Так вот, первый "оплот", при котором такое возможно, - это если вывести корабль на орбиту Земли так, чтобы он стал спутником Земли - то бишь так, чтобы он не летел дальше, а приостановился где-то недалеко от планеты. В итоге сила притяжения Земли вместе с космической "атмосферой" (которой почти нет - значит, ничего не должно мешать движению) заставят его крутиться вокруг нашей планетки. Соответственно, чтобы какой-то предмет смог так летать вокруг, надо ему дать такую скорость, чтобы он преодолел земное притяжение ровно настолько, чтобы оно же остановило его ровнёхонько на орбите планеты. Чтобы понять, как её надо посчитать, достаточно представить, как будет выглядеть весь процесс: со страшной скоростью подопытное туловище стартует с поверхности, в полёте гравитация и воздух тщетно пытаются его затормозить, и, наконец, на орбите он должен остановиться. Ничего не напоминает? Правильно – это будет замедленное движение. Чтобы совсем не заморачиваться на тему подсчётов – равнозамедленное. Расстояние, на которое летит туловище, - радиус Земли. Ускорение, противостоящее нам – g. Расстояние, пройденное при торможении, будет равно (v^2)*t по кинематике. А нам отсюда нужна скорость. Итого в цифрах это будет корень квадратный из произведения g на радиус Земли. Поскольку и то, и другое - числа известные и постоянные, то и скорость будет для всех одинаковая. Если посчитать, то первая космическая скорость получится примерно 7.9 км/с. Вторая космическая скорость - летим ещё дальше, её хватит на то, чтобы вообще преодолеть притяжение Земли и улететь бороздить просторы Солнечной системы. Для Земли она составляет 11.2 км/с. Считается она уже из закона, которым наверняка уже прожужжали все уши, - из закона сохранения энергии. (О нём – ближе к концу механики, сейчас пока не грузимся.) Третья космическая скорость позволяет ухнуть ещё дальше - вылететь вообще за пределы Солнечной системы, то есть преодолеть притяжение Солнца. Она может меняться, потому что космический корабль должен будет уворачиваться от вертящихся планет и тому подобных других посторонних предметов, пролетающих мимо в космосе. В среднем она составляет где-то около 42 км/с, но вообще может быть от 16.6 до почти 73 км/с. Наконец, есть ещё четвёртая космическая скорость. Она нужна на тот случай, если фантазия разыграется до таких вселенских масштабов, что захочется вышибить наш предмет с Земли настолько сильно, чтобы он преодолел притяжение самой нашей галактики Млечный путь. Её подсчёты ведут уже в какие-то заумные дебри современной физики; говорят, что она непостоянна и зависит от положения тела в галактике. Известно только, что в районе Солнечной системы нужно разогнаться аж до 550 км/с, чтобы иметь хоть какую-то надежду на полный улёт в настолько открытый космос, что и представить трудно.
Вкратце и поумнее: космические скорости - это скорости, которые нужно сообщить телу для того, чтобы оно:
1) стало спутником Земли - это 7.9 км/с;
2) преодолело гравитационное притяжение Земли и улетело в пространство Солнечной системы - 11.2 км/с;
3) преодолело гравитационное притяжение Солнца и улетело за пределы Солнечной системы - от 16.6 до 73 км/с, средняя считается около 42 км/с;
4) преодолело гравитационное притяжение галактики "Млечный путь" и улетело чёрт-те куда - приблизительно 550 км/с в районе Солнечной системы.
Наконец, последняя часть из трёх основных составляющих, наименее мучительная. Статика. Которая отвечает на вопрос, при каких условиях тело будет в равновесии. Или в состоянии покоя. Увы и ах, но здесь нельзя использовать всё ту же материальную точку, которая спасала в кинематике и динамике. Потому что наше тело, выходя из равновесия, скорее всего, будет описывать дугу - то бишь вращаться. Грубо говоря, если теряешь равновесие и падаешь, то как бы вращаешься вокруг оси, находящейся прямо под ногами - до тех пор, пока земля не помешает. А материальная точка исключает всякое вращение - как она вокруг себя вращаться-то будет? Нет того, около чего вращаться. Поэтому здесь делают так: просто твёрдое тело каких-то размеров (неважно, каких), его деформациями при внешних воздействиях можно пренебречь. Чтобы не получилось, что оно при малейшем дуновении ветерка разваливается на несколько частей или сплющивается в лепёшку, тогда уже считать будет нечего - его обратно в твёрдое состояние руками не вернёшь.
Дальше опять следует куча предположений, которые проще всего себе представить так. Вот у нас есть детские качели, на которых садятся два человека - доска на подставке с двумя сидениями на краях. Подставка намертво закреплена - не отдерёшь, - а к ней прикреплена палка, которая может подниматься-опускаться, как рычаг - или, по-умному, это получается всё то же вращение. И на сиденьях сидят дети. Ради прикола прикинем, что они идеальные близнецы - полностью одинаковые по массе, силе и т.д. и т.п. Тогда, если всё это перевести в заумные физические понятия, получается так: подставка, она же точка опоры - это ось вращения. Вокруг неё вращается наш "рычаг". Дети - это твёрдые тела. Господа знатоки, внимание, вопрос: так при каких же условиях дети будут находиться в равновесии? За такую формулировку на экзамене по физике могут заколоть заживо. В равновесии должно находиться то, что может вращаться - то есть в данном случае это наша палка качелей, которая закреплена на подставке. Именно её придётся теребить.
Первое, что идёт прямо из динамики, - сумма сил, действующих на тело, должна быть равна нулю. И это действительно так, но это ещё не всё. Здесь есть ещё второе условие, посложнее. Если наших двух одинаковых детей посадить нормально - так, что они будут сидеть каждый на сиденье, - то они действительно будут в равновесии. А если один из них подсядет ближе - качели тут же наклонит в сторону его товарища. Силы-то остались те же! Но поменялись их моменты. Момент силы - это модуль (только значение, без вектора!) силы, умноженный на её плечо - то есть расстояние от оси вращения до линии, по которой действует сила. Притом это расстояние выбирается кратчайшее - а как подсказывает заумная геометрия, в таком случае нужно брать длину отрезка, перпендикулярного линии силы. По-русски (и более наглядно) это значит, что надо просто брать длину той части качели, которая идёт от точки опоры до человека. Она всегда будет одна и та же, хоть ты перевернись.
