Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Трехмерный мир. Евклид. Геометрия - Josep Pla i Carrera на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


РИС. 6


РИС. 7

В этом утверждении прямо говорится о неограниченности, то есть подразумевается актуальная бесконечность. В той же первой книге это слово встречается еще в двух предложениях: в формулировке и в доказательстве.

Книга I, предложение 12. К данной неограниченной прямой из заданной точки, на ней не находящейся, можно провести перпендикулярную прямую (см. рисунок 6).

Книга I, предложение 22. Из трех прямых, которые равны трем данным, можно составить треугольник (см. рисунок 7).

Что заставляет Евклида бросать вызов аристотелевскому ограничению на использование бесконечности в действительности? Ответ прост. Он хочет, чтобы его утверждения были действительны в общем смысле, то есть не зависели от конкретного рисунка. В первом случае прямая, к которой мы хотим провести перпендикуляр, должна быть достаточно длинной, чтобы гарантировать, что исходная точка этого перпендикуляра будет над ней независимо от конкретной точки на рисунке. Во втором случае три стороны треугольника должны находиться на и над прямой, которая, соответственно, должна быть настолько длинной, чтобы вмещать их независимо от длин сторон, а для этого она должна быть бесконечной. Значит, в некотором смысле ограничение, установленное Аристотелем, отнимает что-то у математиков. Девять веков спустя Прокл в комментарии к первой книге «Начал» выразил свое мнение по этому поводу, анализируя предложение 12:

«Но надо исследовать теоретически, как полагается беспредельное в цельном. Ясно, что если имеется неограниченная прямая, то неограниченна и плоскость, содержащая ее, причем на деле, поскольку задача предложена. [...] Остается считать, что беспредельное существует лишь в воображении, но беспредельное не мыслится воображением. Ведь мыслить — значит придавать мыслимому форму и предел [...] Так что беспредельное относится не к мышлению, но к неопределенному для мысли; и, будучи немыслимым, несоразмерным природе и непостижимым для мысли, оно и называется беспредельным. [...] Воображение порождает его в силу своей нераздельной способности непостижимого порождения и представляет беспредельное по его немыслимости. [...] Так что когда мы полагаем в воображении данную неограниченную прямую, подобно всем прочим геометрическим фигурам, [...] не удивительно ли, как эта линия может быть беспредельной на деле и как она, будучи неопределенной, связана с определенными понятиями? С другой стороны, разум, из которого исходят рассуждения и доказательства, не пользуется беспредельным в науках, [...] беспредельное берется не ради беспредельного, но ради определенного. Ведь если данная точка не лежит на продолжении ограниченной прямой и не отстоит от этой прямой так, что никакая часть прямой не лежит под точкой, у нас не будет никакой потребности в беспредельном. В этом случае пользуются ограниченным, как не подлежащим проверке и бесспорным».

В этом тексте сделан большой шаг вперед по сравнению с предыдущими рассуждениями о бесконечном. Однако лишь благодаря исследованиям немецких ученых Рихарда Дедекинда (1831-1916) и особенно Георга Кантора (1845-1918) — всего через 50 лет после того, как Лобачевский и Бойяи расправились с пятым постулатом, — актуальная бесконечность стала частью математики. Так был положен конец философско-научной традиции, длившейся более 2000 лет.

ГЛАВА 4

Метод танграма в «Началах»

Одним из важнейших достижений китайской геометрии было изобретение танграма, позволяющего составлять различные фигуры с одинаковой площадью. Древнегреческие математики развили и обобщили эту технику, придав ей огромный дедуктивный потенциал. В частности, метод танграма позволил Евклиду доказать одну из основополагающих теорем древнегреческой геометрии, знаменитую теорему Пифагора, и решить задачи тысячелетней давности, унаследованные от месопотамских мыслителей.

Классический китайский тантрам — это элементарный геометрический метод, который основывается на следующем фундаментальном постулате.

Две фигуры, состоящие из равных частей, равны между собой.

В Китае этот метод был известен с незапамятных времен и назывался qi qiao ban — «семь дощечек мастерства». В Европу танграм попал как игра-головоломка и в таком виде распространился по всему миру. Изначально семь составляющих его частей сложены так, что образуют квадрат (см. рисунок 1 на следующей странице). Площади фигур, составленных из всех этих частей, равны площади квадрата (рисунок 2). Эта особенность позволяет, помимо прочего, показать значение диагонали квадрата. Итак, из данного квадрата можно сложить еще два с равной площадью (рисунок 3). Таким образом, мы видим, что при помощи диагонали квадрата справа можно построить еще один (как данный первоначально) с площадью, вдвое большей. Мы использовали термин «показать», поскольку в этом случае речь идет о простом наблюдении фигур без использования каких-либо логико-дедуктивных методов.

Такой вид рассуждения тесно связан с диалогом Платона о воспоминании «Менон», где Сократ показывает: раб знает то, о чем он не знает, что знает. Рассуждение Сократа строится по принципу следующего: возьмем квадрат (со сплошным контуром, см. рисунок 4). Повторив его четыре раза, мы получим квадрат с пунктирными сторонами, как видно на том же рисунке. Затем проведем диагональ и на ней построим еще один квадрат. Получаем наклонный квадрат с пунктирными сторонами. Очевидно, что площадь этого квадрата равна сумме площадей двух квадратов, равных данному.


