Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Физика для "чайников" - Андрей Задумавшийся на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Дак вот, вернёмся к нашим баранам. Как перетащить на переменный ток самую важную для меркантильного человечества величину - мощность? Ток и напряжение же всё время меняются, как её считать? Чтобы учесть всё возможное, математика закопалась аж до уровня комплексных чисел, но реально измеряемой (а также потребляемой, выделяемой и так далее) мощностью по-прежнему остаётся активная мощность - та же самая, которая была в постоянном токе. Определяется она как среднее значение мощности за период. Для синусоидальных тока и напряжения получается, что она равна следующему: P = (I0*U0*cosф)/2. Или, если брать действующие значения, то P = Iд*Uд*cosф. Отсюда же можно увидеть ещё один принцип, на который обожают обращать внимание всякие теоретики: если ф = 0, а ток и напряжение постоянны, то формула превратится в P = I*U - то, что было раньше! ф - это сдвиг фаз между током и напряжением. Да, это понять достаточно сложно, но попробуем разобраться. Идеал - это когда ф = 0, тогда косинус равен 1 и всё в ажуре. Это означает, что и напряжение, и ток как бы "идут в ногу". Лучше всего это представить так: два человека, идут рядом друг с другом, то есть никто никого в буквальном смысле не опережает (в цепях переменного тока обычно так и происходит). Но шагают они по-разному, не всегда попадая в такт друг другу. Если оба идут "в ногу", как солдаты на параде, то сдвиг фаз между ними - 0. Если нога одного чуть-чуть запаздывает (первый уже ступил, а второй ещё опускает ногу на землю) - у второго небольшой сдвиг по фазе относительно первого в виде запаздывания (первый, естественно, при этом опережает на ту же фазу). Если же первый человек ступает ногой на землю, когда нога второго ещё только занесена в наивысшей точке, то это будет сдвиг по фазе на 90 градусов (или пи/2, как больше любят выражаться те же радиолюбители). Если же они идут "в ногу", но ноги при этом разные (одновременно ступает левая нога первого и правая нога второго, например) - это будет сдвиг по фазе уже 180 градусов, или пи. 270 градусов (или 3пи/2) - это так же, как 90, только вторая нога будет находиться в высшей точке; это же можно трактовать как отставание на 90 градусов. И 360 градусов (2пи) - такой же ход "в ногу", как и в нуле. Соответственно, в идеале всегда сохранять в формуле мощности косинус фи, равный 1. Но в реальности это сделать труднее - например, при проходе через катушку переменного тока его сила начинает опаздывать на пи/2 по отношению к напряжению, а при прохождении через конденсатор - наоборот, напряжение "тормозит" на пи/2 по отношению к току. (Кто за кем опаздывает, можно запомнить по правилу "улицу": если написать это слово английскими буквами - ULICU - и читать слева направо, то видно: в катушке (L) сначала идёт напряжение, потом ток, в конденсаторе - наоборот.)

Теперь - маленькое лирическое отступление и ещё одно, выражаясь умным языком, устройство. Никогда не задумывались, почему электричество от электростанции до дома идёт по линиям электропередач, на которых огромное напряжение? Всё достаточно просто: во-первых, на электростанции вырабатывается очень даже солидная мощность, которую нужно передать на расстояние. Если передавать её такую, какая она есть, с огромным током, то не избежать и огромных потерь - никто не отменял закон Джоуля-Ленца, от которого греются провода. Остаётся второй выход: повысить напряжение, под которым идёт ток, до такого значения, чтобы сила тока стала поменьше - а значит, и потери стали бы тоже меньше. Но тогда встаёт сразу два вопроса: как повысить это напряжение в начале пути и как понизить его в конце, чтобы превратить их в общепринятые 220 вольт в розетке? Для этого используют такую штуку, как трансформатор. Это, по сути, две катушки, соединённые "магнитопроводом". На это умное слово можно не обращать внимания, достаточно себе представить П-образную железяку, перевернуть её, а затем намотать на два торчащих конца по катушке - вот это и будет трансформатор. Работает он по тому же принципу электромагнитной индукции и всё, что с ним связано: ток подходит к первой катушке, появляется магнитное поле, оно действует на вторую катушку; если ток переменный, то магнитное поле тоже переменное - а значит, и во второй катушке тоже образуется ток, тоже переменный, причём меняться он будет точь-в-точь так же, как и ток в первой катушке (или, как выражаются, в первичной обмотке). Самое крутое здесь - это так называемый коэффициент трансформации. Он зависит всего лишь от количества намотанных витков на первичной и вторичной обмотках (первой и второй катушках). Обозначается разными буквами в разной литературе, но обычно пишут k или n. Это отношение числа витков вторичной обмотки к числу витков первичной обмотки. При k > 1 трансформатор называется повышающим (повышает напряжение в k раз), при k < 1 - понижающим (снижает напряжение в 1/k раз). Тут запутаться несложно: больше витков - больше напряжение. Как в старом анекдоте: дайте таблеток от жадности, да побольше, побольше!

Вкратце и поумнее: переменный ток - это электрический ток, сила которого изменяется во времени. Наиболее часто используется ток, меняющийся по гармоническому закону: I = I0*sin(wt), U = U0*sin(wt+ф). Действующее значение силы тока и напряжения - это такое значение силы тока (напряжения) постоянного тока, при котором он совершает такую же работу, как и переменный ток за один полный период. При гармонических колебаниях Iд = I0/корень квадратный из 2, Uд = U0/корень квадратный из 2. Мощность, даваемая переменным током, при гармонических колебаниях описывается формулой: P = (I0*U0*cosф)/2 = Iд*Uд*cosф, где ф - сдвиг по фазе между током и напряжением; на практике стремятся повысить косинус фи максимально близко к единице. Трансформатор - устройство, состоящее из двух катушек индуктивности, соединённых магнитопроводом. Трансформатор позволяет существенно увеличить или снизить напряжение, сохранив при этом мощность и частоту переменного тока. Коэффициент трансформации (k) - отношение числа витков вторичной обмотки к числу витков первичной. При k > 1 трансформатор называется повышающим, при k < 1 - понижающим.

Это всё хорошо, но зачем говорить о переменном токе, когда его получают только на электростанциях? Сидели бы себе там тихонько да передавали б нам, а нас и постоянным неплохо "кормят". Не всё так просто! На переменном токе построено очень много устройств радиотехники - начиная от обычного бытового радиоприёмника, продолжая радаром, заканчивая спутниковым телевидением (впрочем, и обычным телевидением тоже) и беспроводным интернетом.

Самый простой способ, при котором "искусственно" можно получить переменный ток (я специально беру это в кавычки, потому что переменный ток в естественных условиях я до сих пор не могу представить - если только это не удар током от электрического угря или ската), называется колебательным контуром, но выглядит просто: это катушка и конденсатор, соединённые последовательно. Если на конденсатор подать заряд, то он начнёт разряжаться на катушку, через ту потечёт ток, в конце концов конденсатор разрядится окончательно и заглохнет, но ток в катушке от этого не прекратится! В результате он начнёт перезаряжать конденсатор "с другой стороны", зарядом другого знака, катушка постепенно станет размагничиваться, а конденсатор - снова заряжаться. Это и будет одно полное колебание, дальше всё повторяется. Период этих колебаний можно посчитать, зная всего лишь две величины: индуктивность катушки и ёмкость конденсатора. Как именно он считается, вывел товарищ по фамилии Томсон (не тот, который автомат придумал - тот Томпсон, а этот без "п"), и период считается так: T = 2пи*корень квадратный из (L*c). Я не знаю, почему 2пи, но связь между радианами (якобы "углами") и числами, которая заставляет использовать число пи снова и снова, преследует повсюду! Тут более важно другое: можно подобрать сколько угодно разных емкостей и индуктивностей, но если их произведение будет одно и то же - такой колебательный контур будет иметь один и тот же период, или одну и ту же частоту. Кстати, раз речь зашла о частоте - удобнее выкинуть эти 2пи, тогда придётся воспользоваться циклической частотой: w = 1/корень квадратный из (L*c).

Если поставить три основных используемых элемента в цепь - проводник с сопротивлением, конденсатор, катушку - то можно увидеть следующую их реакцию на переменный ток. Обычное сопротивление как выделяло тепло, так и выделяет, ничего полезного от него по-прежнему не добьёшься, разве что в терминах переменного тока оно теперь обзывается активным сопротивлением, считается оно точно так же. Конденсатор и катушка же обладают "реактивным" сопротивлением, которое вроде как тоже току сопротивляется, но тепло при этом выделяет не так живо, плюс они запасают энергию. Посчитать их можно так: Xc = 1/(w*c), XL = w*L. Xс - реактивное сопротивление конденсатора, w - циклическая частота, c - ёмкость конденсатора. XL – здесь это вовсе не размер одежды, а реактивное сопротивление катушки. L - её индуктивность, w - по-прежнему циклическая частота. Как видно, с изменением частоты это сопротивление тоже меняется. И снова кивок в сторону постоянного тока, когда w = 0: в этом случае Xc будет близко к бесконечности (да-да, делить на ноль нельзя, но мы прямо на ноль не делим, а смотрим, куда значение будет стремиться, если знаменатель постепенно приближать к нулю) - то есть конденсатор постоянный ток не пропускает. А у катушки XL будет стремиться к нулю - то есть она будет вести себя как обычный металлический провод с маленьким сопротивлением.

Если проводить дальнейшую аналогию с механикой, то в идеале электрические колебания - свободные. Но мир неидеален, и часть энергии катушки или конденсатора уходит всё в то же вездесущее тепло - то есть колебания со временем затухают. Соответственно, в идеале их придётся время от времени поддерживать - это будут вынужденные колебания. Дак вот, и у таких вынужденных колебаний тоже есть резонанс. Определяется он так же, как и в механике - увеличение амплитуды вынужденных колебаний в контуре при совпадении собственной частоты этих колебаний с частотой колебаний внешних, которые воздействуют. А теперь всё это же переведу на русский язык: есть радиоприёмник. У него внутри запрятан колебательный контур; двигая подстраивающий ползунок на радиоприёмнике, мы как бы сдвигаем или раздвигаем обкладки конденсатора, меняя его ёмкость (и тем самым меняем частоту колебательного контура, "подстраивая" её). Когда частота принимаемых радиосигналов (не видимых нам) становится близка к частоте подстраиваемого нами контура, мы начинаем слышать тихие звуки с помехами. Если покрутить ручку ещё, то звук станет очень чётким и будет гораздо громче. Это и будет означать, что мы вошли в резонанс - частота контура стала равна частоте радиосигнала, и итоговые колебания, в конце концов превращающиеся в звук, стали гораздо больше по амплитуде (звук стал громче). Именно на принципе резонанса построены приёмники радиосвязи. Частота, при которой такое происходит, называется резонансной, она равна 1/корень квадратный из (L*c), и что любопытно - оба реактивных сопротивления при резонансе оказываются равны! То есть Xc становится равно XL - собственно, из этого и получается, что резонансную частоту можно посчитать при помощи корня.

Ну хорошо, мы все такие радостные, приняли сигнал - а сам сигнал-то откуда взялся, явно не из космоса прилетел? (Хотя бывает, что именно радиоприёмником удаётся поймать какой-нибудь сигнал странного происхождения, о чём потом пишут в газетах.) А это скажем спасибо электромагнитным волнам, собственно, благодаря которым и получается передавать сигналы по воздуху без проводов. Потому что, в отличие от волн звуковых, они в воздухе почти не затухают и могут лететь долго-долго. Вот волны уже как колебания тока и напряжения не представишь, тут обычно рисуют умную картинку с изменяющимися по синусу векторами E и B, причём B колбасит "по полу" (горизонтально), а E - "по стене" (вертикально), то бишь они обе колеблются перпендикулярно друг другу. Расстояние между максимумами любой из этих синусоид (они и так обе одинаковые) будет длиной волны (лямбда). Как возникает волна, сообразить просто: нужно заставить или одно, или другое поле меняться по синусу. В итоге изменяющееся одно поле потащит за собой другое, другое схватит за руку первое, и так они и будут идти рука об руку до бесконечности. (Нет, электромагнитная волна тоже умеет затухать и ослабевать, но местами делает это гораздо слабее, чем волна механическая.) Скорость распространения этой волны в воздухе примерно равна скорости света - 300 тысяч километров в секунду, или 3*10^8 м/с. Эта скорость даже обозначается своей буквой - c. Да, опять с маленькая, не перепутать бы её с ёмкостью или теплоёмкостью. (Но редко бывает так, чтобы в одной задаче фигурировали хотя бы две из таких "c", а чтоб все три сразу - такого, наверное, вообще нет.)