Маленькое замечание к моментам: поскольку крутить он может в две разные стороны - "вверх" и "вниз" (именно в кавычках, строго говоря - это "по часовой стрелке" и "против часовой стрелки"), - то договорились, что момент, крутящий против часовой стрелки, будет больше нуля, а по часовой - меньше. По-честноку, не знаю, как это лучше запомнить и не перепутать - если только не знать алгебру на уровне синусов-косинусов - там тоже углы на единичной окружности отсчитываются таким же образом: против часовой стрелки идёт увеличение (+), по - уменьшение (-).
Короче говоря, из всех этих страшных слов следует простая вещь: если у тела есть закреплённая ось вращения, и сумма моментов сил, действующих на это тело, равна нулю, то тело будет в равновесии. На этом правиле основана работа весов - если неизвестную массу измеряемого туловища уравновешивают вместе поставленные гирьки, то момент силы тяжести гирек будет равен моменту силы тяжести туловища - отсюда, поскольку плечи обеих сил равны (а если даже и не равны, то они были бы известны - но так считать было бы гораздо неудобнее), то известны сами силы. А дальше как в ручных весах - сила тяжести гирек равна силе тяжести туловища, откуда при известной массе гирек находим, что масса туловища будет такая же.
Вкратце и поумнее: статика - раздел механики, изучающий условия равновесия взаимодействующих тел (в самом общем случае). Используется модель твёрдого тела, поскольку при нарушении равновесия оно будет вращаться вокруг некой оси, а материальная точка исключает вращение. Твёрдое тело - модель тела, деформацией которого под действием внешних сил можно пренебречь. Ось вращения - воображаемая прямая, на которой находятся центры всех траекторий точек вращающегося относительно неё твёрдого тела. Плечо силы - расстояние от оси вращения до линии, вдоль которой действует эта сила. Момент силы - произведение модуля силы на её плечо. Единица измерения - ньютон, умноженный на метр. Момент, вращающий тело по часовой стрелке, считается отрицательным, а против часовой стрелки - положительным. Итого условий равновесия твёрдого тела два: тело находится в равновесии, если сумма сил, действующих на это тело, равна нулю, и если сумма моментов сил, действующих на тело относительно произвольно выбранной оси, тоже равна нулю. В том числе отсюда следует правило моментов: тело, имеющее закреплённую ось вращения, будет находиться в равновесии, если сумма моментов сил относительно этой оси будет равна нулю.
Кое-как проехали страшную математику статики. Остались только слова. А именно заумные рассуждения на тему, как лучше держать тело, чтобы оно не упало, и какие вообще могут быть равновесия. Да, у равновесий тоже есть виды, оказывается! Отвлечёмся от качелей и весов, проще всего эти виды равновесия понять так: взять шарик и кинуть его в канаву-кювет U-образной формы. Шарик поболтается туда-сюда, после чего остановится на дне в середине (если смотреть вдоль, по канавке). Попытаешься толкнуть шарик - он снова покатается вправо-влево, но, в конце концов, всё равно вернётся в центр. Это устойчивое равновесие - если вывести шарик из равновесия, он со временем вернётся в него. Считается, что девушки любят парней, находящихся в устойчивом равновесии эмоциональном - то есть если человека "задеть", то он со временем всё равно успокоится и будет, как ни в чём не бывало. Эмоции, конечно, не шарик, расчётам не поддаются. Но суть та же самая - это тоже устойчивое равновесие. Хуже, когда оно неустойчивое: это значит, что невероятными усилиями мы добиваемся равновесия, а потом что-то выводит из него - и всё. Обратно просто так, сам собой, уже не вернёшься. Как таких товарищей называют? Правильно, нытиками. Если не обижать людей и показать на том же шарике - его можно положить, например, на компьютерную мышку (конечно, так, чтоб не двигался). Если его задеть, то он упадёт и, конечно же, обратно не запрыгнет. А вот когда шарик оказался на ровной поверхности стола - он в безразличном равновесии. Тронешь его - он поедет, но потом остановится, как ни в чём не бывало и по-прежнему останется в равновесии. Разница между этими тремя равновесиями - в силе, возникающей при отклонении. Когда равновесие устойчивое, при выведении из него возникает сила, стремящаяся вернуть в положение равновесия (в примере с шариком - сила тяжести). Когда неустойчивое - сила тоже возникает, но она при этом стремится вывести тело из равновесия ещё сильнее (в примере - тоже сила тяжести). Когда безразличное - никакой силы, стремящейся поддержать или подавить равновесие, не возникает. Умники могут возразить: а как же сила трения? Шарик-то трётся о поверхность! На что у меня припрятан туз в рукаве: соль здесь не только в силе, а ещё и в энергии. Об этом буквально через абзац. В двух словах, в чём различие по ней: потенциальная (не пугаться и не смеяться!) энергия тела при выведении из устойчивого равновесия возрастает, при выведении из неустойчивого - уменьшается, а при безразличном - не меняется вообще.
Последнее, о чём разговор здесь, - центр тяжести и центр масс. Если всё хорошо, то эти две точки совпадают и находятся в центре тела - например, центр шара (яблока) или центр параллелепипеда (бруска, какого-нибудь простого бытового предмета вроде тёрки). Но, вообще говоря, эти две вещи различаются.
Центр масс - это точка, которая как бы является представительством всего тела в целом - если всю массу сосредоточить в этой одной точке, то она будет двигаться ровно так же, как двигается само тело. То есть если взять центр масс какого-нибудь тела и запихнуть туда всю массу, то получится как раз материальная точка, над которой уже можно законно проводить все расчёты кинематики и динамики. А центр тяжести - это такая точка, в которой просто суммарный момент всех сил тяжести, которые действуют на все места тела, равен нулю. К движению она никаким боком не относится, разве что если держать тело, грубо говоря, за его центр тяжести, то оно не будет падать - так официант таскает поднос одной рукой, не роняя его. К счастью, в той же статике эти две точки практически всегда совпадают друг с другом, поэтому обычно говорят просто "центр тяжести" и не парятся. Чтобы они не совпадали, нужно, чтобы рассматриваемый предмет находился в неоднородном гравитационном поле (например, если рассматривать его вместе с планетой) - а такими вещами даже физики-шизики заморачиваются достаточно редко.