РИС. 1


РИС. 2

Танграм работает по такому же принципу, только используются прямоугольные равнобедренные треугольники, построенные на диагонали квадрата, в который части танграма сложены изначально. Евклид использовал в своей геометрии (точнее, в геометрии, основанной на его постулате о параллелях) обобщенный метод танграма: для деления отрезка таким образом, чтобы его части образовывали прямоугольник с площадью, большей, меньшей или равной площади данного квадрата; для геометрического решения месопотамской задачи, применяемой в решении уравнений второго порядка; для построения квадратуры многоугольников — то есть квадрата с площадью, равной площади данного многоугольника; наконец, для определения золотого сечения — операции, заключающейся в разделении отрезка на две части так, чтобы меньшая относилась к большей так, как большая относится к целому.

Евклид располагал базовым инструментом — параллелизмом, с помощью которого смог доказать следующие результаты.

Книга I, предложение 29. Накрест лежащие углы равны между собой.

Книга I, предложение 32. Сумма трех внутренних углов треугольника равна сумме двух прямых углов.

Книга I, предложение 34. Противоположные стороны и углы параллелограммов равны между собой.


РИС.З


РИС. 4

Предложения 29 и 34 позволяют применить обобщенный метод танграма, то есть использовать тантрам, не ограничиваясь изначально заданными фигурами, на которые он разделен. Для этого нужны теоремы, устанавливающие равенство их площадей.

Книга I, предложения 35 и 36. Параллелограммы, находящиеся на одном и том же основании и между одними и теми же параллельными прямыми, равны между собой.

Книга I, предложение 37. Треугольники, находящиеся на одном и том же основании и между одними и теми же прямыми, равны между собой.


РИС. 5

Рисунок 5 иллюстрирует предложения 35 и 26 первой книги.

Евклид говорит, что параллелограммы ВС и IH обладают одинаковой площадью. Сегодня это утверждение кажется нам очевидным. У фигур одинаковое основание и одинаковая высота, а площадь получается путем умножения этих двух величин (хотя это тоже требует доказательства). Однако древнегреческая геометрия оперирует размерами, у которых вследствие несоизмеримости нет длины. Из-за этого один или оба отрезка не могут быть измерены (этот вопрос мы рассмотрим подробнее в главе 5). Следовательно, необходимо найти способ доказать равенство этих двух площадей. Евклид использовал общее понятие 1. Если бы ему удалось доказать, что площади параллелограммов ВС и AJ с общим основанием равны и что площадь второго равна площади параллелограмма IH с которым у него одинаковое основание, то и параллелограммы ВС и IH были бы равны.

Точка обозначает конец линии или ее начало?

Кто знает. Никто.

Мо-цзы (479-400 до н. э.)

Начнем с первого вопроса. Евклид анализирует все фигуры (то есть пользуется методом китайского танграма) и применяет общие понятия 2 и 3. Треугольники BAI и DCJ состоят из белой фигуры и серой, которая является общей для них обоих. Если мы отнимем у них этот общий кусок («от равных отнимем равное»), то получится, что площади четырехугольников BAMD и IMCJ равны, хотя они и имеют разную форму.

Теперь добавим к этим четырехугольникам треугольник АМС (темно-серый), который станет их общей частью. Поскольку мы прибавили «к равным равное», получается, что площади параллелограммов ВС и AJ с общим основанием АС равны. В чем разница между случаем, который мы только что доказали, и общим утверждением предложений 35 и 36 первой книги? Она состоит в том, что, как мы уже видели, в этом случае речь идет не просто о равных основаниях, а об одном и том же основании (в паре ВС и AJ — отрезок АС, в паре AJ и IH — отрезок IJ).

В этом доказательстве Евклид, возможно, использовал предложение 4 из первой книги (критерий равенства по двум сторонам и углу), которое устанавливает равенство треугольников BAI и DCJ. Для этого ему были необходимы некоторые свойства, вытекающие из постулата о параллельных (см., в частности, предложения 34 и 29 первой книги). После того как Евклид пришел к этому результату, он мог использовать метод танграма, при котором части не равны друг другу, но имеют одинаковую площадь. В этом и состоял принцип обобщенного танграма, который Евклид использовал с большим мастерством. Предложение 37 первой книги является простым выводом из предыдущих, поскольку сводится к доказательству того, что площадь треугольников равна половине площади параллелограмма (см. рисунок 6).

Разум не сосуд, который надо наполнить, а факел, который надо зажечь.

Плутарх

Евклид, как до него и другие древнегреческие математики, вывел геометрию на новый уровень и придал ей большую ясность, обобщив простые и очевидные результаты. В данном случае он установил, правда не объясняя это отдельно, а сразу используя в своих доказательствах, что площади можно высчитывать при помощи различных по форме фигур (параллелограммов и треугольников).