Вот с таким багажом знаний можно уже и сообразить, по каким принципам устроена радиосвязь. По логике, надо выплюнуть электромагнитную волну с одного конца, затем принять её при помощи резонанса на другом. Так-то оно так, только обычная волна с какой-то заданной длиной волны (или частотой, что при всегда постоянной скорости волны будет означать одно и то же, по сути) не будет нести в себе никакой информации - ну приняли мы её, ну получили большой ток, и что? Как его использовать? Для этого применяют штуку с очень мутным названием - модуляция. Представить это можно так: нам надо передать механическое колебание звуковой частоты, используя электромагнитную волну. Звуковая частота медленная и грузная, пока в воздухе долетит - затухнет. Это всё равно, что пытаться переплыть океан обычным плаванием. Нет, посадим-ка мы его на транспорт, на более высокочастотное колебание, к тому же не затухающее в воздухе (электромагнитную волну). Это будет всё равно, что посадить человека на теплоход, к примеру. И так, и так человек переплывёт - только в одном случае его силы нужно постоянно поддерживать (иначе просто не доплывёт), и происходить это будет очень долго, а во втором случае - за несколько дней и без особых потерь. Но положение осложняется тем, что человек не двигается, а колебание распространяется! Додумались сделать так: какой-то один из параметров высокочастотного колебания (то бишь электромагнитной волны) будет меняться по такому же закону, по которому меняется наш сигнал, что нужно передать (звук). Типов модуляции в принципе может быть три: амплитудная, частотная или фазовая - больше в колебании меняться нечему. Не буду вдаваться в подробности, что лучше, что хуже, скажу только, что в радио сейчас используют, конечно же, частотную, что сокращённо и обозначают как FM (Frequency Modulation). Означать это будет следующее: если у нас будет длинный протяжный звук одной высоты (то есть какой-то постоянный звук) - частота электромагнитной волны меняться не будет. Как только звук стал тише или громче - частота волны понизилась или повысилась.

Всё. Вот теперь, если "автоматизировать" такой процесс и выплёвывать волну с такой меняющейся характеристикой, то потом её можно будет принять, и... что? Просто так, сразу, на выход её не дашь - получится что-то вроде буквального чтения зашифрованного сообщения. Теперь его надо "расшифровать", или демодулировать. Это уже обратный процесс: смотрим, как меняется частота (при частотной модуляции, конечно) принимаемой электромагнитной волны, и на основе этого соображаем, как будет меняться выдаваемый динамиком звук - его громкость, высота и т. д. Итог - на радиостанции сидит ди-джей и говорит что-то в микрофон, электромагнитный передатчик с радиостанции плюётся волной на всех и вся вокруг, и те товарищи с радиоприёмниками, которые настроятся на частоту именно этой радиоволны, будут слышать, что говорит ди-джей, в прямом эфире.

К слову, выражение "в прямом эфире" или "в эфире" появилось потому, что раньше народ думал, будто электромагнитные волны являются колебаниями этого самого непонятного "эфира". Потом, правда, его существование опровергли, но если я заведу разговор об этом, это превратится в кучу писанины ещё на лишних несколько страниц. А напоследок - вещи, которых в школе не спрашивают, но любопытно знать. (Для ленивых: дальше вплоть до конца абзаца можно не читать, это уже скорее для общего образования.) Очень многие виды энергии, которые называются совсем не электрическим словами, переносятся тоже посредством электромагнитных волн! Просто у каждой из них разные длины волн. Это у звука (механических волн) всего три-четыре градации, а здесь их ух сколько! Если идти "слева направо", по уменьшению длин волны и увеличению частоты, то получится следующая картина.

Самая низкая частота - до десятков тысяч герц - это так называемые длинные волны. Толку с них особо нет, особо не применяются. Длина таких волн - от бесконечности до единиц километров. Повыше начинаются уже радиоволны, которые используются в разных отраслях радиосвязи, это примерно от сотен килогерц до сотен мегагерц. (Цифры перед обозначением FM в частоте радио означают не частоту в кило- или мегагерцах, это просто обозначение на условной шкале, принятой для радиовещания - диапазон частот, который используется "от" и "до", указывают "сверху", с государства.) Сюда входит всё, начиная связью по ручной мини-рации, продолжая телевидением и заканчивая частотами военных раций. От сотен мегагерц до единиц гигагерц начинаются волны длиной порядка дециметра (10 см), после них начинается СВЧ-диапазон ("СВЧ" означает "СверхВысокие Частоты") - волны на этих частотах держат на себе мобильную связь, беспроводной интернет, помогают греться еде в микроволновке и используются в радарах. Так продолжается до единиц терагерц (длина волны от 1 мм до 0.1 мм). На ещё более высоких частотах в герцах перестают считать, используют больше длину волны. Так, примерно с 1.5 ТГц, или 2000 мкм (микрометров), условно начинают отсчитывать так называемое инфракрасное излучение. Оно не красное, как любят показывать в рекламах или научно-фантастических фильмах! Оно тоже невидимое, как и все предыдущие электромагнитные волны. Такие волны возникают, если тело просто нагрето. Это обыкновенное тепловое излучение. Да-да, когда ты греешь еду на плите и, держа руку над ней, чувствуешь тепло, это в руку вонзаются электрическое и магнитное поля! Дальше ещё веселее. Примерно на 740 нм (нанометров, это одна тысячная микрометра, или одна миллиардная (10^-9) метра) излучение начинает быть... видимым! Это тот самый свет, который мы видим. Красненький - самая большая длина волны, фиолетовый - самая маленькая. Белый свет - это смесь всех цветов радуги (красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый; причём голубой и синий цвета часто объединяют в синий), то есть куча-куча электромагнитных волн с кучей разных длин. Так продолжается примерно до 380 нм, когда фиолетовый свет потихоньку снова становится невидимым и превращается в ультрафиолетовый (примерная аналогия со звуком: "инфра"красный - значит "до красного", "ультра"фиолетовый - значит "после фиолетового"). Это излучение уже обладает такой энергией, что способно убивать бактерии (ультрафиолетом, к примеру, можно обеззараживать воду). Ближе к десяткам нанометров ультрафиолет становится настолько ядрёным, что своей энергией способен оторвать электрончик от атома, и излучение с длиной волны меньше, чем ультрафиолет, называют ионизирующим (ионизация - это и есть отрыв электрончика от атома). Таких видов излучений именно электромагнитного происхождения известно пока два: это рентгеновское и гамма-излучение. Рентгеновское излучение простирается по длинам волн от десятков нанометров до сотых долей нанометров, гамма - всё, что ниже сотых долей нанометров. Считается, что рентген получают на специальных аппаратах - рентгеновских трубках, а гамма-лучи получаются в результате внутриатомных разборок. Каких именно - это вопросы к атомной и ядерной физике, о которых в самом конце. (Радиация - это тоже ионизирующее излучение, но это не один поток лучей, а тоже целый "букет", набор разношёрстных гадостей, каждая из которых ионизирует по-своему, и не все из них - электромагнитные волны. Об этом тоже ближе к концу.)

Чётких границ между всей этой кучей диапазонов, строго говоря, нет. Электромагнитную волну длиной 10 нм ровно можно одинаково отнести как к ультрафиолету, так и к рентгену.

Вкратце и поумнее: колебательный контур - это электрическая цепь, состоящая из конденсатора и катушки индуктивности. При сообщении конденсатору заряда в контуре возникают электромагнитные колебания. Период этих колебаний составляет: T = 2пи*корень квадратный из (L*c). Активное сопротивление в цепи переменного тока показывает, какое количество энергии будет потеряно в виде тепла. Считается так же, как сопротивление проводника на постоянном токе (R = ро*l/S). Конденсатор и катушка имеют реактивное сопротивление. Емкостное сопротивление равно: Xc = 1/(w*c), где w - циклическая частота колебаний контура, c - ёмкость конденсатора; индуктивное сопротивление составляет: XL = w*L, где w - циклическая частота колебаний контура, L - индуктивность катушки. Резонанс в колебательном контуре - это увеличение частоты вынужденных колебаний контура при совпадении собственной частоты этих колебаний с частотой колебаний, их поддерживающих. При резонансе реактивные сопротивления катушки и конденсатора равны, резонансная частота считается по формуле w = 1/корень квадратный из (L*c). Электромагнитная волна - колебания электрического и магнитного полей, распространяющиеся в пространстве. Скорость распространения электромагнитной волны в воздухе примерно равна скорости света - 3*10^8 м/с, обозначается буквой c. Принципы радиосвязи: получение незатухающих электромагнитных колебаний, модуляция этих колебаний полезным сигналом, распространение электромагнитной волны на расстояние, приём электромагнитной волны, демодуляция полученных электромагнитных колебаний, наслаждение полученным результатом.

4. Физическая оптика.

Самое страшное, можно сказать, позади. Теперь можно снова расслабиться, поскольку будет геометрическая оптика. А это значит, что будет минимум страшных расчётов и много достаточно понятных рисунков. Сами рисунки я здесь рисовать не буду, но как их рисовать - подскажу.

В прошлом абзаце я нагло заявил, что свет - это электромагнитная волна. Но как же так, мы же можем видеть его лучи! Лучи - прямые, а не какие-то там заумные два сплетённых синуса! Смею заверить: во-первых, синус вовсе не означает, что именно такую загогулину мы будем видеть в воздухе - это обычно означает, что лететь может всё что угодно, но что-то в этой "летелке" будет меняться по синусу, и это "что-то" - необязательно самое заметное. Оптика вообще делится на две части как раз по этому принципу: одна часть забивает на все синусы и говорит, что свет - это лучи, а вторая, наоборот, грозит пальцем лучам и тычет носом в волны. Самая лёгкая (она же первая) часть - геометрическая оптика, изучает законы распространения света и получения изображений. Световой луч - это модель, которая используется в геометрической оптике; лучом считают воображаемую прямую, вдоль которой распространяется световая энергия. Ясно, что таких лучиков будет бесконечно много, и все они будут лететь по прямой - но только в случае однородной и изотропной среды! Почему однородной, понятно - если в воздухе внезапно образуется кирпичная стена, то свет через неё дальше не пройдёт. А непонятное слово "изотропная" означает всего лишь, что во всех направлениях все основные параметры среды будут одинаковые. По большому счёту, всё наше пространство само по себе изотропно, исключения обычно попадаются в виде каких-нибудь кристаллов, которые имеют неправильную форму, или времени, которое нельзя повернуть вспять.

Вообще, если так смотреть, свет умеет всего три вещи: распространяться, отражаться и преломляться. С распространением разобрались, отражается свет у нас от зеркал, а преломляется при проходе через воду или линзы - хоть в тех же очках, хоть через контактные линзы - те, которые вставляются в глаза (до сих пор не представляю, как это можно безболезненно делать). Свет отражается или преломляется так, что: во-первых, целых 3 луча находятся в одной плоскости - это падающий, отражённый (или преломлённый) и воображаемый луч, который перпендикулярен плоскости, к которой свет падает, проведённый из точки падения; во-вторых, угол падения света равен углу отражения; в-третьих, при преломлении света отношение синусов угла падения и преломления равно относительному показателю преломления второй среды относительно первой, это величина постоянная. Теперь, как водится, после очередного вороха умных слов - их расшифровка.

Если луч света падает на что-то плоское (например, обычное плоское зеркало), то отразится он так, что пойдёт в точности под тем же углом, под которым упал. Но угол этот, даже если считать, что упал он точно в одну точку, отложить можно кучей разных способов в кучу разных сторон - или, на языке геометрии, в большой куче разных плоскостей. Но нам нужна только та, в которой находится наш падающий луч. То есть отражается он в ту же сторону, откуда и пришёл, не кривя. Примерная аналогия с каучуковым мячиком: если бросить его вперёд и вниз, то, отскочив, он продолжит лететь вперёд, а не свернёт куда-нибудь влево или вправо, и уж тем более не повернёт обратно, назад (только если не ударится о какой-нибудь бугорок, но мы считаем, что всё так идеально, что нет никаких неровностей, плоскость идеально плоская). Непонятный перпендикуляр здесь ставится по двум причинам: во-первых, два луча в принципе всегда будут лежать в одной плоскости, когда они пересекаются (а наши падающий и отражённый явно пересекаются - куда им деться друг от друга?), а вот если поставить ещё и третий - тогда плоскость, в которой они будут лежать все втроём, будет только одна - и именно она задаст то направление, куда улетит отражённый луч. И, во-вторых, договорились считать углом падения/отражения не угол между лучом и плоскостью, а угол между лучом и перпендикуляром. То есть когда тот 0 - луч падает как раз перпендикулярно и отражается обратно "в себя". Когда 90 - летит точно параллельно плоскости и, скорее всего, не упадёт на неё и не отразится от неё вообще. Преломление посложнее отражения: оно происходит тогда, когда теряется однородность среды - то есть как бы то же распространение, но без одного условия. Но, чтобы не валить всё совсем в кучу, о нём чуть позже, а пока добьём отражение.

Отражаться свет может, как я уже сказал, от зеркал, и обычно заставляют строить, а как же он отражается. В таких задачах обычно есть зеркало и какой-то предмет, обычно рисуемый как стрелочка (это не вектор, просто у предметов стрелочку ставят для того, чтобы можно было понять, где у него верх, а где низ), и просят построить изображение этого предмета в зеркале. Делается это обычно так: строится изображение верхней и нижней точки, а потом их просто соединяем. А чтобы построить изображение точки, нужно провести через неё хотя бы два луча - тогда отразившись от зеркала и где-то пересёкшись, они и дадут изображение нашей точки. С плоским зеркалом всё проще всего: изображение будет симметрично относительно плоскости зеркала, причём изображение будет мнимым - оно получается оттого, что сами лучи не пересекаются, а пересекутся их продолжения. Это не значит, что его нельзя увидеть в зеркале; это значит, что его нельзя будет получить на каком-нибудь белом экране, "видящем" лучи света, отражающиеся от предмета. Когда изображение действительное (образовано пересечением лучей), то его можно увидеть не только в зеркале, но и на экране, который можно поставить за зеркалом и который будет его "видеть". Разница только в этом. И два дополнительных плюса плоского зеркала: размер изображения такой же, как и у предмета, и оно прямое. Прямое не в том смысле, что оно не кривое, а в том смысле, что не перевёрнутое. Потому что когда зеркало плоское, это нормально. А вот когда кривое, или (что обычно и используется) сферическое - вогнутое или выпуклое - тут начинаются искажения. У сферического ("круглого") зеркала есть такая штука, как фокус: оно собирает все лучи, которые летят в него, после отражения в одну точку, которую им и обзывают. Соответственно, здесь угол падения уже не равен углу отражения, потому что зеркало не плоское, но зато есть две точки, через которых луч обязательно пройдёт - это точка его падения и фокус. И здесь по-прежнему может быть так, что придётся соединять не сами лучи, а их продолжения.