Вкратце и поумнее: при выведении из устойчивого равновесия возникает сила, стремящаяся вернуть тело в первоначальное положение (равновесия), потенциальная энергия возрастает. При выведении из неустойчивого равновесия возникает сила, стремящаяся ещё сильнее отклонить тело от первоначального положения, потенциальная энергия падает. При выведении из безразличного равновесия никаких "стремящихся" сил не возникает, потенциальная энергия тела неизменна. Центр масс - точка, характеризующая движение тела или системы тел как единого целого. Центр тяжести - точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. На практике оба этих центра практически всегда совпадают, исключение составляют случаи, когда тело находится в неоднородном гравитационном поле.
Три страшных кита механики позади. Теперь выполняю обещание, которое дал в предыдущем абзаце. Но не прямо сразу и сходу. Чтобы объяснить, что такое энергия, начну издалека. Конечно же, в ушах уже звенит многострадальное словосочетание "закон сохранения энергии". Но сохраняется не только она! А ещё и импульс. Только две величины, но про них рассказать придётся достаточно подробно. Потому что и одно, и другое - едва ли не самые важные понятия не только в механике, но и в физике вообще.
Значится, импульс. В жизни это что-то вроде рывка. В физике это скорее способность тела или силы делать рывок, причём это я очень условно. Импульс тела - это произведение массы тела на его скорость, единица его измерения - кг*м/с. Грубо говоря, чем массивнее тело и чем быстрее оно движется, тем большее воздействие он окажет на то, с чем столкнётся. Самый дубовый пример - самый первый удар в пуле, разбивка пирамиды шаров. Ударом кия по белому шару мы даём шару импульс, он передаёт его первому шару, с которым столкнётся, тот покатится в какую-то сторону (в какую именно, можно посчитать), передаст свой импульс шарам на своём пути, те - другим. И так далее до тех пор, пока импульсы не раздадутся всем ударившимся друг о друга шарам, и те не остановятся из-за трения. Импульс силы же - это произведение силы на время, за которое она действует. То есть можно дать один и тот же импульс, давя слабо, но долго, или сильно, но быстро. В случае удара кием наша сила будет большой, и действовать достаточно короткое время. Импульс силы мерится в тех же величинах (кг*м/с). Интуитивно так и хочется сказать: значит, импульс силы будет равен тому импульсу, который она передаст телу! Да, оно почти так и есть. В учебниках это доказывается математически - во втором законе Ньютона умножаем обе части уравнения на время. Тогда получаем, что изменение импульса тела равно импульсу силы, подействовавшей на это тело. Может, у нас шарик уже двигался, а мы по нему ударили. По здравому смыслу и правилам бильярда это фол, но физики обожают предсказывать едва ли не всё возможное. Если ударить по шарику в движении "навстречу" ему и ухитриться передать такой же импульс, какой был у него, то он должен тут же остановиться.
Ну и, наконец, сам закон сохранения импульса, который тоже можно понять по тому же здравому смыслу. Звучит он так: суммарный импульс системы тел постоянен, если сумма внешних сил, действующих на систему, равна нулю. Оговорка про сумму сил специально сделали: если хоть на одного участника подействует какая-нибудь посторонняя сила, то она внесёт свой импульс и этим испортит всю малину. Собственно, наглядно это видно на тех же бильярдных шариках - если ударить по шару с нужной силой и под правильным углом, он ударится о второй шар, который (при нужном расчёте "на глаз") улетит под углом, который можно рассчитать, и со скоростью, которую можно рассчитать, точно в лузу. Есть подозрение, что искусство хорошей игры в бильярд заключается в том числе в том, чтобы прикидывать в голове такую возможность и правильно её использовать.
Последнее, что хотел сказать про импульс. Шарики - это, конечно, круто, но если бы он использовался только в бильярдных расчётах, физики бы быстро махнули на него рукой. А так - импульсы есть чуть ли не у всего, что движется. Начиная от тех же тел живых и неживых и заканчивая какими-то трудно представляемыми мелкими частичками типа электронов, фотонов и тому подобных "он"-ов.
Вкратце и поумнее: импульс тела - величина, равная произведению скорости тела на его массу. Это векторная величина, размерность - кг*м/с. Импульс силы - это произведение силы на время, за которое она действует. Измеряется так же, тоже вектор. Если по-другому сформулировать второй закон Ньютона, то он будет гласить, что изменение импульса тела равно импульсу силы, подействовавшей на него. Закон сохранения импульса: импульс замкнутой системы тел (сумма внешних сил, действующих на систему, равна нулю) постоянен.
Наконец потихоньку подбираемся к этой непонятной (и которую тоже чёрт-те как представишь) энергии. Грубо говоря, объяснить это замысловатое словечко можно так. Если какое-то тело (или группа тел) может (могут) совершить работу, то говорят, что оно (они) обладает (обладают) энергией. Слово "работа" здесь не просто так. Это в жизни что-то абстрактное, что не волк и в лес не убежит. А в физике это число. Да, работу можно посчитать. Звучит странно, но оно так и есть. Вообще говоря, у работ существует просто куча разновидностей. Но поскольку мы всё ещё в механике, то не буду грузить уймой умных слов, а скажу только про механическую работу - тем более, в школьной физике на механике других работ, тьфу-тьфу, на контрольных и прочих работах не дают.
Всё, заканчиваю свои глупые шутки. Механическая работа считается таким способом, которое в математике называется "скалярное произведение векторов". То есть надо как бы перемножить два вектора и добавить косинус угла между ними. Почему такая страшная форма формулы - это спрашивайте у математиков, это они притащили такой способ вычисления. Но, к сожалению, считать придётся именно так, и это будет правильно. Два вектора, которые мы как бы перемножаем, - это вектора силы и перемещения. Понятное дело, стрелочку на стрелочку не умножишь, поэтому считаем "модуль силы умножить на модуль перемещения". А угол идёт типа как компенсация за стрелочки. Потому, что если сила направлена против перемещения, то работа будет отрицательной - угол между силой и перемещением будет 180 градусов, его косинус - -1. Если сила направлена в ту же сторону, что и перемещение, - угол 0, косинус его 1. Если сила направлена перпендикулярно перемещению, то получается, что такая сила вообще от работы нагло отлынивает - косинус 90 градусов - это ноль, и все модули обращаются в баранку. У остальных углов надо смотреть косинусы и не забывать про знак "минус", если угол получится тупым (от 90 до 180 градусов).