РИС. 6

Еще одно геометрическое понятие, позволившее Евклиду использовать обобщенный метод танграма,— гномон. Геродот так говорит о нем во второй книге «Истории»:

«Сесострис разделил землю между всеми жителями и дал каждому по квадратному участку равной величины. От этого царь стал получать доходы, повелев взимать ежегодно поземельную подать.

Если река отрывала у кого-нибудь часть его участка, то владелец мог прийти и объявить царю о случившемся. А царь посылал людей удостовериться в этом и измерить, насколько уменьшился участок, для того чтобы владелец уплачивал подать соразмерно величине оставшегося надела. Мне думается, что при этом-то и было изобретено землемерное искусство и затем перенесено в Элладу.

Ведь «полос» и «гномон», так же как и деление дня на 12 частей, эллины заимствовали от вавилонян».


РИС. 7

Евклид дал определение гномону в книге II, хотя уже в книге I установил характеристики, благодаря которым он имеет такое большое значение.

Книга II, определение 2. Во всякой образованной параллельными линиями площади каждый из расположенных на ее диаметре параллелограммов вместе с двумя дополнениями будем называть гномоном.

Его интересная особенность:

Книга I, предложение 43. Во всяком параллелограмме дополнения расположенных по диаметру параллелограммов равны между собой.

Как видно на рисунке 7, гномоном, согласно определению 2 книги II, является серая фигура, состоящая из четырех частей: двух параллелограммов IH, GC и двух треугольников IGD и JDG, явно равных. Треугольники, на которые параллелограмм делится диагональю, то есть белые и темно-серые, равны по признаку равенства треугольников, то есть применяется общее понятие 3. Следовательно, фигуры разной формы (которые нельзя наложить одну на другую) равновеликие, в этом и заключается обобщенный метод танграма.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА

Игра в танграм позволила Евклиду дать очень изящное и в то же время очень оригинальное доказательство теоремы Пифагора.

Доказательство Евклида из предложения 47 книги I.

Теорема Пифагора. В прямоугольном треугольнике ΔАВС квадрат на гипотенузе ВС равен сумме квадратов, построенных на катетах АВ и АС.

Как видно на рисунке 8, из вершины А проводится прямая, перпендикулярная гипотенузе ВС, до пересечения со стороной Н1 квадрата В1. Мы получаем прямоугольники CJ и В]. Необходимо доказать, что прямоугольник С] равен квадрату AD и что прямоугольник BJ равен квадрату AG. Евклид строит треугольники AACI и ADCB. Они равны, как можно легко убедиться, поскольку имеют равные стороны и угол между ними (общее понятие 2). Итак, у треугольника AACI и прямоугольника CJ общая сторона СI, а его вершина А находится на той же параллельной прямой, AJ, на которой у прямоугольника CJ расположена сторона KJ, противоположная стороне CI. Следовательно, площадь прямоугольника CJ в два раза больше площади треугольника ΔACI. Таким же образом, площадь квадрата AD в два раза больше площади треугольника ADCB. Следовательно, площадь квадрата AD равна площади прямоугольника IK (первое равенство, которое мы должны были доказать). Аналогично, площадь квадрата AG равна площади прямоугольника BJ (второе равенство, которое мы хотели доказать). Следовательно, согласно общему понятию 2, теорема доказана.

ОБОБЩЕННЫЙ МЕТОД ТАНГРАМА В КНИГЕ II

Термин «геометрическая алгебра» в свое время вызывал споры, но в любом случае он очень удобен из-за своей лаконичности. Дисциплина заключается в том, чтобы выразить площади прямоугольников и квадратов в числовой форме. Ее пионерами были Диофант Александрийский и арабские математики. Например, знаменитое дистрибутивное свойство умножения, представленное в алгебраическом виде как а (b + с + d +...) = (a x b) + (a x c) + + (а х d) + ..., в геометрии Евклида будет записано так:

Книга II, предложение 1.

Если имеются две прямые и одна из них рассечена на сколько угодно отрезков, то прямоугольнику заключающийся между этими двумя прямыми у равен вместе взятым прямоугольникам, заключенным между нерассеченной прямой и каждым из отрезков (см. рисунок 9).


РИС. 8


РИС. 9

Аналогичным образом можно выразить и другие алгебраические равенства, например (а ± b)² = а² + b² ± 2aby (а + b) х (а - b) = а² - b². Рассмотрим только (а + b) х (а - b) = а² - b². Будем исходить из альтернативной формулировки предложения 5 книги 2. Возьмем фигуру, как на рисунке 10. Разобьем прямоугольник HJ. В первую очередь установим равновеликость прямоугольников FN и NB, используя свойства гномона. Прямоугольник NB равновелик прямоугольнику BI по построению, так как DB = DF = а, BJ = FH = b, DJ = а + b, JI = DH = а - b. Получается, что прямоугольник HJ состоит из квадрата KD (а²), поскольку прямоугольники GJ и FN равны, но остается квадрат MG (b²).


РИС. 10



Поделиться книгой:

На главную
Назад