Вкратце и поумнее: геометрическая оптика - раздел физики, изучающий законы распространения света и получения изображений. Световой луч - основная модель геометрической оптики, это воображаемая прямая, вдоль которой распространяется световая энергия. Закон распространения света: свет в однородной и изотропной среде распространяется прямолинейно. Два закона отражения света: при отражении света от плоской поверхности луч падающий, отражённый и перпендикуляр, восставленный из точки падения, лежат в одной плоскости; угол падения луча равен углу его отражения. Плоское зеркало даёт прямое, равное по размеру и мнимое изображение предмета. Сферическое зеркало (вогнутое или выпуклое) имеет фокус - это точка, в которой собираются все лучи или их продолжения после отражения от зеркала.

Всё, с отражением практически разобрались ("практически" потому, что остался ещё один штришок, но о нём лучше всего писать в преломлении). Теперь будем ломать лучи света о воду и дым - в пример обожают приводить весло лодки, которое выглядит изогнутым, когда погружено в воду, или "дрожащий" воздух рядом с горящим костром. Тут всё завязано на "показателе преломления". Абсолютный показатель преломления показывает, во сколько раз скорость света в той или иной среде меньше, чем в пустоте - в вакууме, где свету точно ничто не помешает (n = c/v, c - скорость света в вакууме, v - скорость света в среде). Но по нему снова считать неудобно, поэтому ввели относительный показатель преломления, который тоже всегда будет постоянен: это отношение синуса угла падения к синусу угла преломления. Почему именно синусы, чёрт-те его знает - наверное, потому, что при падении под углом 0 (то бишь точно перпендикулярно - да, здесь угол тоже отсчитывается от такого же перпендикуляра, как и при отражении) луч не преломится вообще, а преломиться под углом 0 луч никак не сможет (синус нуля - ноль, и в обоих этих "крайних" случаях нулём будет либо числитель, либо знаменатель этой дроби синус/синус, что может привести к очередному делению на ноль, но на практике, как я только что написал, такого не бывает). Но какая-то часть света при преломлении отражается назад, а не проходит прямо. Если очень внимательно присмотреться к формуле sinальфа/sinбета = n21, то можно увидеть следующее: когда n21 меньше единицы (то есть луч выходит из оптически более плотной среды в менее плотную - например, из воды в воздух), то угол альфа может стать таким большим, что его синус будет больше, чем даже самый большой синус бета (единица), ещё и умноженный на относительный показатель преломления. Нет, это не деление на ноль, не конец света и не "временной парадокс" - это всего лишь означает, что свет, падающий под таким углом альфа или больше, не преломится вообще, а полностью отразится - даже несмотря на то, что преломиться вроде бы должен. Такое называют полным внутренним отражением.

Ну а если не ударяться в такие крайности и посмотреть, как свет обычно преломляется, то народ увидел - при преломлении через плоскопараллельную пластину (например, оконное стекло) изображение не искажается, а только чуть-чуть "сдвигается". При преломлении через треугольную призму, имеющий больший показатель преломления, чем то, в чём она находится, лучи света будут отклоняться к основанию призмы. Но, конечно, самое главное в преломлении - это линза. В широком смысле это прозрачное для света тело, ограниченное двумя поверхностями. Обычно линза стеклянная, а поверхности имеют сферическую форму (круглые, проще говоря). Но для геометрии этого мало, потому что луч, идущий по "верху" или "низу" линзы, проходит меньшее расстояние, чем идущий посередине - по краям она худее, а посередине толще, и из-за этого лучики будут преломляться совсем не одинаково! Чтобы не морочить голову с такой разницей в расстоянии, решили эту линзу вытянуть до таких размеров, чтобы радиус кривизны (округлость) стал гораздо меньше, чем размер (высота) линзы. Тогда линзу можно считать тонкой, чертить как прямую с двумя стрелочками и также строить изображения.

Но тут поджидает ещё большая засада, чем с зеркалом. На первый взгляд, ход ни одного луча "просто так" не начертишь - надо знать и материал линзы, и угол, под которым луч падает. Но не всё так плохо: обычные линзы могут либо "стягивать в охапку" все падающие на неё лучи, либо, наоборот, разваливать их на пучки. Первую линзу называют собирающей, вторую - рассеивающей. И у обеих есть свой фокус, как и у зеркала: у собирающей линзы в ней собираются лучи, а в рассеивающей из этой воображаемой точки рассеиваются лучи (то есть там пересекаются их продолжения). Я специально опустил слово "все": тут есть ещё одна маленькая хитрость, о ней как раз дальше.

Ну хорошо, одну точку получили. А вторая? Руки тянутся к центру линзы: скорее всего, что-то должно быть там. И там действительно есть две штуки: это оптический центр линзы, который как раз находится посередине между "верхом" и "низом" - через него абсолютно любой луч проходит, не преломляясь вообще! И через него перпендикулярно линзе идёт главная оптическая ось. Любой луч, идущий параллельно этой оси, обязательно пройдёт через фокус (или через фокус пройдёт его продолжение) - вот и та маленькая хитрость. Так что наши две точки: первый луч надо проводить через оптический центр - он тупо пойдёт прямо, - а второй пускать параллельно главной оптической оси и соединять точку преломления с фокусом. Здесь тоже могут получаться мнимые изображения из продолжений лучей, особенно их любит рассеивающая линза. У неё, кстати, фокусное расстояние (от оптического центра до точки фокуса) считается отрицательным. У собирающей - положительным. У линзы есть оптическая сила - это величина, обратная фокусному расстоянию. Мериться должна вроде бы в обратных метрах, но именно для линз эту размерность обзывают диоптрией (дп). Именно в них мерится "плюс" или "минус" стёкол очков или линз для дальнозорких или близоруких. У собирающей линзы оптическая сила положительна, у рассеивающих - отрицательна. Отсюда нехитрое наблюдение: у дальнозорких людей ("плюс") стоят собирающие линзы, а у близоруких ("минус") - рассеивающие. Чем больше оптическая сила, чем больше диоптрий - тем хуже зрение без очков или линз.

В отличие от всяких плоских зеркал, линза крайне редко даёт изображение, равное по размеру - если только предмет не находится точно на фокусном расстоянии от неё. Поэтому, чтобы посчитать, какого размера получится изображение, используется такая вещь, как увеличение линзы. Это отношение размера изображения предмета к размеру предмета. (Удивительно, хоть одна более-менее понятная без объяснения величина.) Обозначается греческой буквой "гамма", но заглавной, которая пишется как наша Г: Г = f/d, где f - линейный размер изображения (высота, например), а d - этот же линейный размер предмета (тогда это будет тоже высота). Но мало знать, во сколько раз будет увеличено изображение - нужно хотя бы знать, где оно вообще будет! Для того чтобы посчитать это, есть формула тонкой линзы, которая выводится из всей её геометрии: 1/F = 1/f + 1/d. Буквы тут означают немного другое: F - это фокусное расстояние линзы, f - расстояние от линзы до изображения, d - расстояние от самого предмета до линзы. Единственная загвоздка - в знаках. Если линза собирающая, предмет можно потрогать руками и изображение действительное - всё хорошо. А если нет - тогда: рассеивающая линза - ставим минус перед фокусным расстоянием, мнимое изображение - ставим минус перед расстоянием до изображения (f маленьким), а если мнимый сам предмет - тогда отрицательным станет d. (Мнимый предмет - это самая редкая ситуация, если на линзу падает какой-то пучок лучей, который без линзы смог бы дать действительное изображение какого-то предмета - то есть в этом случае предметом будет считаться это действительное изображение, и расстояние нужно брать именно от него. Такое может быть, если нужно начертить-посчитать изображение предмета, на который смотрят через две подряд стоящие линзы или больше.)

Вкратце и поумнее: преломление света возникает при проходе луча света через границу сред или в толще среды с непрерывно изменяющимися свойствами. Абсолютный показатель преломления среды - отношение скорости света в вакууме к скорости света в среде, величина безразмерная. Закон преломления гласит, что отношение синусов угла падения и угла преломления равно относительному показателю преломления второй среды относительно первой. При проходе луча света из оптически более плотной среды в оптически менее плотную может возникнуть полное внутреннее отражение - это явление, при котором свет при падении под определённым углом или углом, его превышающим, не преломляется, а полностью отражается от границы раздела сред. При преломлении света через плоскопараллельную пластину изображение не искажается, только сдвигается. При преломлении света через треугольную призму, более оптически плотную, чем среда, в которой она находится, луч света будет отклоняться к основанию призмы. Линза - это оптически прозрачное тело, ограниченное двумя поверхностями. Тонкая линза - это линза, размер которой много больше радиуса кривизны её поверхностей. Оптический центр линзы - это точка линзы, через которую луч света проходит, не преломляясь. Главная оптическая ось - это прямая, перпендикулярная плоскости линзы и проходящая через её оптический центр. Фокус линзы - это точка, в которой после преломления собираются все лучи (в собирающей линзе) или их продолжения (в рассеивающей линзе), параллельные главной оптической оси. Фокусное расстояние линзы - расстояние от плоскости линзы до её фокуса. Оптическая сила линзы - это величина, обратная фокусному расстоянию, единица измерения - диоптрий (дп). Увеличение линзы - это отношение линейных размеров изображения предмета к линейным размерам самого предмета: Г = f/d. Формула тонкой линзы: 1/F = 1/f + 1/d, где F - фокусное расстояние линзы, f - расстояние от линзы до изображения, d - расстояние от предмета до линзы. Если линза рассеивающая, то фокусное расстояние её отрицательно (собирающая - положительно), если изображение мнимое - расстояние от линзы до изображения отрицательно (действительное - положительно), если мнимый сам предмет - тогда расстояние от предмета до линзы отрицательно (действительный - положительно).

А теперь придётся резко проститься со всеми прямыми, лучами, зеркалами и линзами, которых можно даже потрогать руками, и вернуться к непонятным волнам. Потому что в один прекрасный (или не прекрасный) момент народ стал думать, а не является ли свет волной. Стали ставить опыты, и - о ужас (для нынешних школьников) - опыты подтверждали это предположение. В основном речь пойдёт именно о них, а также о куче заумных слов, которые выдумали их "постановщики". Чтобы не вводить в полный ступор, всю сопутствующую математику специально опускаю практически полностью.

Свет как волна умеет делать четыре вещи, только с гораздо более мутными названиями, чем в геометрической оптике: он умеет испытывать интерференцию, дифракцию, поляризацию и дисперсию. Последние две вещи в школе почти не проходят, их только кратко обозначают и говорят, что они есть, верьте в них, их не может не быть. Попробуем аккуратно разложить эти страшные слова по полочкам.

Интерференция. Это когда две волны света накладываются друг на друга. Но если б всё было так просто! Интерференцию могут испытывать только когерентные волны. Спокойно, это последнее новое умное слово, дающее удар кувалдой по голове в этом абзаце. "Когерентные" можно перевести на нормальный русский как "синхронные", "согласованные". У когерентных волн одинаковая частота (одинаковая длина волны), плюс волны всегда идут так, что разность их фаз в любой точке пространства остаётся постоянной. То есть самый простой случай - это надо взять график синуса, скопировать его и поместить точь-в-точь под первым. Это будут две когерентные волны. Более сложный пример - вниз вместо синуса поставить косинус того же. Он будет сдвинут на 90 градусов (пи/2), но при этом разница между фазами (стадиями колебаний) всегда будет оставаться в эти 90 градусов, или пи/2, и длина волн тоже будет одинакова, так как синус и косинус берутся от одного и того же. Это тоже когерентные волны. Самый сложный пример - это надо взять обычную включённую лампочку, загородить её непрозрачной ширмой, а затем в последней вырезать две одинаковых дырки. Эти две дырки тоже будут источниками двух когерентных волн света! Вот такие две волны и будут интерферировать (жуткое словечко). Означает это следующее: при наложении друг на друга такие волны будут ослаблять или усиливать интенсивность света друг от друга. Именно это явление, вместе с добавлением прилагательного "когерентные" перед словом "волны", и является интерференцией. Почему так уцепились за когерентность - да потому, что обычные волны света разбросаны по частотам и фазам как хочешь, и любые две такие волны при наложении практически не будут обращать внимания друг на друга вообще. А когда у двух волн длина одинаковая, то они начинают "принюхиваться" друг к другу в каждой точке, пока бегут вместе. В одной из точек может оказаться, что одна волна пришла "в самом расцвете сил" - то, что колеблется, добралось до своей амплитуды, и вторая так же. Тогда это будет интерференционный максимум - свет станет в два раза ярче. А если наоборот - одна волна придёт в самом расцвете сил, а другая в самом упадке сил (тоже будет в амплитуде, но со знаком "минус", выражаясь совсем мозгодробительным языком - иметь сдвиг по фазе на пи относительно первой волны). Тогда эти две амплитуды "скушают" друг друга, в итоге получится ноль - вместо света получится темнота. Чтобы увидеть эти "свет и тьму", достаточно на месте накладывающихся когерентных волн поставить какой-нибудь белый экран - именно так и поступил товарищ по фамилии Юнг, поставив после лампочки и ширмы с двумя дырками в ней этот самый экран. На экране можно было увидеть чередование цветных и тёмных полосок. Почему цветных? Потому, что здесь придётся вспомнить: белый - это для нас цвет, а для света - это смесь всех цветов радуги. Каждый из этих цветов имеет свою длину волны и будет по-своему интерферировать. Поэтому вместо белого пятна будет немного размазанное пятно в виде радуги, дальше слева и справа от него - темнота, ещё дальше - снова "радуга", причём в расстояние между цветными полосками будет вкрапливаться темнота, а сами полоски будут становиться всё тусклее и тусклее - волны света тоже умеют затухать.