Если посчитать единицу измерения работы, получится Н*м. Но, видимо, так писать не понтово, поэтому решили эту вещь обозвать фамилией ещё одного учёного - Джоуля и писать Дж. Итого: 1 Дж - это работа, которую совершает сила в 1 ньютон при перемещении тела на 1 метр, при условии, что сила сонаправлена с вектором перемещения. Кошмар, какая мутная формулировка. Попробую по-русски: берёшь килограммовую гирьку (или гантель), прицепляешь к ней безмен (ручные весы). И поднимаешь этот снаряд при помощи весов так, чтобы он отодвинулся ровно на 1 метр от пола, а указатель весов держался на отметке 1 кг (что будет соответствовать твоей силе в 1 Н). Как только поднимешь до конца, ты совершишь работу в 1 Дж.
Со словом "работа" как-то сложно работать. В жизни вместо непонятных "работа" или "энергия" используют другое, родственное, понятие. Мощность. Это скорость изменения работы - A/t (A - работа, t - время, за которое она была совершена). Единица измерения - Дж/с, которую тоже обозвали именем учёного Уатта. Правда, когда обзывали, то было принято говорить Ватт. Так и повелось - Дж/с = Вт. Мощность, к примеру, чайника в 150 Вт означает, что за секунду такой чайник совершит работу в 150 Дж, за минуту - 9000 Дж, за час выйдет 54000 Дж, ну и так далее. Если брать непрерывную работу, конечно - но обычно так и есть.
Ну, вот и наконец подобрались к самой энергии. Очень скользкое понятие, если объяснять, что это такое, в общем случае. У этой энергии видов чуть ли не больше, чем у работы. Поэтому, опять-таки, ограничиваюсь механикой и несколькими словами на тему того, что вне нее. В механике энергия - это мера, характеризующая движение и взаимодействие тел. Она тоже может быть отрицательной. Когда тело совершает работу, его энергия понижается. Когда над телом совершают работу, его энергия повышается. Хоть что-то очевидное. То есть, в общем случае, энергия - это какая-то нематериальная штука, имея которую, тело может раздавать люлей в виде работы над всеми, кто встретится, направо и налево, а если тело не имеет энергии (или она мала по сравнению с энергией остальных), то у него высокий шанс получить люлей от тех, у кого её больше. Но при этом, получив пендаля, "бедное" тело получит ту энергию, которую ей передали, и со временем сможет дать сдачи - а тот, кто устраивал раздачу, сам окажется под ударом, - но при таких дальнейших расправах над причинившим ему вред злом бывший "бедный" будет энергию терять, передавая её другому. Вот это и есть в совсем-совсем простом и топорном варианте закон сохранения энергии: энергия замкнутой системы тел постоянна, если внутри системы действуют только так называемые "консервативные силы" - силы, работа которых не зависит от траектории движения тела. Это, например, сила тяжести или сила упругости. А вот сила трения - она не консервативная. И что же делать, если это чёртово трение постоянно мешается под ногами? Очень просто. Энергия по-прежнему будет сохраняться, просто часть её уйдёт как работа силы трения (которая отрицательна).
Чтобы мозги закипели окончательно, расскажу ещё про виды механической энергии. Всего их можно выделить две штуки, но вторую ещё можно условно разделить на две части. Первая - это кинетическая энергия. Ей тело обладает, если просто движется. Она считается так: E = m*(v^2)/2. E - энергия, m - масса тела, v - его скорость. Как видно, эта энергия не может быть отрицательной - на крайняк ноль, если "туловище" стоит на месте (скорость равна нулю, и вся дробь превращается в дырку от бублика). Меняется эта энергия под воздействием внешних сил, а именно от какой-то работы, ими совершённой. Какой именно - это надо копать, зависит от задачи.
Второй и третий виды - потенциальная энергия. Да-да, она образована от того же латинского "potentia", что и то слово, которое засело сейчас в голове. Только означает оно всего-навсего "возможность". То есть, вообще говоря, эта не совсем понятная штука характеризует взаимодействие между телами. А именно: любое тело у поверхности Земли обладает потенциальной энергией из-за собственной силы тяжести - то есть притяжение Земли уже само собой означает возможное взаимодействие между телом и поверхностью Земли. Она может быть тоже как положительной, так и отрицательной - в зависимости от того, какой уровень принять за ноль. Часто за ноль считают уровень моря, тогда тело, просто находящееся над поверхностью, будет иметь потенциальную энергию E = m*g*h, где E - энергия, m - масса тела, g - ускорение свободного падения, h - высота над "нулём". А если её опустить на поверхность Мёртвого моря, которое ниже уровня моря, то это тоже получится m*g*h, только h будет отрицательной. Какое тут может быть взаимодействие? Да хотя бы вмятина от падения. Или печальные случаи с падением обломков, отваливающихся от старых зданий, на прохожих - это тоже проделки в том числе и энергии, в том числе и потенциальной. Другой её вид, который я обозвал третьим, он же более безобидный - это потенциальная энергия упруго деформированного тела вроде той же пружины. Если такая деформация подчиняется закону Гука, то энергия такой деформации будет равна k*(x^2)/2. Почти как тот же закон Гука, только икс в квадрате и ещё пополам делить. Буквы все означают то же самое: жёсткость и изменение размера. Самый дубовый пример такой энергии - пуск шарика в пинболе или детском бильярде. Толкатель - пружину - сжимаем усилием руки, он при отпускании толкает шарик - потенциальная энергия толкателя превращается в кинетическую энергию шарика. Она при залетании на верх игрового поля полностью переходит в потенциальную энергию уже шарика, потом он начинает падать - потенциальная энергия переходит в кинетическую, - и, наконец, при падении кинетическая энергия частично превращается в тепловую (место удара греется), а часть может преобразоваться обратно в кинетическую, и шарик может отскочить вверх обратно, и так до тех пор, пока вся энергия не перейдёт в тепло. Поскольку эта энергия достаточно мала, то и нагрев практически не заметить. Короче говоря, потенциальная энергия - это что-то вроде того же импульса в неподвижном состоянии: даже не двигаясь, но имея её, то или иное туловище способно надавать люлей в виде энергии всем близлежащим. Почему тогда такое разделение на импульс и энергию, если и одно, и другое можно передать друг другу, и оба сохраняются? У них несколько разное происхождение: импульс может иметь как тело, так и сила, и он характеризует только движение (когда тело неподвижно, его импульс ВСЕГДА ноль), а энергия имеет более широкий смысл - она может быть и у неподвижного тела, и охватывает не только то, что туловище с энергией может тоже задвинуть кому-нибудь, но и то, а что может вообще произойти с тем, кому задвигают, помимо движения, как то: тот, на кого подействовали, может нагреться, испускать какие-нибудь плевки во все стороны, зарядится электрически или вообще начнёт разрушаться. В общем смысле любая энергия, будь то механическая, тепловая, химическая, электрическая, какая угодно - меряется тоже в джоулях, как работа. Грубо говоря, импульс - больше величина механическая, чем физическая вообще. Энергия же используется во всей физике, в равной степени практически во всех её отраслях.
