подтверждение справедливости теории горячей расширяющейся Вселенной.
Однако всем сказанным значение реликтового излучения для познания окружающего нас мира не ограничивается. Так, например, исследование этого излучения позволило получить данные, которые являются независимым подтверждением фундаментального вывода современной астрофизики об однородности нашей Вселенной в больших масштабах, об отсутствии систем большего масштаба; чем сверхскопления галактик. Если бы в окружающем нас мире существовали достаточно большие регионы с повышенной плотностью вещества, сравнимые по своим размерам со всей наблюдаемой областью пространства, то в этих регионах реликтовое излучение испытывало бы определенные изменения.
Дело в том, что согласно общей теории относительности Эйнштейна должно, существовать так называемое гравитационное красное смещение. — Электромагнитное излучение в сильных гравитационных полях испытывает определенный сдвиг в сторону более длинных волн и низких частот. Этот эффект с большой точностью проверен экспериментально.
Если бы во Вселенной существовали сгущения вещества столь больших масштабов, то их тяготение должно было бы, согласно общей теории относительности, вызвать увеличение длины волны реликтового излучения (гравитационное красное смещение). Иными словами, реликтовое излучение, приходящее к нам с некоторых направлений, было бы «покрасневшим». В общей картине его распределения по всему небу должны были бы существовать «пятна» пониженной интенсивности.
Расчеты показывают: для того чтобы подобные пятна могли быть замечены наиболее крупными современными радиотелескопами, такими, например, как РАТАН-600, размеры сгущений вещества должны иметь масштаб порядка миллиарда световых лет, а их плотность, как можно полагать, должна превосходить средний уровень по меньшей мере на 10 %.
Однако современные радиоастрономические наблюдения соответствующих «пятен» интенсивности реликтового излучения не обнаружили. Видимо, это означает, что сгущений, о которых идет речь, не существует.
Следовательно, в пределах той области пространства, откуда доходит к нам реликтовое излучение, самыми большими структурными образованиями являются сверхскопления галактик поперечником приблизительно до ста миллионов световых лет. В больших масштабах распределение вещества во Вселенной представляется достаточно однородным.
С учетом достигнутой точности наблюдений можно считать, что средняя плотность вещества по достаточно большим областям Вселенной различается не больше, чем на десятые доли процента.
Если верна гипотеза Я. Б. Зельдовича о возникновении скоплений галактик из образований типа «блинов», то, сформировавшись на определенном этапе, такие «блины», определившие ячеистую структуру Вселенной, неизбежно должны были повлиять и на характер реликтового излучения. В его распределении по небесной сфере должны в этом случае наблюдаться определенные мелкомасштабные колебания (флуктуации) радиояркости. Однако таких флуктуаций пока обнаружить не удалось.
Разумеется и в этом случае требуются дальнейшие тщательные исследования с помощью еще более чувствительной аппаратуры.
Наблюдения реликтового излучения позволяют решить еще одну интереснейшую задачу. Все космические объекты находятся в постоянном движении. Планеты обращаются вокруг Солнца. Солнце вместе с другими звездами движется вокруг центра Галактики. Галактики, в свою очередь, не только участвуют в расширении Вселенной, но и перемещаются друг относительно друга.
Для того чтобы обнаружить и изучить любое движение, измерить его физические характеристики: скорость, ускорение, направление — необходима определенная система отсчета, связанная с теми или иными материальными объектами. Так, движение Земли и планет мы обычно отсчитываем относительно системы координат, связанной с Солнцем, а движение Солнца и звезд относительно галактической системы координат.
Но все дело в том, что космические тела, с которыми мы связываем те или иные системы отсчета, сами движутся. Иными словами, любой космический объект одновременно участвует в целом ряде различных движений. И для того, чтобы определить суммарное движение, нужна была некая «независимая» система отсчета, не связанная с перемещающимися небесными телами. Такой в определенном смысле «абсолютной» или, точнее говоря, физически преимущественной системой может служить система отсчета, жестко связанная с реликтовым излучением.
Мы введем эту систему таким образом, чтобы в каждой точке пространства по отношению к ней поток излучения был равен нулю. В этом и заключается физическая преимущественность построенной нами системы.
Если Земля движется относительно реликтового излучения, реликтового фона Вселенной, то плотность энергии этого излучения, а следовательно и его «радиояркость», в направлении движения будет соответственно выше, чем в противоположном. В самом деле, представим себе реликтовое излучение как поток фотонов. Тогда, очевидно, за одно и то же время Земля будет «сталкиваться» с большим числом встречных фотонов, чем догоняющие.