Да, заранее хочу предупредить: самостоятельно вырезать дырки в доске и прикладывать её к лампочке можно, но такой же результат при этом не выйдет! Секрет в размерах прорезей: их диаметр они должен быть примерно равен длине волны света.

Дифракция. Это что-то, очень похожее на интерференцию, только с добавлением условий. В самом широком смысле это круг явлений, возникающих при распространении волн в неоднородных средах. Или это явление, названное "огибание волнами препятствия". Совсем по-простому - отклонение от законов геометрической оптики. По-моему, никто до сих пор не может определить это сложное слово каким-то более-менее удобоваримым хотя бы с точки зрения русского языка определением. У всех это что-то неопределённое, типа "комплекс явлений". По сути, дифракция всего лишь означает, что при проходе через ту же щель в доске каждая точка в такой щели будет источником вторичных волн, и эти вторичные волны будут когерентными и будут интерферировать. Всё! Всё остальное - как в интерференции: снова радужные пятна, темнота и так далее. Разница между ними двумя в том, что когерентные волны (только интерференция) можно создать не только препятствием, но и без них - например, лазером. Если включить два одинаковых лазера и направить их лучи в одну точку, то это будет только интерференция, а если делать так, как Юнг - то это получится интерференция, возникшая в результате дифракции. Во как!

Поляризация. Самое сложная для представления штука, но её в школе могут даже и не проходить (разве что в школах с углублённым изучением физики и всё в том же 11-м классе). Во-первых, забиваем на эти страшные когерентности и щели - для поляризации достаточно одной волны. Во-вторых, поляризироваться может только поперечная волна - а возникает она тогда, когда направление возмущений в ней станет меняться относительно направления её распространения. В продольной волне такого быть не может в принципе, потому что у неё эти два направления всегда совпадают. Теперь попробуем сообразить, что это за хитрая комбинация слов и что это вообще всё означает. Когда волна не поляризована, у неё есть просто колебание двух векторов E и B. Поляризоваться может каждый из них, но чтобы совсем не накручивать, представлять это лучше на примере только одного из них. Вот колеблется одна величина: сначала большая, потом всё меньше, потом вообще ноль, потом становится отрицательной, потом увеличивается, потом снова ноль, потом снова бежит к самому большому своему значению, и так далее. Что будет, если волна, в которой колеблется эта величина, станет поляризованной? Эта вещь по-прежнему будет колебаться, но только колебаться, описывая какую-то определённую фигуру! То есть, допустим, если взять хоть тот же маятник в виде груза на ниточке: если его качать строго влево-вправо, то его координата будет линейно поляризована - она будет "ходить" только по прямой, влево-вправо, не уходя никуда в сторону (описывать воображаемую прямую линию). А если раскрутить его вокруг того места, где подвешена нитка, а потом отпустить - тогда получится круговая поляризация: координата будет описывать воображаемый круг. В самом широком смысле есть ещё эллиптическая поляризация, если описываемая фигура - эллипс, в простонародии "овал". Круг - частный случай овала, кстати, так что, по сути, круговая поляризация - это та же эллиптическая, только в более узком виде. Опять начинаю заплетать умными фразами...

А теперь всю матрёшку складываем обратно. Этот круг описывается колебаниями вектора амплитуды той величины, которая колеблется - то бишь того же вектора напряжённости. То есть ту же кругло поляризованную волну можно представить не в виде синуса, а в виде спирали типа той, что в пружине, внутри которой при её "вращении" бегает по кругу амплитуда вектора напряжённости. Ужас! А теперь нужно добавить сюда второй вектор - B - и пустить их всех гулять в пространстве со своей скоростью в 300 тыщ километров в секунду. Вот это будет кругло поляризованная волна света. Честно, даже сейчас при всём богатстве воображения никак не могу это представить! Но проблема в том, что всему этому ужасу сумели найти применение! А именно: свет от солнца, проходя через наше небо, частично поляризуется - какие-то из его составляющих цветов начинает колбасить подобным образом (мы глазами этого, естественно, не видим). Но если прикрутить на фотоаппарат специальный поляризатор - круглую линзу с тонкой щелью, которую можно поворачивать, - то при определённом угле поворота весь свет, линейно поляризованный в плоскости, перпендикулярной плоскости щели, не сможет пройти. Итог - более сочные цвета на фотографии (например, ярко-синее небо вместо голубого или сочно-зелёная трава вместо блеклой), уходит только "ненужное", "лишнее" освещение, которое только зря осветляет фотку.

Дисперсия. Самое мутное из всех понятий: даже в моём учебнике физики параграф про неё был помечен звёздочкой (повышенная сложность) - даже при том, что школа моя с углублённым изучением физики! И исписано про эту страшную дисперсию было страниц 6 с какими-то непонятными рисунками и формулами. Но всю эту малопонятную (мне, тогда) писанину можно свести всего лишь к одной фразе: дисперсия света - это зависимость показателя преломления среды от частоты (или, что то же самое, длины волны) света. То есть красный свет преломляется "лучше", оранжевый чуть "похуже", и так далее. "Лучше" и "хуже" специально пишу в кавычках, потому что ничего хорошего или плохого в такой зависимости особо и нет. Она просто есть, и всё. Если кому-то вдруг интересно, почему это вообще происходит, вперёд: хоть тот же учебник Пёрышкина "Физика 11" в руки - и в штыковую атаку на страшный параграф со звёздочкой.

Вкратце и поумнее: свет с волновой точки зрения может испытывать интерференцию, дифракцию, поляризацию и дисперсию. Интерференция волн - это увеличение или уменьшение суммарной амплитуды при наложении когерентных волн друг на друга, в случае интерференции света - ослабление или усиление интенсивности света. Когерентные волны - волны, которые имеют одинаковую длину, и разность фаз между которыми в любой точке пространства остаётся постоянной. Дифракция волн - это комплекс явлений, возникающих при распространении волн в неоднородных средах или при огибании ими препятствий. При дифракции на щели в препятствии и размерах щели, близких к длине волны дифрагирующей волны, такая щель становится источником вторичных когерентных волн, которые интерферируют. В случае света в результате дифракции возникает интерференционная картина, например, в опыте Юнга. Поляризация - это явление нарушения симметрии распределения возмущений в поперечной волне относительно направления её распространения. Различают линейную, круговую и (в общем случае) эллиптическую поляризации, в каждом из случаев вектор амплитуды поперечной волны, колеблясь, описывает соответствующую фигуру. В случае поляризации света можно также получить его линейную поляризацию, пропустив свет через поляризатор (например, узкую вертикальную щель), при повороте анализатора (другая узкая щель) можно добиться как полного пропускания поляризованного света, так и полного его непропускания (темнота). Дисперсия - это явление, заключающееся в зависимости скорости волны от её частоты. В случае света это зависимость показателя преломления от длины волны света.

Как только не вертим этот бедный свет - и прямой его представляли, и двумя переплетёнными синусами... Но и это ещё не предел! Между этими двумя представлениями вкрапливается ещё одно, к счастью, последнее: свет - это поток частиц! Исторически сложилось так, что какое-то количество народу придерживалось именно такой точки зрения (это называли корпускулярной теорией, "корпускулы" означает "частицы"), в то время как другие рьяно утверждали, что свет - это волна. В итоге и одни, и другие ставили эксперименты, которые подтверждали свою теорию, опровергали теории противников и якобы разбивали последних в пух и прах. В конце концов сошлись на боевой ничьей: свет теперь считается и потоком частиц, и волной одновременно. Я не знаю, как это можно представить глазами, но современная наука отказываться от этого точно не будет и гордо величает всё это хозяйство "корпускулярно-волновой дуализм света".

Но это так, история. А в этом абзаце речь пойдёт как раз о "частичечной" стороне света, которой, кроме всех прочих, занимался не кто иной, как сам Эйнштейн. И самая её основная (и, пожалуй, единственная изучаемая в школе) часть - это явление фотоэффекта, или фотоэлектрического эффекта. Грубо говоря, это означает, что если включить в простенькую электрическую цепь, например, кусочек металла, то при его освещении по нему может как бы сам собой пойти ток. Звучит как обман? Так, да не так. Потому что не все металлы хорошо дают ток при освещении, и не любой свет даёт ток. Вообще, это правильно называется "внешний фотоэффект" - выбивание электронов из металла под действием света. Есть ещё внутренний фотоэффект, когда электроны тоже выбиваются, но не с поверхности металла, а остаются внутри (откуда и куда именно выбиваются, говорить не стану, в школе всё равно это не проходят). У него есть три закона, из-за которых не удаётся получить ток, просто светя на всё, что может проводить. Во-первых, количество электронов, выбиваемых с поверхности металла в единицу времени, прямо пропорционально освещённости поверхности: чем больше света падает на поверхность, тем больше электронов он выбивает. Логично. Во-вторых, энергия движения электрона (кинетическая которая) от освещённости не зависит, бОльшим количеством света электроны не разгонишь! А зависит она от частоты падающего света: красный пинает электроны еле-еле, если ему это вообще удастся, так как у него меньшая частота (а значит, и меньшая энергия), а фиолетовый футболит всех только так - у него частота наибольшая (поэтому и пинает с самой большой энергией) из видимого света. И, в-третьих, существует такая частота, при которой фотоэффект перестаёт наблюдаться вообще, то есть световой энергии становится недостаточно для того, чтобы вышибить электрончик с поверхности металла. Такая частота называется красной границей фотоэффекта (красная потому, что у красного частота меньше всех из света - то есть это самая маленькая частота света, при которой электрончики выбиваться ещё будут).

Но и это ещё не всё. Хорошо, электрон удалось вышибить с поверхности металла - но физике же надо держать всё под контролем математики, как это описать цифирями? Ясен пень, что надо бросаться куда-то в сторону закона сохранения энергии в первую очередь: он всегда должен выполняться, энергия света должна преобразоваться в энергию электрона! А чему равна энергия света? И тут же натыкаемся на тупик: очень долгое время никто не мог сообразить, как её посчитать. Некоторые товарищи решили как-то предположить, что свет может иметь энергию только с такими значениями, каждое из которых "прыгает" по отношению к предыдущему на какую-то величину - квант. (Это можно сравнить со старыми игрушками, где персонажу нужно перепрыгнуть через несколько ям, находящихся на одинаковом расстоянии друг от друга - персонаж останется жив, только если будет прыгать на расстояние со строго определённым шагом.) В физике, которая потом переросла в квантовую механику, а ещё позже - в целую квантовую теорию, которая разбухла до таких размеров, которые даже не снились обычной физике, и которую проходят только в вузах (и то - только механику, но даже она убивает студента наповал), эта величина определяется так называемой постоянной Планка - самый маленький шаг, который может сделать энергия света, составляет 6.626*10^-34 Дж*с. (Именем Планка, опять-таки, назвали не просто так, а потому, что данный товарищ провёл самые убедительные эксперименты, после которых стало ясно, что предположение про квант верно. Поговаривают, что сам Планк в это не очень-то и верил.) Обозначается эта цифирь буквой h и чем-то напоминает постоянную Больцмана в термодинамике - это "мостик", связывающий между собой частоту света и его энергию. Если представить свет как поток маленьких-маленьких частичек - квантов, то энергия каждого из них будет равна h*ню, где ню - частота света (а вовсе не жанр "нагого" искусства) - примерно таким же образом представляют электрический ток как поток электрончиков, у каждого из которых тоже есть элементарный, "квантующийся" заряд. Но поскольку слово "квант" может подходить не только для света, а и для любых других "шаговых" величин, решили один квантик света назвать "фотон". Свет - поток фотонов.

Ладно, хватит уже мне пугать страшным словом "квант", энергию света мы с грехом пополам определили. Остаётся связать всё воедино: h*ню = m*v^2/2? Как бы не так, ведь при какой-то ню (частоте) фотоэффект прекращается! Значит, есть какая-то энергия, которая мешает ему произойти. Итого получаем: h*ню = m*v^2/2 + Aвых. h - постоянная Планка, ню - частота света, m - масса электрона (она равна 9.1*10^-31 кг), v - начальная скорость электрона, с которой он вылетает с поверхности металла, Aвых называется работой выхода - это минимальная энергия, которую нужно сообщить электрону для того, чтобы тот покинул пределы металла и оказался на его поверхности с нулевой начальной скоростью. Для каждого вещества она своя, измеряется тоже в джоулях, как и обычная работа.