Один маленький момент, который ещё хочется отметить про потенциальную энергию. Народ приметил принцип, который назвали "минимум потенциальной энергии". Он означает, что любое тело стремится занять такое положение, при котором его потенциальная энергия будет минимальна. Поэтому пружина разжимается; в том числе и поэтому тела падают, поэтому при устойчивом равновесии тот шарик в канавке возвращался обратно в самую глубокую её точку. Чтобы легче это понять, можно представить это себе как лирику вроде "природа не терпит возмущений", "природа стремится к равновесию", "со временем всё устаканится", "время лечит" - кому что больше нравится.
В заключение, ещё чуть-чуть о законе сохранения. Он говорит, что если система тел вся такая из себя идеальная, что внутри нет никаких "сопротивляющихся" сил, да и над самой системой никакие силы работу не совершают - вот только тогда общая механическая энергия будет постоянной. На деле это не совсем так, как я уже сказал. Если под ногами мешается "сопротивляющаяся" сила, то она совершает отрицательную работу, и её нужно просто добавить к общей энергии - то есть вычесть. Если над нашими телами кто-то ещё совершает работу, тогда эта посторонняя работа положительна, и к общей энергии её добавляем - приплюсовываем.
Вкратце и поумнее: механическая энергия - величина, характеризующая движение тел и взаимодействие между ними, характеризующая способность тела совершить работу. Механическая работа - это скалярное произведение векторов силы и перемещения (A = F*s*cosa, где A - работа, F - модуль силы, s - модуль перемещения, cosa - косинус угла между векторами силы и перемещения). Работа - величина скалярная (не векторная, это число), измеряется в джоулях (Дж). Мощность - скорость изменения работы, P = A/t (также обозначается буквой N). P - мощность, A - работа, t - время, за которое она была совершена. Единица измерения - ватт (Вт). Механическая энергия бывает кинетической и потенциальной. Кинетическая - энергия движения, её тело имеет, когда движется. E = m*(v^2)/2, m - масса, v - скорость. Потенциальная энергия - энергия взаимодействия. Для тела, поднятого на высоту h над условным "нулём" (уровнем моря, уровнем пола, уровнем первого этажа и т.п.) E = m*g*h, где m - масса тела, g - ускорение свободного падения, h - высота над уровнем "нуля" (тогда она положительна) или глубина под уровнем "нуля" (тогда она отрицательна). У упруго деформированной пружины также есть потенциальная энергия; если деформация соответствует закону Гука, то энергия такой пружины будет равна E = k*(x^2)/2, k - жёсткость пружины, x - изменение размера. Принцип минимума потенциальной энергии - тело стремится занять такое положение, при котором его потенциальная энергия будет минимальна. Единица измерения любой энергии - тоже джоуль (Дж). Закон сохранения механической энергии: механическая энергия изолированной системы (работа внешних сил по отношению к которой равна нулю и внутри которой действуют только консервативные силы) остаётся постоянной. В случае если работа внешних сил или неконсервативные силы всё-таки есть, в закон сохранения нужно добавить работу внешних сил со знаком "+" и/или работу неконсервативных сил со знаком "-".
Покончили наконец с энергиями и импульсами. Осталось два ещё более-менее важных блока механики, которой компостируют мозги в школе. Первый блок - это гидро- и аэростатика. Эти два раздела отвечают за равновесные состояния жидкостей и газов (соответственно). (Твёрдые тела не трогаем, потому что только жидкости и газы принимают форму сосудов, в которых их поместили - именно на основе этого всё строится дальше.) Казалось бы, подумаешь - налили в стакан воду (или наполнили баллон газом) - и всё. Всё-то всё, только и у тех, и у других есть параметры "спокойного" состояния, с которыми тоже нужно что-то делать. Например, давление. Это штука означает, что жидкость или газ давит на стенки сосуда (тех же стакана или баллона), в котором находится. Обычно стенки рассчитываются так, что держат это давление, но если перестараться, то они разорвутся - так, воздушный шарик, если его надуть слишком сильно, просто-напросто лопнет, и от него останется только "хвостик", через который надуваешь. Остальная - шаровая - часть разорвётся на мелкие кусочки и улетит во все стороны. Что, кстати, тоже объясняется той же физикой. Вообще, давление - это сила, с которой что-то давит, делённая на площадь, на которую это "что-то" давит. В том числе поэтому по рыхлому снегу удобнее ехать на лыжах, чем ходить в ботинках - у лыж площадь больше, и при той же нашей силе тяжести, с которой мы давим, давление на снег будет меньше - значит, проваливаться будем не так сильно. Несмотря на то, что сила вроде бы вектор, здесь надо смотреть только её значение, поэтому давление - не вектор, а число. Меряется оно в... Н/(м^2)? Так-то оно так, только и эту размерность обозвали именем учёного Паскаля и стали обозначать Па. Этот же товарищ вывел закон, который обозвали его же именем: давление на жидкость или газ распространяется во всех направлениях одинаково. Собственно, поэтому лопнувший шарик разбрасывает клочки резины именно во все стороны. На эту же тему был забавный вопросец на тему, что будет, если выстрелить из пневматической винтовки в сырое яйцо. Правильный ответ - оно так же лопнет и разлетится, потому что на жидкость (которая внутри сырого яйца) закон Паскаля тоже действует. А вот на твёрдое - нет: если выстрелить в сваренное вкрутую яйцо, то там просто останется дырочка.