Как мы уже говорили, реликтовое излучение практически изотропно, но из-за того, что Земля обладает собственным движением, эта изотропия должна несколько нарушаться. Нарушения эти, разумеется, весьма незначительны и не меняют общую картину благодаря тому, что скорость движения нашей планеты ничтожна в сравнении со скоростью распространения электромагнитных волн. Но тем не менее такие нарушения существуют, и их можно в принципе обнаружить. Измерив разницу в интенсивности реликтового фона в диаметрально противоположных направлениях, мы определим скорость движения Земли по отношению к введенной нами преимущественной системе отсчета.
Точнейшие измерения с помощью современных радиотелескопов на волне длиной 9 мм показали, что радиояркость реликтового фона в направлении на созвездие Льва (это созвездие расположено на небе несколько ниже «донышка ковша» Большой Медведицы) чуть больше, а в противоположном направлении чуть меньше средней для всего неба величины. Различие едва уловимо: всего на одну тысячную. Но из этого следует, что наша планета вместе с Солнцем и всей Солнечной системой движется по направлению к созвездию Льва (к точке с координатами: прямое восхождение α=10±0,12 ч, склонение σ= 6±3°) со скоростью 372 км/с относительно системы отсчета, связанной с реликтовым излучением. (Возможная ошибка в определении указанной скорости составила при этом около 25 км/с в ту или другую сторону.) Зная эту величину, а также скорость движения нашей Галактики относительно Местной группы галактик, можно определить скорость относительно реликтового фона и всей Местной группы… Она равна 610 км/с плюс-минус 50 км/с и направлена к точке с координатами α= 10,5 ± 0,4 ч, σ=−26 ± 5°.
Изотропна ли Вселенная?
Одним из основных положений современной науки о Вселенной всегда считалось представление об ее однородности и изотропности. Однородность означает, что свойства достаточно больших по масштабам областей Вселенной в основных чертах одинаковы.
Все наблюдательные данные, имевшиеся в распоряжении астрономов до самого последнего времени, не противоречили подобному представлению. В частности, вывод об однородности Вселенной в больших масштабах не опровергается и открытием гигантских космических «пустот». Ведь их размеры не идут ни в какое сравнение с размерами Метагалактики — области пространства, которая охвачена астрономическими наблюдениями.
При современных методах исследования «горизонт видимости» (о нем подробнее говорится на с. 148) равен примерно 10–12 млрд. световых лет. В ограниченной им области пространства можно разместить не менее 1000 ячеек, для каждой из которых имеет место однородность. Однако не так давно были получены весьма интересные и неожиданные результаты, которые, может быть, заставят пересмотреть представление об изотропии Вселенной. Проводились наблюдения двойных радиоисточников — радиогалактик, каждая из которых состоит из двух связанных между собой радиокомпонентов. Таких источников зарегистрировано достаточно много, и они распределены по всей небесной сфере. Английский астроном П. Берч на радиотелескопе обсерватории Джодрелл Бэнк изучил 100 таких радиогалактик, расположенных в северном и южном полушариях неба.
Как известно, электромагнитные волны, в том числе и радиоволны, в отличие, например, от звуковых волк, — поперечные. Если у звуковой волны направление колебаний совпадает с направлением распространения волны, то у электромагнитных волн направление колебаний перпендикулярно направлению распространения. Если к тому же поперечные колебания происходят в одной плоскости, то электромагнитная волна называется линейнополяризованной, а плоскость, перпендикулярная плоскости колебаний, называется плоскостью поляризации.
В процессе наблюдений, о которых идет речь, измерялся угол между линией, соединяющей компоненты двойных радиоисточников, и направлением плоскости поляризации их радиоизлучения. При этом было обнаружено удивительное явление: оказалось, что для радиоисточников, расположенных в одной полусфере неба, этот угол имеет один знак, а для радиоисточников, расположенных в другой полусфере, — противоположный!
Естественно возникает вопрос: связан ли обнаруженный эффект с условиями наблюдения? Вопрос, который всегда задают себе наблюдатели и экспериментаторы для того, чтобы убедиться, что изучаемое ими явление носит реальный характер, а не искажается какими-либо побочными обстоятельствами. В ситуации, о которой идет речь, такое побочное влияние мог бы оказывать так называемый эффект Фарадея — эффект вращения плоскости поляризации под воздействием внешнего магнитного поля. Не вызвано ли обнаруженное различие свойств двойных радиоисточников, расположенных в противоположных областях небесной сферы, влиянием магнитного поля нашей Галактики?