Вот это всё вышеперечисленное сумел собрать воедино Эйнштейн. И свою единственную Нобелевскую премию он получил именно за это коротенькое уравнение, а не за теорию относительности, как почти все думают. (О последней мы тоже поговорим - буквально в следующем абзаце.) Отсюда всё становится понятным и объясняемым: из-за работы выхода не у всякого света хватает энергии, чтобы вдарить током; не всякие металлы можно использовать тоже из-за разных работ выхода; при частоте, равной красной границе фотоэффекта, электрону хватает сил ровно настолько, чтобы выползти на поверхность металла и отдышаться (в этом случае h*ню = Aвых, именно таким образом можно померить работу выхода), а при меньшей он не может прыгнуть выше головы и остаётся внутри, никому не нужный.

Другой эксперимент, подтверждающий корпускулярную природу света, - это поглощение и испускание света атомом. Но это уже скорее относится к атомной физике, о коей через один абзац. (Да, запахло концом. Остался последний раздел. Крепитесь, люди - скоро лето! Как в старой доброй песне.)

Вкратце и поумнее: свет обладает корпускулярно-волновым дуализмом, то есть является и электромагнитной волной, и потоком неких частиц (квантов, впоследствии названных фотонами) одновременно. Внешний фотоэффект - это выбивание электронов с поверхности металла под действием световых квантов. Три закона фотоэффекта: 1) количество электронов, выбиваемых в единицу времени с поверхности металла, прямо пропорционально освещённости поверхности; 2) кинетическая энергия электрона, выбитого с поверхности, зависит от частоты (длины волны) падающего света и не зависит от освещённости; 3) у каждого вещества существует такая частота света (или длина волны), при которой фотоэффект прекращается. Эта частота (длина волны) называется красной границей фотоэффекта. Энергия света квантуется - она может принимать только значения с определённым шагом. Постоянная Планка h = 6.626*10^-34 Дж/с - определяет связь между частотой света и его энергией и "размер" этого шага. Уравнение фотоэффекта (закон Эйнштейна): h*ню = m*v^2/2 + Aвых. h - постоянная Планка, ню - частота света, m - масса электрона (9.1*10^-31 кг), v - начальная скорость, с которой электрон выходит с поверхности металла, Aвых - работа выхода металла. Работа выхода - это минимальная энергия, которую нужно сообщить электрону, чтобы выбить его из металла с нулевой начальной скоростью.

5. Последний раздел.

В учебниках очень неохотно пишут о том, что тот или иной раздел - последний, хотя иной раз очень хочется, чтобы очередным параграфом или очередной фразой весь поток непонятной информации наконец иссяк. Так что сразу смотрим вперёд, где осталось три самых отвлечённых вещи: это теория относительности, атомная физика и ядерная физика. С первой, конечно же, связывают имя всё того же Эйнштейна. Ну посмотрим, что он понапридумывал.

Началось всё с того, что думали, что свет перемещается мгновенно. Потом сообразили, что это не так, и стали пытаться мерить его скорость. Измерив, охренели от получившейся цифры (300 тысяч километров в секунду - настолько быстро ничто летать не умеет!) и стали соображать головой, а можно ли летать ещё быстрее? А самое большое подозрение вызвало то, что эта скорость света не зависит от того, с какой стороны смотреть, с какой системы отсчёта считать. Копать в этом направлении начали ещё до Эйнштейна, и не он один выдумал абсолютно всё то, что будет написано ниже. Но у нас тут не история, а физика, так что кто именно что именно открыл - кому интересно, руки в ноги и вперёд расспрашивать всех хороших преподавателей физики, которые будут попадаться на пути.

Специальная теория относительности (СТО) является, по сути, механикой. Только это механика на уровне световой скорости, отвечающая на вопрос "как и почему тело движется, если его скорость близка к скорости света". За фундамент взяли два утверждения, которые всегда верны и ничем не доказываются. Первое: все физические процессы одинаково протекают в любой инерциальной системе отсчёта - вроде бы очевидная вещь, но убивает наповал все словеса типа "искривление пространства и времени", которые обожают кидать вокруг этой теории. И второе: скорость света в вакууме (c = 3*10^8 м/с) - величина постоянная в инерциальной системе отсчёта, не зависит от скорости источника света и его приёмника.

И вот от этих двух штук начинает строиться целая куча новых предположений, которые представить себе довольно трудно. Например, такая штука, как относительность одновременности. Если в одной системе отсчёта два каких-то события происходят одновременно, но эта система отсчёта движется, то относительно неподвижной системы отсчёта эти два события не будут одновременными! Чтобы не обидеть первый постулат СТО, нужно синхронизировать время, чтобы обе системы отсчёта была равноправны. При этом следует ещё одна выносящая мозг фраза: время в теории относительности не постулируется единым для всех систем отсчёта! То есть может так быть, что в разных системах отсчёта время идёт по-своему, что и любят обзывать "искривлением времени". Вместе со временем, меняются также энергия тела, его импульс, масса и длина. Записывается это всё примерно похоже друг на друга в виде таких дробей: x' = (x-v*t)/корень квадратный из (1 – (v^2/c^2)), где x' - величина (в данном случае координата), которую рассматриваем; x - "обычный" икс, который используем в классической механике, t - время, v - скорость движения тела, c - скорость света. Опять-таки, когда v много меньше c, подкоренное выражение становится близко к единице, и всё выражение перерастает в обычные кинематические x = x0 - v*t: как любят выражаться, на скоростях, много меньших скорости света, релятивистская механика переходит в классическую. "Релятивистская" означает, что имеется в виду движение на скорости, близкой к скорости света. (Видимо, слово "релятив" означает "отношение", "относительность".) Время при скорости, близкой к c, уменьшается, длина тоже уменьшается, а вот масса, энергия и импульс растут. Особенно весело с энергией: E = m*c^2/корень квадратный из (1 – (v^2/c^2)). То есть при скорости, близкой к скорости света, энергия должна стремиться к бесконечности. В том числе и по этой причине обычное туловище с массой невозможно разогнать до скорости, равной c - для этого уже требуется бесконечно большая энергия, а где её взять? (Поэтому стали говорить о том, что заставить что-то лететь со скоростью, большей, чем скорость света, невозможно вообще.) Другой предельный случай, если тело покоится, то бишь скорость - ноль. Тогда получается та самая знаменитая формула, которую тоже приписывают Эйнштейну: E = m*c^2. Эта энергия называется энергией покоя, а соответствующая ей масса - массой покоя. Есть особые хитрые частички, у которых эта масса равна нулю, но при этом есть своя масса движения - то есть частичка как бы невесомая, но и энергию переносит, и даже имеет свой импульс! (Вредное домашнее задание: догадаться, что это за частичка. Одну подсказку уже дал, вторая - о ней уже шла речь раньше.) Плюс к этому: если на тело действует какая-то сила, то она поменяет его импульс - значит, и сила тоже будет считаться как-то зубодробительно, снова с этим корнем! Короче говоря, этим хозяйством переплетается вся классическая механика - и кинематика, и динамика...

Могу ещё подлить масла в огонь: как оказалось потом, СТО тоже где-то заканчивается, у неё тоже есть границы применения! А именно: применять всё это дело на практике можно до тех пор, пока не появится настолько сильное гравитационное взаимодействие, что оно будет притягивать к себе, грубо говоря, едва ли не с той же скоростью света (а если точнее - можно применять, пока потенциал взаимодействия много меньше этой "пороговой" величины, равной c^2). То есть посмотреть, как планеты друг с другом сталкиваются, ещё можно. Как мелкую частичку разогнать до скорости, близкой к скорости света - ещё можно. А вот если попытаться взглянуть в космическую "чёрную дыру" и попытаться сообразить головой, а как туда что-то упадёт, то здесь и СТО обломает себе зубы. Тогда в силу вступит общая теория относительности (ОТО), которая уже может попытаться наглядно показать, как будет выглядеть со стороны засасываемый чёрной дырой предмет. ("Чёрная дыра" - это бывшая звезда, имевшая достаточно большую массу; при своей "смерти" она схлопнулась до очень малых (для звезды) размеров, из-за чего стала настолько плотной и массивной, что своей гравитацией начинает притягивать всё и вся - причём эта гравитация настолько сильна, что из её лап не вырваться даже одному квантику света - именно поэтому она "чёрная", и это уже создаёт трудность в том, как хотя бы представить, что тот или иной предмет будет ей притянут - ведь тогда его уже не станет видно, потому что для того, чтобы предмет можно было увидеть, от него должен отразиться свет, который чёрная дыра тоже не выпускает!) Короче говоря, глазами что-то представить - мозги сломаешь, космос ещё не вскопан математически, и тут ещё современной физике копать и копать. Даже специальный раздел науки для этого забабахали - космологию.

Вкратце и поумнее: специальная теория относительности (СТО) - это теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, меньших скорости света или близких к ним. Движение при скорости, близкой к скорости света, называют релятивистским. Два основных постулата СТО: 1) все физические процессы протекают одинаково в любой инерциальной системе отсчёта; 2) скорость света в вакууме - величина постоянная в инерциальной системе отсчёта и не зависит от скорости источника света или его приёмника. Значение её составляет: c = 3*10^8 м/с (примерно). Величины, изменяющиеся при скоростях, близких к c: масса, энергия, импульс (увеличиваются при приближении к c); время, линейные размеры тела (уменьшаются при приближении к c). Энергию СТО описывает формулой: E = m*c^2/корень квадратный из (1 – (v^2/c^2)). При v = 0 E = m*c^2 - тело имеет энергию покоя, определяемую массой покоя. При v = c энергия бесконечно большая - разгон тела, имеющего массу покоя, до скорости света невозможен. СТО также имеет свои границы применения - она не может применяться в сильных гравитационных полях. Обобщение СТО для гравитационных полей - общая теория относительности (ОТО).

Второй с начала и конца последнего раздела абзац. Атомная физика. Когда-то считали, что атом - это самый маленький "кирпичик", из которого состоят вещества, якобы неделимый (само слово "атомос" в переводе с греческого и означает "неделимый"). Но потом народ начал натыкаться на то, что всё-таки там что-то внутри есть: как то, хоть те же электроны - они же не сами по себе болтаются? Тем более что "выплёвывали" их как раз именно атомы. На эту тему долго чесал себе репу товарищ с инициалами и фамилией Дж. Дж. Томсон (точно не помню, тот же ли это Томсон, что формулу для колебательного контура вывел, или же последнее сделал его сын), ранее открывший сам электрон. И придумал он нехитрую модель: атом - это такой пудинг (или кекс) с изюмом: тесто - это размазанный по всему атому положительный заряд, а изюминки - это электрончики, каждый из которых имеет свой отрицательный зарядик, и вместе они дают такой заряд, что атом будет электронейтрален (то бишь заряд его - ноль, как это и должно быть). Но потом его ученик Эрнест Резерфорд (правнук которого, кстати, в наши дни до сих пор играет в одной достаточно известной как за бугром, так и у нас, группе) опроверг такую теорию. А именно: он использовал кусочек радиоактивного вещества (радиоактивность тогда уже была открыта), который, кроме всего прочего, плевался альфа-частицами - ядрами атома гелия. Эти частички бомбардировали специальную золотую фольгу, на которой можно было увидеть, куда что попало. Если бы "пудинг с изюмом" действительно бы существовал, то все частички дружно рассредоточились в маленький круг (из-за слабого кулоновского отталкивания друг от друга) и попадали бы на мишень. Итог - на мишени был бы круг. А на деле? На деле получилось, что некоторые частички отражаются на большие углы, отдельные (единицы из тысяч) вообще отражаются на 90 градусов или - более того - поворачивают назад! Товарищ Резерфорд предположил так: атом - это не кекс с изюмом, а что-то вроде маленькой планетарной системы. Центр - "солнце" - это ядро, а вокруг него, как планеты, болтаются электрончики, каждый на своей "орбите". Ядро заряжено положительно, электрончики - отрицательно, итог - атом в целом электронейтрален, как это и должно быть. Причём ядро по размеру гораздо меньше атома - примерно настолько же, насколько яблоко меньше Земли. И некоторые частички отклонялись так странно как раз потому, что попадали именно в ядро, которое отталкивало их от себя куда ни попадя.

Но и тут физики не успокоились! Как же так - электрон крутится по орбите, значит, движется с центростремительным ускорением, которое, вообще говоря, отрицательно - значит, он замедляется, - значит, теряет энергию! К тому же, он ещё и должен притягиваться положительно заряженным ядром - короче, вся теория идёт прахом, ничего снова не объясняет, иначе все электрончики бы попадали на ядро и с большим удовольствием сопели бы там на боку очень короткое время, после чего нейтрализовались бы вместе с положительным зарядом ядра. Тогда голос подал другой физик, по фамилии Бор. Он погрозил пальцем и сказал: так-то всё так, ребятки, да не совсем. Во-первых, да, электрончики крутятся вокруг атома. Но: у каждого из электронов есть своё "стационарное" состояние, в котором он свою энергию не теряет. Да, вот так: крутится, но энергию не теряет, и сам атом при этом стабилен, и всё хорошо. Ну а уж если его побеспокоить, тогда вступает в силу второй постулат: если атом возбудить (это значит всего лишь изменить его энергию - а не то, что вы подумали!), то внутри него происходит следующее: электрончик карабкается (если атому дают энергию) на орбиту (или несколько, если энергии хватает) выше или падает (если атом отдаёт энергию) на орбиту (или несколько, если теряется много энергии) ниже, при этом либо он поглощает квант электромагнитного излучения (когда получает энергию), либо излучает его (когда отдаёт). Энергия такого кванта будет равна: h*ню = E2 - E1, то бишь просто разнице энергий. В зависимости от того, насколько сильно вдарить по атому (и по какому атому тоже!), энергия вышибаемого из него излучения может быть разной. И что ещё примечательно: набор квантиков, который испускает (или поглощает) тот или иной атом при возбуждении, у каждого свой! То есть один атом, например, плюётся только красным, жёлто-зелёным и фиолетовым, а другой - только оранжевым и кучей оттенков синего. Более того, набор тех "цветов", что он выплёвывает, и тех, что поглощает, ВСЕГДА совпадает. Это легло в основу такой исследовательской штуки, как спектроскопия: освещая то или иное вещество и смотря, какие именно цвета (длины волн) оно поглощает, можно определить, из каких атомов оно состоит!