Помимо паскаля, который используют в общей физике, есть ещё одна единица измерения давления, которую любят метеорологи и синоптики, предсказывающие погоду. Это миллиметр ртутного столба (мм рт. ст.) Это давление, которое создаёт столбик ртути высотой в 1 мм. Почему именно миллиметр и почему именно ртуть? Как любят отвечать те же физики, так исторически сложилось. Был другой умный чувак, по фамилии Торричелли, который мерил давление при помощи столбика ртути. Поскольку ртуть - штука тяжёлая и давит сильно, то решили взять миллиметр как 1 условную единицу. И понеслось. Сейчас в этих "мм рт. ст." пишут атмосферное давление в прогнозах погоды. 1 мм рт. ст. примерно равен 133.3 Па. А атмосферное давление - это давление, которое создаёт воздух силой своей тяжести. Нормальное атмосферное давление на уровне моря считается равным 760 мм рт. ст., что примерно равно 101300 Па. Почему нас не продавливает, ведь это же достаточно много? А это уже проделки матери-природы. Наше тело само по себе устроено так, что оно изнутри даёт примерно такое же давление, итого получается эдакое равновесие. Более того, оно даже может переносить перепады давления - правда, не слишком большие, миллиметров 30 в обе стороны. Есть люди, у которых такая способность слабо выражена, их называют метеозависимыми - при значительном изменении давления им становится дурно. Поскольку с высотой воздух становится менее плотным, то и давление его постепенно падает - примерно на тот же 1 мм рт. ст. с каждым 1 м высоты. В космосе давление настолько низкое, что почти ноль, и при попытке человека войти в открытый космос без скафандра его, должно быть, разорвёт изнутри. Неприятность.
Ну ладно, что-то опять в космос улетели. Обратно на землю, где особо пытливые умы уже дёргают за рукав: а почему миллиметр ртутного столба считается по высоте? Давление - это же сила на площадь! Отвечаю: так-то оно так, но если для жидкости в сосуде посчитать это давление, то получится, что оно от площади не зависит: p = m*g/S = ро*g*V/S = ро*g*h. Проще говоря, вспоминаем, что масса - это плотность на объём, а объём - это площадь на высоту. Площадь сокращается, остаётся одна высота. Итого: p - давление жидкости, ро – её же плотность, g - ускорение свободного падения, h - высота уровня жидкости. Лично я запоминал это так: роже - х. Или роже - аш, как удобнее.
И жидкость, и газ - такие субстанции, которые не любят, когда в них оказывается что-то постороннее. И вода, и воздух стремятся вытолкнуть из себя это постороннее, правда, вода это делает гораздо сильнее, чем воздух - если спокойно лечь на воду, то она ещё будет держать туловище на поверхности, то вот в воздухе так же летать не получится. Полёт вообще основан на других принципах, и их в школьной механике, кстати, не проходят. Зато вот про плавание (как в воде, так и в воздухе) говорят. Чтобы тело держалось на поверхности, надо, чтобы та сила, с которой вода выталкивает из себя, была хотя бы равна силе тяжести плавающего тела. Да, это всё то же вездесущее состояние покоя - две одинаковые по значению и противоположные по направлению силы при сложении дадут 0, или равновесие, или покой, или умиротворённость... Короче. Чтобы посчитать эту выталкивающую силу (которую ещё называют именем древнего товарища Архимеда, - который сел в наполненную до краёв ванну, отчего из неё вытек такой же объём воды, какой занимал товарищ), надо умножить g на плотность жидкости и на объём той части тела, которая погружена в жидкость. Отсюда можно вытащить такое следствие: всё зависит от плотности тела (если считать, что тело погрузилось в воду как раз на весь свой объём и плавает, точь-в-точь соприкасаясь своей верхушкой с поверхностью, то в равенстве m*g = ро*g*V "сократятся" обе g, а m в левой части равно V*ротела, так что и обе V можно тоже убрать). Если плотность тела равна или меньше плотности жидкости, то такое тело будет плавать (или всплывать, выталкиваться до тех пор, пока погружённая часть не станет настолько мала, чтобы уравновесить силу тяжести). Если плотность тела больше плотности воды - оно утонет. На этих принципах основаны в том числе плавание судов и воздухоплавание лёгких аппаратов типа воздушных шаров. Корабль, хоть и сделан из стали, которая почти в 8 раз плотнее воды, погружается таким образом, что под ватерлинией (уровнем воды) оказывается не только стальной корпус, но и трюм - с воздухом. А воздух менее плотный, чем вода. При правильном соотношении воздух-сталь получится, что общая плотность погружённой в воду части судна уравновесит его силу тяжести, и корабль будет держаться на поверхности. Понятно, что если образуется пробоина, и в трюм хлынет вода, то корабль утонет - архимедова сила воды уже не сможет противостоять силе тяжести стали и воды, вместе взятых. Примерно такой же принцип и у воздушных шаров - он наполняется газом, более лёгким, чем воздух (например, гелием), который как бы компенсирует собой большую плотность материалов, из которых сделан шар, и человека (по сравнению с воздухом). Ещё один способ - это наполнить шар горячим воздухом.
Человек считается на 80% состоящим из воды, поэтому плотность человека близка к плотности воды, в том числе благодаря этому нас не тащит на дно сразу, как кирпичи, а мы можем держаться на поверхности и даже лежать на воде. Собственно, по той же причине человек не может без посторонней помощи просто так летать в воздухе - слишком большая разница в плотностях.
Вкратце и поумнее: гидростатика и аэростатика - разделы физики, изучающие равновесные состояния жидкостей и газов (соответственно). Давление - величина, равная отношению модуля силы, с которой жидкость или газ давит на стенку сосуда, к площади, на которую она/он давит. Единица измерения - паскаль (Па). Закон Паскаля: давление, оказываемое на жидкость или газ, распространяется во всех направлениях одинаково. Внесистемная единица давления - миллиметр ртутного столба (мм рт. ст.), это давление, которое создаёт столбик ртути высотой 1 мм. 1 мм рт. ст. = 133.3 Па (приближённо). Атмосферное давление - давление, которое создаёт воздух своей силой тяжести. На уровне моря нормальное атмосферное давление - 760 мм рт. ст., с каждым 1 м высоты оно падает примерно на 1 мм рт. ст. Давление жидкости на дно и стенки сосуда определяется высотой её уровня относительно определённого уровня "нуля": p = ро*g*h, ро - плотность жидкости, g - ускорение свободного падения, h - высота уровня жидкости относительно "нуля", p - давление. Архимедова сила, с которой жидкость или газ выталкивают находящееся в них тело, считается: F = ро*g*V, где ро - плотность жидкости или газа, g - ускорение свободного падения, V - объём той части тела, которая погружена в жидкость или газ, F - Архимедова сила. Условие плавания тела: тело сохраняет равновесие в жидкости или газе, если архимедова сила, действующая на него, уравновешивает его силу тяжести.
Ну что же, вот, наконец, и подбираемся к концу этой здоровенной механики. Последняя часть, наверное, будет мутная в плане математики. Но для того, чтобы считать, без математики не обойдёшься. Поэтому засучиваем рукава - и вперёд.