Однако эта возможность была весьма тщательно учтена исследователями и последствия, связанные с эффектом Фарадея, были исключены из результатов наблюдений. Таким образом, обнаруженное различие свойств носит явно внегалактический характер, и, следовательно, породившая его причина кроется в самых общих закономерностях нашей Вселенной.
Попутно был зарегистрирован еще один интересный факт. Радиоизлучающие компоненты двойных радиоисточников связаны друг с другом газовыми перемычками. Наблюдения показали, что в одной полусфере эти перемычки изогнуты в одну сторону, а в противоположной — в другую. Наконец, двойные радиоисточники вращаются вокруг собственных осей. И эти оси имеют некое преимущественное направление в пространстве.
О чем говорят все эти факты? Видимо, о том, что существуют некоторые весьма общие свойства нашей Вселенной, которые нарушают ее изотропию. В частности, одной из причин обнаруженных явлений могло бы служить вращение Вселенной с угловой скоростью, обеспечивающей один оборот за 100 триллионов лет.
Небезынтересно заметить, что в свое время советский ученый Р. М. Мурадян разработал оригинальную гипотезу, согласно которой наша Метагалактика произошла в результате взрыва сверхмассивного суперадрона (с массой порядка 1056 г) — элементарной частицы из числа участвующих в так называемых сильных взаимодействиях[11]). Его распад на относительно более мелкие адроны привел к образованию протоскоплений галактик, а последующие распады на адроны еще меньшей массы — к образованию галактик. Если эта гипотеза верна, то Метагалактика должна обладать собственным вращением. Правда, такое вращение является лишь необходимым, но еще недостаточным условием справедливости того механизма образования галактик, который предложен Мурадяном. Поэтому вращение Метагалактики само по себе еще не может служить доказательством того, что его гипотеза верна.
Однако возможность объяснения тех фактов, которые были обнаружены в связи с наблюдением двойных радиоисточников, вращением нашей Вселенной заставляет об этой гипотезе вспомнить.
Правда, справедливость требует заметить, что в научной печати появились сообщения, авторы которых подвергают результаты Берча сомнению. Сам Берч настаивает на их обоснованности. Впрочем, в этой дискуссии нет ничего удивительного. Когда речь идет о научных результатах, способных заметно повлиять на существующие фундаментальные представления о мироздании, необходимо их всестороннее обсуждение. Поэтому факты, свидетельствующие об отсутствии во Вселенной изотропии, нуждаются в самой тщательной проверке и перепроверке. Но если они подтвердятся, то это будет иметь огромное значение для современного естествознания.
И звезда с звездою «говорит»
В последние, годы в центре внимания современной астрофизики оказались так называемые «сильные» явления, во Вселенной, т. е. такие явления, которые сопровождаются выделением чрезвычайно большого количества энергии. Их исследование позволяет глубже понять особенности строения Вселенной, обнаружить неизвестные физические эффекты, познать новые фундаментальные законы.
Несколько лет назад аппаратура, установленная на искусственных спутниках Земли и высотных аэростатах, зарегистрировала загадочное явление — мощные вспышки гамма-излучения, идущего из глубин космического пространства. Эти вспышки носили характер коротких всплесков продолжительностью от долей секунды до нескольких десятков секунд. За год отмечалось от пяти до восьми подобных вспышек. Поражала их огромная мощность: мощность, выделяемая во время вспышек таинственными источниками, примерно в миллион раз превосходила мощность светового излучения Солнца и в десять раз мощность гамма-излучения всей нашей звездной системы — Галактики, в состав которой входят сотни миллиардов звезд. И это при том предположении, что неизвестные космические объекты, порождающие гамма-вспышки, расположены сравнительно недалеко в пределах нашего звездного острова. А если бы оказалось, что они находятся где-то в других галактиках, то выделяемая ими мощность достигала бы фантастического значения.