Но такое явление нашло себя не только в заумной диагностике, а ещё и в обычной жизни. Например, если пустить обычный электрический ток большой силы по вольфрамовой нити, то она начнёт не только греться, но ещё при этом и, пытаясь остыть, светиться. Это будет обычная лампочка накаливания. Более сложный пример - если пустить ток через газ, например, неон. Электрончики, бегающие по получившейся плазме, будут ударяться об обычные атомы, возбуждать их, а те, стремясь вернуться в обычное состояние - всё к тому же равновесию! - будут давать тоже кванты с длиной волны света. Ещё более сложный пример - если взять лампу дневного света на парах, например, ртути: через пары ртути тоже пускают ток, она тоже даёт излучение, но в ультрафиолетовом диапазоне, который не виден! А чтобы он стал виден, делают по-хитрому: этот ультрафиолет падает на специальное вещество, нанесённое по ту сторону оболочки лампы. Оно возбуждается уже ультрафиолетовым излучением, и снова та же картина: стремясь "успокоиться" обратно, выплёвывает кванты видимого света (то есть с уже меньшей энергией). Такую штуку называют люминесценцией, а лампы - люминесцентными. Самый сложный и невидимый глазами пример - это если разогнанные напряжением в десятки киловольт электроны заставить с разгону удариться головой об атомы (например, меди или хоть того же вольфрама, хотя теоретически, в принципе, материал не особо важен - нужно только, чтобы он был плотным, иначе электрончики тупо проткнут его насквозь и полетят дальше, даже не заметив). Тогда полученная энергия будет такой, что атом станет плеваться квантами рентгеновского диапазона - именно таким излучением просвечивают грудную клетку, когда делают флюорографию, или челюсть, когда делают рентгеновский снимок зубов. В свою очередь, даже та же фотобумага - это тоже удел атомной физики: раньше, ещё во времена аналоговых фотоаппаратов, делали бумагу из специальных материалов. Она чутко реагировала на свет, и если запечатлённое на плёнку изображение просветить так, чтобы его отображение уложилось точно на бумагу, то и получилась бы фотография. Всё это делалось в темноте (иначе кадр пропадёт - будучи засвеченными, атомы материала плёнки вернутся обратно в спокойное состояние (они специально подбирались такими, чтобы возбуждённое состояние держалось достаточно долго, дабы успеть потом это возбуждение снять), и - прощай, картинка, ищи-свищи, где они там были возбуждены, а где нет!), в специальных фотолабораториях... Не то, что сейчас - нажал кнопку, и вот тебе уже готовая фотка, хоть сразу в интернет заливай. Только атомной физики и в цифровом фотоаппарате сильно меньше не стало, просто там используют не бумагу, а специальные фотоматрицы, каждая "ячеечка" (пиксель) которых реагирует на свет всё теми же многострадальными атомами. Но это уже гораздо более сложная вещь, такие в школе не проходят. Самый зубодробительный пример - если заставить кучу атомов одновременно испускать кванты с одной и той же длиной волны, загоняя электрончики на одни и те же орбиты, отчего они все синхронно будут падать. Такой "электронопад" лежит в основе работы лазера. Причём лазеры излучают как видимый свет (и выглядит это вовсе не как полоса света или световая "пуля", а просто пятно в месте попадания луча, как от лазерной указки!), так и инфракрасное излучение, и ультрафиолет, и даже рентгеновские лучи. Шагают по длине волны и в другую сторону - специальные "мазеры" излучают волны микроволнового диапазона тоже одной и той же длины. Последние применяются в том числе в таких страшных штуках, как лучевое оружие. Опять-таки, ещё раз повторю - никакое излучение, кроме видимого света, не увидишь! Лучи чёрт-те каких диапазонов, которые кругом и всюду показывают как видимые лучи (кроме обычного света), остаются видимыми пока что только в научной фантастике!

Немного ушли от темы, но в целом по школьной части в общих чертах почти всё. Дальше товарищи стали чесать репы ещё и ещё и пришли к выводу, что классическая механика для описания строения атома никак не подходит. СТО тогда ещё только разрабатывалась, но и она тоже тут не в кассу. Итог - появилась квантовая механика, которая очень скрупулезно описывает мелкие частички типа тех же электрончиков. Тут понеслось по полной программе: не то, что для школы - для технического вуза математика с физикой пошли такие, что действительно без пол-литра или очень хорошего преподавателя (или и то, и другое вместе) не разберёшь. К атомной физике это прикоснулось таким образом: электрон - это теперь больше не шарик, крутящийся по орбите. Это тоже и частица, и волна одновременно, он размазан по пространству всего атома, болтаясь тудыть-сюдыть со скоростью порядка 10^5 м/с, но те места, в которых его нахождение наиболее вероятно, образуют "орбиталь" - это то, что обозначается в таблице Менделеева непонятными маленькими буквами s, p, d и f. То бишь таких видов орбиталей всего четыре.

А ещё у электрончика есть непонятный параметр под названием "спин". Когда электрон представляли ещё как шарик, то предполагали, что спин означает то, что электрон крутится не только вокруг ядра атома, но и вокруг своей оси (точно так же, как и наша Земля - не только вокруг Солнца, но и вокруг себя). Потом, правда, фантазия сама себе сломала голову представлять - и частица, и волна одновременно, и размеров почти не имеет, да ещё и что-то там крутится вокруг себя, когда крутится нечему! Во накрутили (каламбурчик). Но именно спин отвечает за то, что атом умеет "чувствовать" магнитное поле. Грубо говоря, когда спины всех электрончиков атома поворачиваются в одну сторону, вещество из этих атомов становится намагниченным. Когда спины повёрнуты так, что половина направлена в одну сторону, половина - в другую (как это бывает обычно), вещество не реагирует на магнитное поле. Спин - это безразмерное число, и для электрона он может быть равным только +1/2 или -1/2 (смотрит "вверх" или "вниз" соответственно, или крутится "по часовой стрелке" либо "против часовой стрелки", если представлять как шарик. Кавычки ставлю специально, потому что где в атоме верх, а где низ - чёрт-те его знает.)

И наконец... Наконец, чтобы окончательно "убить" атомную физику, придётся смириться с тем, что она смыкается с химией. А именно - всё с той же таблицей Менделеева. Конкретнее: в ней представлено большинство возможных атомов, какие только могут быть. Если совсем строго - далеко не все, но все основные и более-менее стабильные точно. "Стабильные" значит то, что атом так и будет оставаться ядром с электрончиками достаточно долгое время. "Нестабильный" значит, что атом по какой-то причине не может удержать в охапке все свои внутренности и через какое-то время либо развалится на два других, более лёгких, атома, либо от него "отколется" небольшой кусочек в виде одной-двух частичек. И то, и другое называется радиоактивным распадом. Но об этом уже лучше в ядерной физике.

Что ещё из атомной физики подсказывает таблица Менделеева. Это: число энергетических уровней ("орбит"), которые имеет атом - это строка (период), в котором стоит тот или иной химический элемент. Число электрончиков, находящихся на самой верхней "орбите" (именно они активнее всего участвуют во всяких взаимодействиях, как то: их легче всего отщепить от атома, заставив переносить электрический ток или прилепиться к другому атому, у которых не хватает электрончиков для того, чтобы полностью заполнить внешний уровень - то бишь верхнюю "орбиту") - это номер столбца (группы), в которой находится химический элемент. Номер каждого химического элемента тоже подобран не случайно: это число электронов во всём атоме вообще, оно же положительный заряд ядра, оно же число протонов. (О протонах и нейтронах тоже расскажу в ядерной физике, это следующий и последний абзац.) Масса атома - это число протонов и нейтронов, вместе взятых (масса электрона считается очень маленькой по сравнению с массами протонов и нейтронов - разница почти в 2000 раз, поэтому их не считают). Мерится в специальных единицах - атомные единицы массы (а.е.м.). 1 а.е.м. = 1.66*10^-24 г или 1/12 от массы атома углерода. Да, и тут снова углерод. По всей видимости, это один из самых стабильных и распространённых атомов, которые есть - именно поэтому и моли, и а.е.м. считают от него. Моли тут тоже привязаны: если масса элемента равна 1 а.е.м, то 1 моль такого элемента будет весить 1 г. Для того же углерода получается, что 1 моль его будет весить 12 г (так как масса 12 а.е.м.) У железа, например, масса одного моля - 56 г. Короче, та же молярная масса, что и была в термодинамике. Ну и последнее, что в таблице Менделеева уже не указывается, но что для каждого атома своё - это его радиус. Чётких границ он не имеет, поэтому его считают просто как расстояние между ядрами соседних атомов, которые связаны друг с другом. Естественно, чем больше в атоме внутренностей - чем больше напихано всякой хрени в ядре и чем больше электронов болтается вокруг, тем он ширше. Но в среднем размер атома колеблется где-то от десятков до сотен пикометров ("пико" - это 10^-12, одна тысячная нанометра... то есть где-то одна триллионная доля метра). То есть, если проводить сравнение с тем же яблоком, разница в порядках примерно такая же, атом настолько же меньше яблока, насколько ядро атома меньше его самого: если яблоко - это один атом, то Земля - это одно большое яблоко, в состав которого входит наш "атом".

И самое последнее. Несмотря на то, что атом вот так бессовестно распотрошили на мелкие частички, он не становится совсем не нужным физике. Очень многие физические процессы рассматривают, именно представляя вещество как большую кучу атомов, а некоторые и об атомах забывают и смотрят ещё "выше" - на молекулы: так, молекулярная физика об атомах почти забывает, вспоминая о них только как о составных частях молекул; большое количество прикладных наук, в том числе инженерных, смотрят на атом как на неделимый шарик, из которого могут разве что выплёвываться электрончики с энергетическими переходами (которые дают кванты электромагнитных волн), и только ядерная физика реально разрезает атом на части, забывает о нём и погружается ещё глубже, к самому "фундаменту".

Вкратце и поумнее: существовало несколько моделей атома. Модель Томсона - "пудинг с изюмом": атом - это положительно заряженная частица, в котором содержатся электроны. Модель Резерфорда это предположение опровергла: опыт по рассеиванию альфа-частиц на золотой фольге показал, что атом состоит из положительно заряженного "ядра", вокруг которого, по предположению, вращаются электроны. Недостаток теории Резерфорда в том, что электрон должен терять энергию, так как движется с отрицательным центростремительным ускорением, и притягиваться атомом - но этого не происходит. Бор выдвинул два постулата, объясняющих это: 1) атом может находиться в нескольких стационарных состояниях, при котором электрон может двигаться вокруг ядра, не теряя энергии, при этом энергия атома постоянна; 2) при переходе из одного стационарного состояния в другое электрон переходит на другую орбиту (другой энергетический уровень), испуская при этом квант энергии или поглощая его (при потере энергии - испускает, при получении энергии - поглощает). Квантовомеханическая (текущая на данный момент) модель атома принимает во внимание, что электрон является частицей и волной одновременно; геометрическое место точек, в котором наиболее вероятно его нахождение, называется электронной орбиталью. Всего есть четыре типа орбиталей: s, p, d и f. Спин электрона - величина, отвечающая за магнитные свойства вещества; наглядно его можно было представить как вращение электрона вокруг своей оси. Принимает значения +1/2 и -1/2. Связь между параметрами атома и его положением в периодической системе элементов Менделеева: период - это количество энергетических уровней, которые имеет атом, группа - число электронов на внешнем уровне, номер элемента - заряд ядра, или число электронов, или число протонов; атомная масса - число протонов и нейтронов. Атомная масса измеряется в атомных единицах массы (а.е.м.), 1 а.е.м. = 1/12 массы атома углерода-12, приближённо равна 1.66*10^-24 г. Радиус атома измеряется по расстоянию между ядрами атомов, связанных ковалентной связью, в зависимости от атомного номера он составляет от десятков пикометров до сотен пикометров.

Подходим к финишу! Осталась последняя, в чём-то очень простая, но и в чём-то очень сложная часть. Простая потому, что самая сложная математика здесь на уровне "прибавить-отнять". Сложная потому, что глазами представить всё то, что и как творится во вроде бы и без того крошечном атомном ядре, не очень просто. И в том, что ядерная физика тесно сплетена всё с той же химией и с квантовой механикой. Но это последний раздел, после него всё закончится. Как перед нырком - набрали воздуха и вперёд.