Был разговор про устойчивое равновесие. Там на тело действует сила, которая стремится вернуть его в первоначальное положение. Но сразу же оно туда не возвращается из-за собственной инертности - не может мгновенно остановиться в точке и проскакивает её, потом возвращается обратно, но опять проскакивает... Вот такие движения "туда-сюда" относительно какого-то положения равновесия называют механическими колебаниями. Более строго - это повторяющееся отклонение тела в разные стороны от положения равновесия. Координата, скорость и прочие цифири, которые машут руками из кинематики, здесь меняются так, что их изменения повторяются. Благодаря чему и появилась возможность их считать.
Здесь же встречаем старых знакомых - период и частоту. Они означают примерно то же самое: период колебаний - это минимальное время, за которое колеблющееся тело возвращается в первоначальное положение, или совершает одно полное колебание. В пример обожают приводить маятник: если он качнулся справа налево, то это только половина колебания! Полное - это когда он снова вернётся направо. Частота - количество таких полных колебаний в секунду. Единицы измерения такие же - секунда и герц соответственно.
Вообще говоря, колебание как таковое используется тоже чуть ли не во всей физике. Кроме механики, есть ещё электромагнитные колебания, которые можно разделить на кучу составляющих. Самое распространённое колебание, над которым обычно и заставляют ломать голову, - это гармоническое колебание. Оно может быть как механическим, так и электромагнитным; суть его в том, что какая-то физическая величина (например, координата) меняется во времени по закону синуса или косинуса - то есть можно математически описать, что x = циферя*sin(чего-то-там*t+ещё-что-нибудь). Или cos вместо sin - они, в общем-то, отличаются только тем, что sin - это тот же cos, только с разницей в 90 градусов в скобках. Да, придётся напрягать мозги и вспоминать математику: считать придётся все эти цифири, которые я обозначил словами. Если превратить слова в буквы, то обычно это записывают так: x = A*sin(wt+ф). x - наша координата, A - амплитуда, w - циклическая частота, t - время, ф - начальная фаза. О нагородили, поди теперь разберись во всех этих умных словах! Попробуем.
Амплитуда. Это самое большое значение, которое может принимать наш икс - или что там меняется. Если опять обратиться к маятнику: когда он достигает крайнего левого или правого положения, это расстояние (от "центра" - точки равновесия - до крайнего положения) и есть амплитуда колебания. Бывает, в задачах делают так, что маятник "запускается" (то есть время считают равным нулю), когда он находится в крайнем положении. В этом случае в первый момент x = A, на что впоследствии опирается вся математика.
Циклическая частота. Это частота, умноженная на 2пи. Да, вот так наукообразно. Почему и зачем? Во-первых, для того, чтобы комфортно считать синусы-косинусы в математике без калькулятора, лучше всего приводить то, что в их скобках, к пи, умноженному на что-нибудь. Но это совсем не самый важный аргумент. Во-вторых, слово "циклическая" обращается к окружности. А уж окружность без пи - это как Гибралтар без пролива. Или как душа без порыва, как было в одной старой рекламе. Длина окружности - это 2пи*радиус окружности. Сколько раз описывает такую окружность наше колеблющееся тело в просто секунду - это частота. Но если считать по этой частоте всякие другие цифири, то полезут все эти пи, 2пи и так далее. А сколько точно равно пи - так до сих пор никто и не знает. А вот если умножить частоту на 2пи и делить-умножать, то высока вероятность, что все эти пи сократятся. Сдаётся мне, что это сделано для точности расчётов. Другого объяснения просто не нахожу.
Фаза и начальная фаза. А это ещё более мутное понятие. Если циклическую частоту и амплитуду ещё худо-бедно можно себе представить, то это - вообще тушите свет. В учебниках их определения никакой смысловой нагрузки не несут, просто "величина в скобках называется фазой", и всё - понимай как хочешь. Я бы это объяснил так. Если фаза меняется на 2пи, то это получится одно полное колебание - синус (или косинус) пробежит все свои возможные значения от первоначального через 0, -1, снова 0 и 1 - опять до первоначального. Если представить, опять-таки, наш многострадальный маятник, то получится так. Сначала для удобства прикинем, что крайние левые и правые положения у него отстоят ровно на 90 градусов от среднего, то есть за полколебания (справа налево) наш маятник опишет развёрнутый угол в 180 градусов. Тогда получается, что фаза - это такой воображаемый угол, на который в данный момент времени отклонился маятник. Причём угол этот считается по-хитрому: после того, как он прошёл первое крайнее положение (а качается он справа налево - тогда это будет левое), угол не уменьшается, а по-прежнему возрастает - после 180 будет 181 и так далее, вплоть до 360, пока не вернётся снова в первоначальное положение. Но это всё очень условно - обычно хоть тот же маятник отклоняется на меньший угол, и фазу именно таким образом будет не посчитать. (А представить по-прежнему можно будет, но она при этом как бы сожмётся в гармошку - реально тело отклонится на градус, а фаза увеличится на несколько "градусов", хотя её почти всегда измеряют в радианах.) То есть, получается, фаза (условно) - это какая-то цифирь от 0 до 2пи, отвечающая за то, в каком положении (из всех возможных) полного колебания тело сейчас находится. Или, если попробовать поменять на более русское слово, это как бы та стадия колебания (из всех возможных), в которой тело сейчас находится. В формуле x = A*sin(wt+ф) фаза - это всё, что в скобках синуса (wt+ф) - железная логика математики налицо: если то, что в скобках, поменялось на 2пи, синус будет точь-в-точь такой же - а значит, и то, что колеблется, окажется точно в таком же положении, в каком было до этого изменения на 2пи. Отсюда можно понять, что такое начальная фаза: это то положение полного колебания, в котором находилось тело, когда включили секундомер (время было равно нулю). Да, это муть, я знаю. Но, к сожалению, фаза тоже имеет большое значение в колебаниях, ей даже умудряются манипулировать. К счастью, об этом в школьной физике говорят уже вскользь. Плюс к тому, чтобы не морочить себе голову, в механике начальную фазу часто вообще принимают за ноль - только мы выбираем, с какого положения колебания вести отсчёт. Хоть с потолка, считаться будет всё равно.