Довольно долго природа космических объектов, «ответственных» за возникновение гамма-вспышек, оставалась неизвестной. И только сравнительно недавно кое-что начало проясняться…
В конце 1978 г. к нашей космической соседке Венере были направлены две советские автоматические межпланетные станции — «Венера-11» и «Венера-12». На каждой из них, кроме аппаратуры для исследования планеты, были установлены специальные устройства для регистрации космического гамма-излучения — аппараты «Конус», созданные учеными Физико-технического института имени А. Ф. Иоффе АН СССР. Чувствительность этих приборов примерно в пятьдесят раз превосходила чувствительность гамма-аппаратуры, применявшейся раньше. Каждые два-три дня приборы отмечали всплески гамма-излучения глубин Вселенной. Всего за три месяца путешествия по маршруту Земля-Венера удалось зарегистрировать тридцать шесть гамма-вспышек — больше, чем за несколько предыдущих лет наблюдений.
Но самое интересное открытие было сделано 5 и 6 марта 1979 г. В эти дни аппаратура космических станций и искусственных спутников зарегистрировала две гамма-вспышки от одного и того же источника в созвездии Золотой Рыбы. Особенно любопытной оказалась первая из них: по своей мощности она примерно в тысячу раз превосходила все вспышки, отмечавшиеся когда-либо прежде. Излучение максимальной мощности длилось всего около четверти секунды. Однако чувствительный «Конус» сумел достаточно подробно зафиксировать всю картину — не только максимум, но и, как его называют астрофизики, «хвост» всплеска.
Когда ученые взглянули на график, они с изумлением увидели хорошо знакомую картину излучения рентгеновского пульсара…
Применение космических аппаратов, как уже было отмечено в гл. I, дало возможность приподняться над плотными слоями земной атмосферы, задерживающими подавляющее большинство космических электромагнитных излучений, и получить доступ к богатейшей информации, содержащейся в инфракрасных, ультрафиолетовых, рентгеновских и гамма-излучениях.
Особенно большой интерес представили астрофизические исследования в рентгеновском и гамма-диапазонах электромагнитных волн.
Изучение «рентгеновской Вселенной» началось в 1962 г., и к настоящему времени обнаружено уже большое число космических рентгеновских источников. Что они собой представляют? Какие космические объекты за ними скрываются? Какие физические процессы их порождают?
Оказалось, довольно разнообразные. Например, рентгеновское излучение может возникать при вспышках сверхновых звезд. Расширяющаяся оболочка «вспыхнувшей» звезды нагревает окружающую среду до очень высокой температуры, при которой возникает рентгеновское излучение.
Рентгеновское излучение порождается также перемещениями сгустков вещества в межзвездных магнитных полях и некоторыми другими физическими процессами в космосе.
Но, пожалуй, наибольший интерес представляют явления, происходящие в двойных системах. Как показывают наблюдения, почти половина всех звезд образует пары. Особенно любопытен тот случай, когда один из компонентов пары является нейтронной звездой.
Как известно, чтобы преодолеть земное притяжение, любое тело должно развить вторую космическую скорость 11.2 км/с. И наоборот, если неподвижное тело начнет издалека свободно падать на нашу планету, то у поверхности оно разовьет как раз вторую космическую скорость — 11.2 км/с. При ударе выделится энергия, равная той потенциальной энергии, которую тело имело в начальный момент.
Нейтронная звезда в сотни тысяч раз массивнее Земли, и вторая космическая скорость достигает для нее огромной величины — примерно 100 тыс. км/с. Поэтому и энергия, которая должна выделиться при аккреции вещества на такую звезду, колоссальна.
Откуда же это вещество берется? Его поставляет второй Член двойной системы — обычная звезда. Выброшенные ею заряженные частицы плазмы вырываются в магнитосферу нейтронной звезды и выпадают на ее поверхность в районе магнитных полюсов. В этих местах происходит выделение гравитационной энергии, и на поверхности нейтронной звезды возникают «горячие пятна» с температурой в миллионы кельвинов. А при таких температурах генерируется электромагнитное излучение в рентгеновском диапазоне. Так как нейтронная звезда вращается, то эти излучающие зоны могут попадать в поле зрения земного наблюдателя попеременно через промежутки времени, зависящие от периода вращения звезды.
Так явления, о которых идет речь, выглядят в теории, А в действительности — во Вселенной?
Рентгеновские пульсары были в самом деле обнаружены в 1972 г. с помощью специальной аппаратуры, установленной на одном из искусственных спутников Земли. Но правомерен вопрос: а может быть, это одиночные объекты и механизм генерации рентгеновского излучения у них совсем иной?
Однако по меньшей мере два факта говорили в пользу изложенной выше модели.