Значится, атом состоит из ядра и электронов. А ядро состоит, в свою очередь, из протонов и нейтронов, которые друг за другом тоже были открыты. Оба примерно в 2000 раз тяжелее электрона, но не совсем одинаково. Заряд протона - положительный и равен заряду электрона. Нейтрон электронейтрален (у него заряд - 0). Из основных параметров всё. Но всё бы хорошо, да есть несколько "но". Во-первых, почему протоны не отталкиваются друг от друга, у них же одинаковые по знаку заряды? Во-вторых, почему они вообще все держатся вместе? В-третьих, почему некоторые из них не могут держаться вместе и разваливаются, отчего человечество стало рисовать страшный знак с тремя лучами от точки - знак радиоактивности? И, в-четвёртых, каверзный вопрос: а не состоят ли они сами из чего-нибудь ещё более мелкого? Обо всём - по порядку.

Первый момент. По логике, да - протоны должны разлетаться прочь друг от друга из-за сил кулоновского отталкивания. Но почему-то этого не происходит. Думали, гадали, почему так: это явно силы не электрического происхождения. И не гравитационного - хоть и расстояние между протонами очень маленькое, массы их ещё меньше, и сила притяжения их друг к другу тоже крайне мала. Все основные виды взаимодействий исчерпали. Тогда решили, что это дело рук третьего, ещё неизвестного, взаимодействия, которое назвали "сильным". Именно оно удерживает частички сцепленными друг с другом, причём делать это может только на небольшом расстоянии - на большом сила притяжения резко падает. Благодаря этому сильное взаимодействие получило жаргонное (да, у физиков тоже есть жаргон) прозвище "богатырь с короткими руками". Всё, в школьной физике про него больше почти ничего не известно (почему "почти", смотри самый конец).

Второй момент. Всё тот же принцип "природа стремится к равновесию" - раз все частички (протоны и нейтроны часто обзывают "нуклонами", так как "нукл" - это ядро) связаны между собой, значит, это для ядра чем-то выгодно. А именно: чтобы разорвать пучок из нуклонов, нужно снова затратить какую-то энергию. Она называется энергией связи - это энергия, которую нужно затратить, чтобы разделить атом на отдельные частички. (Есть ещё "удельная энергия связи", это энергия связи делить на количество нуклонов.) Значение этой энергии и определяется сильным взаимодействием. Эта энергия достаточно мала, чтобы мерить её в джоулях, поэтому здесь у неё специальная величина - электронвольт (эВ). Это энергия, которую приобретает 1 электрон, ускоренный напряжением в 1 В. То есть 1 эВ = 1.6*10^-19 Дж. Удельная энергия связи лёгких ядер составляет примерно 0.8 МэВ/нуклон. Да, наверное, это ни о чём не говорит. Ладно, об этом чуть позже. Здесь остаётся отметить только одну вещь, которую обычно не отмечают в таблице Менделеева, но которая при этом существует: изотопы. Это атомы, в ядрах которых поселился один или несколько "лишних" нейтронов, либо, наоборот, из которых ушли один или несколько нейтронов. Наиболее известные изотопы - это изотопы урана и водорода. У урана (атомная масса = 238 а.е.м.) есть такие изотопы: уран-234 и наиболее известный - уран-235. Массы у них соответственно: 234 и 235 а.е.м., то есть у первого "отлипли" 4 нейтрона, у второго - три. У водорода, наоборот, нейтроны прибавляются: обычный водород их вообще не содержит, на совсем сухом научном языке он называется "протий" (атомная масса - 1 а.е.м.). Если добавить один нейтрон, получится водород с массой 2 а.е.м., который называется "дейтерий", он даже обозначается своей буквой - D вместо H. Вода, в которой вместо водорода - дейтерий, называется тяжёлой, внешне мало отличается от обычной и даже несильно ядовита. Если же добавить ещё один нейтрон, то такой "водород" будет называться "тритий", у него атомная масса 3 а.е.м., и вместе он свои внутренности держать уже будет с трудом - он радиоактивен. Обозначается тоже своей буквой - T, вода T2O называется сверхтяжёлой.

Третий момент, которым прожужжал уже все уши. Радиоактивность - что это за зверь и с чем его едят? Разбираемся по порядку. Как я уже несколько раз повторял выше, есть атомы "стабильные" и "нестабильные". Стабильные существуют долгое время без изменений, а у нестабильных энергии связи не хватает на то, чтобы держать все нуклоны связанными друг с другом - их тупо слишком много, в охапке их не удержишь: одно дело, когда у тебя в руках просто пара карандашей, другое - когда нужно унести с собой в двух руках четыре набора цветных карандашей без коробок и ещё с десяток ручек впридачу. Какие-то из них могут упасть, причём упасть может как один карандашик, так и большая пачка, а то и с половину где-нибудь. Примерно так и получается при радиоактивном распаде: ядро атома периодически разваливается на составные части, выплёвывая при этом в виде того, что мы называем радиацией, всякую гадость. Эту гадость можно разделить на три части.

Первые - это "альфа-частицы". В сравнении с карандашами - это небольшая пачка (штуки 4) карандашей, падающих из рук. Альфа-частица представляет собой не что иное, как ядро атома гелия. Почему именно гелий - а пёс его знает. Скорее всего, потому, что два протона и два нейтрона, вместе связанные, обладают наибольшей энергией связи, их труднее всего разъединить. Когда такая частичка отваливается от атома, его номер уменьшается на 2, а атомная масса - на 4. То есть уран-238 при альфа-распаде превратится в торий (масса = 234, атомный номер = 90). (Торий тоже радиоактивен, поэтому и он со временем будет как-то разваливаться - и так до тех пор, пока не отвалится столько частичек, что атом не станет стабильным - например, хотя бы до свинца, у которого атомный номер = 82.) По опасности альфа-излучение можно сравнить с ползущим в дрянь пьяным толстяком: прямое столкновение с ним не принесёт практически никаких повреждений. Альфа-частицы хоть и большие (по сравнению с мелкими частицами), но слабы по энергии - защититься от них можно даже обычным листом бумаги.

Второй вид выплёвываемых частиц назвали буквой "бета" - бета-частицы. (Это можно сравнить с одним карандашом, выпадающим из рук.) Потом оказалось, что это всего лишь летящие электрончики. Отсюда вполне логичное утверждение: когда ядро испытывает бета-распад, его заряд повышается на 1, а массовое число не меняется. Строго говоря, бета-распад гораздо сложнее; выплёвывание электронов - это не единственное его проявление, можно ещё плеваться частичкой под названием "нейтрино" или даже "античастицами". (!) Но в школе обычно ограничиваются только электронами. По опасности бета-излучение можно сравнить с бегущим человеком: при столкновении можно разве что легко ушибиться. Конечно, это уже зависит от того, насколько быстро человек бежит - точно так же и опасность от бета-излучения зависит от энергии электронов, но в целом считается, что от бета-частиц можно защититься при помощи листа алюминиевой фольги.

Третий вид, уже знакомый ранее и самый опасный - это гамма-лучи. Это уже никакие не частицы, при гамма-распаде заряд и массовое число ядра не меняются. Причины его сидят ещё глубже, чем в альфа- и бета-распадах: само ядро атома может возбудиться от какого-то взаимодействия, причём возбуждённое состояние будет длиться достаточно долго (по атомным или ядерным меркам, конечно). В конце концов, оно "успокоится" и вернётся в обычное состояние, но при этом испустит квант электромагнитной энергии - причём значение этой энергии настолько большое, что по опасности гамма-излучение можно сравнить с летящим на полном ходу высокоскоростным поездом, машиной Формулы-1 или самолётом: при наезде - мгновенная смерть. В жизни всё не настолько страшно, один гамма-квант (или десять) никого не погубит, но вот если их слишком много... Защититься от них можно только чем-нибудь ядрёным вроде слоя свинца толщиной в несколько сантиметров или даже десятков сантиметров - опять-таки, в зависимости от энергии кванта. (Вместо свинца может быть и другой материал, но он должен быть очень плотным - именно большой атомный номер позволяет затормозить гамма-лучи.)

Наконец, бывают ядерные реакции, когда одно вещество тупо распадается на два, и при этом ещё откалывается мелкий кусочек типа той же альфа- или бета-частицы: например, тот же уран-235 может развалиться на барий (масса = 139 а.е.м., заряд = 56) и криптон (масса = 95 а.е.м., заряд = 36), при этом ещё отрыгнёт два нейтрона. Это можно сравнить с разваливанием охапки карандашей на две части.

Все три типа лучей (альфа, бета, гамма) - ионизирующие, однако "альфа" и "бета" лучами как таковыми не являются, хотя уже чисто исторически повелось, что их тоже называют ионизирующим излучением. (В самом широком смысле ионизирующим излучением может быть поток любых частиц, которые вызывают ионизацию атомов.)

Ещё два момента, на которые здесь надо бы обратить внимание. Первый - это, конечно же, период полураспада, ставший известным благодаря сами знаете какой игре. Как я уже написал выше, ядра разваливаются на части - но как часто? За это и отвечает данное число. Период полураспада - это время, за которое распадётся половина всех ядер того или иного вещества, обозначается он буквой T (НЕ лямбда!!!). Есть только одно огорошивающее "но": за два периода полураспада абсолютно все ядра не развалятся! Потому, что распад происходит по ниспадающей: сначала разваливаются все друг за другом, потом всё меньше, меньше и меньше... В итоге за два периода полураспада останется четверть всех ядер, за три периода полураспада - одна восьмая, и так далее. Собственно, в том числе и поэтому и существует естественный радиационный фон - мимо нас регулярно пролетают всякие ионизирующие лучики, на которых мы уже не обращаем внимания, потому что мать-природа приспособила. Другое дело, если их станет слишком много - тогда ионизируются атомы, из которых состоит человеческое тело, в результате из-за отрыва электрончиков может пойти неуправляемая химическая реакция - поменяется состав клеток, или ещё хуже - при отравлении радиоактивным веществом может поменяться даже химический состав (уже на уровне молекул!) организма. Итог - от банального до крайне печального: при слабом облучении - обычная повышенная температура, организм в принципе даже может сам попробовать справиться с наступившей лучевой болезнью, при сильном - от мутаций (результат изменения состава клеток; третьих глаза или руки, конечно, не вырастет, но вот опухоль в пол-лица размером - так, что один глаз выдвинется аж на середину лба, огрести можно) до тошноты непонятной гадостью (уже вряд ли радиоактивной, но всё равно совсем не сахар) и заражения крови, при критическом уровне - мгновенная смерть. Единственное возможное спасение при всё-таки полученном облучении - это фрукты. Нет, я не шучу. Фруктоза содержит химически активную OH-группу, которая берёт на себе отколотые ионизирующей гадостью частички атомов на себя, выводя впоследствии эту дрянь из организма. На самый худой конец, если больше ничего под рукой не останется, сойдёт и спирт - всё из-за той же OH-группы. Только не стоит забывать, что, переборщив со спиртом, можно помереть от спирта, а не от радиации. Одно другого не сильно слаще...

И второй момент - это, конечно же, ядерная энергетика. За основу берётся реакция, которую я уже писал: уран = барий + криптон + 2 нейтрона. Особо умные сразу же спросят: а энергия связи? Выполняется ли закон сохранения энергии? Выполняется, куда ему деться. Разница между энергиями высвобождается, и её можно использовать для производства хоть того же электричества! Правда, на АЭС (атомных электростанциях) это делают не напрямую: высвободившаяся энергия уходит на нагрев специальной воды, которая становится тоже радиоактивной. Она остывает, передавая тепло другой воде, уже безопасной - та, в свою очередь, от этого закипает, полученный водяной пар вращает турбину, которая подрублена к генератору, который преобразовывает механическую энергию вращения в электроэнергию (а водяной пар, совершив работу, остывает, конденсируется и снова превращается в воду). Из-за такой цепочки КПД очень мал - в электричество превращается в лучшем случае несколько процентов от энергии, даваемой ураном, но даже эти процентики по количеству джоулей будут выше, чем сжигание большой кучи угля или то же течение воды. Один только вопрос: надо "подталкивать" уран, чтобы он делился постоянно и в то же время контролируемо. Первоначальный толчок делают банальным нагревом - частички приобретают энергию от тепла, и разваливание происходит уже из-за этого - а дальше в дело выступают выплёвываемые ураном 2 нейтрона. Нетрудно догадаться, что если оставить их как есть, то каждый из них вызовет ещё 2 - то есть всего станет 4, - потом 8, 16, 32, 64... и всё это с сумасшедшей скоростью. Отсюда печальный вывод - если оставить всё как есть, то получится атомная бомба - энергии выделится очень много за очень малый промежуток времени, что в жизни является взрывом. Два утешительных момента: это происходит не при любом количестве урана, и "лишние" нейтроны можно "скушать". При определённой массе вещества цепная реакция (это самое деление с нейтронами) становится возможным, такую массу называют критической, у урана она составляет что-то, чуть меньшее 50 кг. (Чтобы атомная бомба не срабатывала заранее, кусок урана разделяют на две части, а при сбросе бомбы соединяют их - как правило, при помощи обычного взрыва, уничтожающего перегородку.) А "лишние" нейтроны можно гасить специальными стержнями, которые можно впихивать в ядрёный... то есть в ядерный, реактор. Чаще всего их делают из углерода, они просто "кушают" все лишние частички. Когда размножение  нейтронов поддерживается около единички "сына" на единичку "отца", всё хорошо - реакция идёт, электричество вырабатывается. Когда больше - атас, можно взлететь на воздух со страшнейшей силой. Когда меньше - тоже плохо: реакция может прекратиться вообще, её придётся начинать заново.

Ну и на закуску к радиоактивности - маленький взгляд в будущее. Ясен пень, когда народ увидел, что можно добывать ядерную энергию, сразу же стали копать в направлении других атомов: а нельзя ли воспользоваться другими, какими-нибудь более безопасными, атомами? Ответ оказался положительным, но природа ничто не даёт просто так. Более лёгкие вещества уже толком не распадаются, зато есть другой способ - соединить несколько атомов воедино. При этом есть одно очень существенное "но": чтобы их соединить, нужно суметь притянуть их друг к другу так, чтобы силу кулоновского отталкивания между ядрами (которую никто не отменял!) сумела подавить сила сильного взаимодействия. Тогда получится, что два атома соединятся в один, выдав разницу между энергиями связи - а это такая энергия, которая оказалась примерно в сотню раз выше энергии ядерного синтеза! Наиболее известная такая реакция: D + T = He + n (по-русски - дейтерий + тритий = гелий + нейтрон). А для преодоления кулоновского отталкивания сумели придумать только один способ - тупо нагрев. Причём нагрев этот идёт до таких температур, которые вообразить себе трудно: от десятков миллионов до миллиардов кельвин! Единственное пока известное место, где такая температура есть, - это наше Солнце. Но оттуда и энергию просто так не заберёшь! Поэтому создают заумные установки по термоядерному синтезу, где дейтерий-тритиевую плазму (большая температура становится в том числе и у электронов, и они разгоняются так, что становятся способными выскакивать из атомов и возбуждать их уже не электрическим способом) нагревают до страшных температур, при этом возникает ещё куча проблем, так как всё то же стремление природы к равновесию яро старается рассеять тепло от нагрева как можно скорее, расширить плазму (а при её чрезмерном сужении - схлопнуть чуть ли не в точку!) и так далее. Итог - пока что термоядерным способом энергию получить удалось, но она получилась такой, что затраты энергии на её получение вышло больше. На что всё то же меркантильное человечество пожало плечами и сказало: ну, крутую вы игрушку сделали, ребята, но с такой играться невыгодно. Зато военные радостно потирают руки, оскалив зубы: возможно создание термоядерной бомбы. Секрет в том, что тепла, выделяющегося при мощном ядерном взрыве, вполне может хватить для поддержания термоядерной реакции. То есть ступеней становится три: вначале обычная бомба детонирует, соединяя куски ядерного топлива, которое, в свою очередь, тоже взрываясь, создаёт условия для протекания термоядерной реакции, после чего наступает самый страшный взрыв. Что ещё хуже - мощность термоядерной бомбы зависит только от количества топлива... Остаётся только надеяться, что народ не будет забывать: применив очень мощное термоядерное оружие, способное уничтожить хоть всю Землю, ты укокошишь в первую же очередь самого себя.

На этой грустной ноте, наконец переходим к самому последнему большому пункту. Первый же главный и грустный ответ: да, протоны, нейтроны и электроны - это далеко не все элементарные частицы, которые существуют, и они состоят из ещё более мелких частичек, которых называют "фундаментальными". Есть и другие элементарные частички; некоторые из них могут существовать отдельно, некоторые, как радиоактивные атомы, тоже со временем разваливаются на части (только уже без радиации). Всего их можно разделить по двум признакам: это по виду спина и по виду взаимодействий.

По виду спина частички делятся на фермионы и бозоны. У первых спин полуцелый (+1/2 или -1/2 - это протон, нейтрон, электрон или частица с загадочным названием "нейтрино"), у вторых целый (1 или -1 - например, это фотон или непонятная частичка под названием "мезон").

Если разделять частички по типу взаимодействий, то получится такая классификация: адроны, лептоны, кварки и так называемые "калибровочные бозоны". Что такое адроны, понять проще всего так: это частички, которые участвуют во всех четырех типах фундаментальных взаимодействий. (Да, я не ошибся. Именно четырёх, хотя я пока написал про три. О четвёртом - чуть-чуть попозже.) Они делятся на мезоны и барионы, которые по первой классификации являются соответственно бозонами и фермионами. Итог - мезоны участвуют во всех взаимодействиях, имеют целый спин, являются одновременно бозонами и адронами, барионы участвуют во всех взаимодействиях, имеют полуцелый спин, являются одновременно фермионами и адронами. Жуть, всего два разных слова, а намешали-то кучу какую...

Но я обещал рассказать про последнее известное на данный момент, четвёртое, взаимодействие. Когда копались во всей этой куче элементарных частичек, то во время деления некоторых частичек - например, нейтрона - возникало подозрение на тему, что существует ещё какая-то непонятная частичка, которая ни с чем не взаимодействует, и именно поэтому её не удаётся поймать. Подозрения навевал в основном закон сохранения энергии - какая-то её часть уходила как будто в никуда, что закон не мог допустить. В итоге оказалось, что искомая частичка не участвует ни в электромагнитном, ни даже в сильном взаимодействии! Зато взаимодействует "слабо" - именно так назвали новый тип взаимодействия. Его обнаружили, когда закопались ещё глубже и открыли, что некоторые элементарные частички могут якобы "просто так" обмениваться чем-нибудь друг с другом: энергией, зарядом, массой... Слабое взаимодействие слабее сильного и электромагнитного, но сильнее гравитационного. (Нейтрино, строго говоря, участвует и в гравитационном взаимодействии, но масса у него совсем крохотная.) Название "нейтрино" - видимо, шутка юмора: это уменьшительно-ласкательное от "нейтрон" на итальянском. Вообще, при дальнейшем углублении в физику элементарных частиц начинают прорисовываться термины, которые вызывают улыбку: цвет (?), аромат (??), странность (!), прелесть (!!), очарование (!!!) И всё это - тоже числа, характеризующие свойства тех или иных частиц!

Лептоны - это фермионы, которые не участвуют в сильных взаимодействиях. Известно 6 штук таких лептонов, в их числе - электрон и нейтрино. Лептоны, имеющие электрический заряд, могут также участвовать в электромагнитном взаимодействии. Не имеющие? А кто его знает, тут ещё эксперименты не всё выяснили.

Кварки - это то, из чего состоят адроны. Самые маленькие из всех известных на данный момент частичек, наряду с лептонами и калибровочными бозонами, состоят ли они из чего-нибудь - науке неизвестно, поэтому их пока обзывают "фундаментальными" частицами. В свободном состоянии их нет, зато три кварка образуют адрон. У них есть свои характеристики типа тех, которых я пометил восклицательными знаками выше - заряды и спины у них посчитали, но и этого оказалось мало: два кварка с одинаковыми параметрами по-прежнему вели себя по-разному. Поэтому и стали выдумывать такие забавные словеса типа "цвет". Участвуют в сильных взаимодействиях.

Осталось ещё два момента по элементарным частицам: это последняя категория ("калибровочные бозоны") и античастицы. Совсем коротенько о последних: когда ещё зарождалась квантовая механика, обрастая страшной математикой, товарищ по фамилии Дирак, решая тамошние уравнения, наткнулся на то, что одно из них может иметь решение в виде отрицательной энергии. Товарищ не растерялся и решил принять это таким образом: частица с отрицательной энергией - это вовсе не неподходящее по условию задачи решение и не бредовый сон очередного физика-шизика, а всего лишь "античастица". И всё бы ничего, но народ поверил и начал копать даже в этом направлении. До сих пор не знаю, каким образом, но в итоге, чуть более 40 лет спустя после открытия электрона, был открыт антиэлектрон, первая античастица. Его назвали позитроном: разница между ним и электроном заключается только в том, что у него заряд с плюсом, а не с минусом (+1.6*10^-19 Кл). Потом стали открывать другие античастицы, но местами поджидал облом: частица и соответствующая ей античастица полностью совпадали. Такие частички стали называть истинно нейтральными. Самый известный из таких - фотон. Ну а для остальных возможно как рождение античастиц, так и их смерть: при встрече частицы с соответствующим её "двойником" (хоть тех же электрона и позитрона) они могут взаимно уничтожиться, или - как выражается наука - может произойти реакции аннигиляции. ("Нигил" означает "ничто": когда частица и её антипод встретятся, то они взаимно уничтожат друг друга так, что от них не останется вообще ничего, кроме энергии, конечно.) Электрон + позитрон = 2 гамма-кванта. И такой же результат (2 гамма-кванта, иногда 3 - если энергия большая) для всех остальных пар "частица-античастица"! Более того, получив античастички, стали добиваться их соединения в вещество - так получили не то антиводород, не то антигелий. Но он почему-то сам собой разваливается, и вообще - современная физика всё ещё чешет репу при вопросе на тему, почему вообще у нас во Вселенной толком нету антивещества, если оно вроде бы равноправно по сравнению с нашим обычным веществом. Во как, дискриминация добралась даже до уровня элементарных частиц! А народ о мировой справедливости канючит...

И заключительный аккорд умных слов - калибровочные бозоны. Как уже я выше написал, выделяют четыре типа фундаментальных взаимодействий. И народ стал копать и в эту сторону: а какова их природа? Особенно насторожило то, что при электромагнитном взаимодействии везде летают эти непонятные фотоны; именно обмениваясь ими, вещества получают или теряют энергию! А ну как у остальных взаимодействий так же? И понеслось: сильному взаимодействию приписали обмен частичками под названием "глюон" - именно ними обмениваются протоны, нейтроны и даже самые мелкие - кварки. Слабому взаимодействию тоже нашли своих "поводырей" - специальные три бозона, два из которых обозвали буквами W (одна с плюсом, другая с минусом), третьего - Z. (Не надо спрашивать, почему такие буквы, я и сам тут уже плохо понимаю.) Именно этими бозонами обмениваются, например, нейтрино - и именно благодаря ним удалось обнаружить эту "неуловимую" частичку. Наконец, гравитационному взаимодействию тоже приписывают обмен частичками - гравитонами. Но их пока не обнаружили, хоть и очень надеются.

Ну и гвоздь программы, о котором в школе уже не спрашивают, но которым звонят в уши последние года три уже много раз: бозон Хиггса! Да, эта штука отвечает за наличие массы у вещества. Но больше о нём мало что известно. Да, его получили на той самой здоровенной штуковине, которая заставила народ бежать в магазин за фомками, отращивать бороды, портить зрение (чтобы с чистой совестью надеть очки) и надевать защитные костюмы H.E.V. - Большой адронный коллайдер. Что такое адрон - я страшно ломаным языком объяснил (хоть что-нибудь можно понять?..), а "коллайдер" значит "сталкивающий", от английского "collide" = "сталкиваться". То есть в этом кольце сталкиваются разогнанные до сумасшедших скоростей частички типа тех же протонов: при их столкновении, как брызги, разлетаются во все стороны очень много более мелких частичек, все из которых подлежат изучению. Находится этот здоровенный аттракцион где-то под границей Франции и Швейцарии. Несмотря на устрашающие размеры (длина его окружности - 27 километров), частички там разгоняются до энергий, хоть и пугающих своими приставками - тераэлектронвольты! - но при этом толком и опасности не представляющих. Во-первых, 1 ТэВ - это один триллион электронвольт (10^12 эВ). В джоулях это будет примерно 10^-7 - одна десятимиллионная доля джоуля! Да даже два комара сталкиваются с большей энергией! Миниатюрные чёрные дыры, которыми обожают пугать, если и существуют, то их время существования будет очень мало, и они тупо не успеют ничего к себе притянуть - да хоть всю Землю попытаются засосать, времени у них слишком мало! Это как если бы бабочка-подёнка (которая живёт один день) попыталась бы выпить весь океан. Здесь примерно то же самое. Кто совсем-совсем боится - включаем голову; читаем всё, что пишут про коллайдер, фильтруем инфу через свой котелок, при необходимости спрашиваем о том или ином факте более умных товарищей. Каков итог - решить самостоятельно. Я для себя решил, что ничего архистрашного в этих экспериментах нет. А кто хочет бояться - тот боится.

Ну и хочется обойтись без тупых условностей, раздел "Вкратце и поумнее" здесь напишу не в виде тупых определений, а просто структуру - что за чем следовало. Чтобы не потеряться во всей этой гуще и толком разобраться, что из чего следует. Это самое главное.

Четыре вопроса, на которые ищем ответы здесь, и ответвления:

I. Что мешает протонам отталкиваться друг от друга при помощи кулоновских сил? (ответ: сильное взаимодействие.)

II. Что держит все частички ядра связанными вместе? (Энергия связи.) Изотопы получаются, если у того или иного химического элемента становится больше или меньше нейтронов.

III. Радиоактивность: альфа-, бета- и гамма-распад, деление ядер радиоактивных веществ. Что такое радиация и как с ней бороться, чем она плоха. Ядерный синтез: как производят электроэнергию при помощи ядерной реакции и как её можно использовать в военных целях - критическая масса и атомная бомба. И термоядерный синтез - как это можно устроить мирным и военным путём.

IV. Элементарные и фундаментальные частицы, что из чего состоит и как называется, два варианта, первый - по величине спина:

1) Фермионы: имеют полуцелый спин - например, это электрон, протон, нейтрон, нейтрино. (Нейтрино не участвует в сильном и электромагнитном взаимодействиях, зато участвует в ещё одном взаимодействии - слабом.)

2) Бозоны: имеют целый спин - например, это фотон или мезон.

Второй вариант - по типу взаимодействий:

1) Адроны: участвуют во всех четырёх типах взаимодействий.

 1а) Барион: это адрон и фермион одновременно. Пример - протон, нейтрон.



Поделиться книгой:

На главную
Назад