И вот теперь со всем этим грузом предстоит считать. Обычно принимают, что колебания, о которых идёт речь в задачах, - гармонические и свободные. Свободные - значит, происходят без участия внешних сил и сами по себе. Похоже на сказку, в жизни колебания рано или поздно затухают - попросту из-за того, что колеблющееся туловище теряет энергию хотя бы опять на то же трение или на тот же нагрев. Но в задачах обычно такое опускают. И мучают в двух направлениях: колебания груза на пружине и математический маятник. Последний отличается от обычного маятника тем, что считается, что нить, на которой висит грузик, очень-очень длинная - гораздо длиннее, чем то расстояние, на которое он отклоняется (чтобы было легче считать) и нерастяжимая, да ещё и невесомая - чтобы расчётам не мешали сила, с которой натягивается нить, и сила её собственной тяжести. Самое сложное (и основное) в этих колебаниях - период, он считается так: T = 2пи*корень квадратный из (l/g). T - период, l - длина нити, g - ускорение свободного падения. Зная период, можно, в принципе, рассчитать и всё остальное.
Груз же на пружине колеблется гармонически, если пружина деформируется всё по тому же самому закону Гука, ну и при этом достаточно мало трение. Тогда период будет: T = 2пи*корень квадратный из (m/k), m - масса груза, k - жёсткость пружины.
Ладно, это всё были свободные колебания. Есть ещё вынужденные - это те, которые происходят не от хорошей жизни, а оттого, что какой-то вредный дядька их снаружи подталкивает. Например, те же качели - только не которые были в статике (на которых двое садятся), а одноместные, на которых ещё "солнышко" (подъём с переворотом) делать можно. Качаешь их время от времени - и они либо ускоряются, либо замедляются. Если они ускоряются, то это будет то, что называют ещё одним малопонятным словом "резонанс". Это увеличение амплитуды колебаний при совпадении частоты колебаний системы с частотой, с которой изменяется внешняя колеблющая сила. Во как, аж язык сломаешь. По-русски. Когда та частота, с которой качаются качели, и та частота, с которой ты их качаешь, близки или совпадают, качели начинают раскачиваться сильнее. Вот то, что они при этом раскачиваются сильнее, - это и есть резонанс. Другой пример, который живьём увидеть гораздо сложнее - это когда мост рушится от роты солдат, которые идут по нему в ногу. Если та частота, с которой их ноги топают, совпадает с той частотой, с которой колеблется мост (да, он тоже колеблется - просто это незаметно невооружённым глазом), то он начнёт ходить ходуном, по нему пойдёт что-то типа волны на воде, и, в конце концов, он из-за такой трясучки развалится. Ну и ещё один пример резонанса, не из механики - настройка телевизора или радиоприёмника. В тот момент, когда достигается резонанс электронной начинки принимающего устройства аппарата с тем сигналом, который передают теле- или радиовышка, изображение или звук становятся самыми чёткими. Что-то в таком духе.
Вкратце и поумнее: механические колебания - это повторяющиеся отклонения тела от положения равновесия в разные стороны. Период колебаний - минимальное время, за которое тело возвращается в первоначальное положение (совершает одно полное колебание). Частота - количество полных колебаний в секунду. Гармонические колебания - колебания, при которых некая физическая величина изменяется во времени по закону синуса или косинуса: x = x0*sin(wt+ф), x0 - амплитуда (максимальное отклонение тела от положения равновесия), w - циклическая частота (2пи*частота), ф - начальная фаза (для простоты её принимают равной нулю), аргумент синуса называется фазой. Свободные колебания - колебания, происходящие без участия внешних сил (как вариант - поддерживающиеся сами собой, хотя это и не очень точно). При гармонических колебаниях груза на пружине (пружина деформируется по закону Гука, трением можно пренебречь) период равен 2пи*корень квадратный из (m/k), где m - масса груза, k - жёсткость пружины. При гармонических колебаниях математического маятника (массивный груз на длинной нерастяжимой невесомой нити) период составляет 2пи*корень квадратный из (l/g), l - длина нити, g - ускорение свободного падения. Затухающие колебания - колебания, амплитуда которых со временем уменьшается за счёт потерь энергии в системе. Вынужденные колебания - колебания, которые происходят за счёт периодического воздействия внешней силы. Резонанс - явление увеличения амплитуды вынужденных колебаний при совпадении собственной частоты, с которой колеблется система, с частотой воздействия внешней силы.
Медленно, но верно подбираемся к самому последнему здесь. Математика вся позади, остались только слова. Волны. Это что-то, похожее на колебания, только колебания происходят с каким-то телом около какого-то положения, а волна распространяется в пространстве, и тела для своего распространения не требует. Если точно, то волна - это периодический процесс, распространяющийся в пространстве. Тоже характеризуется частотой (волны и секунды не слишком любят друг друга, термин "период" для волн не используют - в основном из-за того, что он мал у тех волн, что чаще всего рассматривают) и, кроме этого, есть скорость распространения волны. Их разделяют по нескольким признакам, основные из них: по признаку распространения, по геометрии распространения и плоскости распространения. Волна бывает - соответственно: бегущей или стоячей; плоской, сферической или спиральной; продольной или поперечной. О втором пункте будет отдельный разговор, о нём пока подзабудем. Бегущая волна - это значит, что, грубо говоря, на пути её нет каких-либо препятствий, от которых она отразится или которые заставят её погаснуть. Стоячая - если на её пути такие препятствия есть, от этого она может отразиться обратно и как бы складывается со своим "хвостом", который нагоняет её сзади. В жизни бегущая волна - это волна на воде, стоячая - волна, возникающая при колебаниях струны музыкального инструмента. Бежит в одну сторону, ударяется о струнодержатель, поворачивает обратно, попутно складывается со своим "хвостом", идущим следом, и на другом конце происходит то же самое, всё это распространяется по всей струне, получается непонятная каша, из которой каким-то макаром выходит звук. Звук, - это, кстати, тоже механическая волна, но о нём чуть-чуть попозже. Продольная волна - это значит, что то, что колеблется (образует собой волну), колеблется параллельно тому направлению, в котором эта волна идёт. Пример - тот же звук: крикнул прямо по курсу - там (прямо) тебя и услышат, а не слева или справа. Поперечная волна - это если колеблется перпендикулярно направлению, в котором волна идёт. Здесь примеров много, но они все плохо понятные. Самый яркий (и, наверное, самый понятный) из них - это волна на воде. Вода поднимается и опускается вверх-вниз, но волна при этом идёт вперёд (или назад, если на неё удаётся залезть и переплыть). Вот, кстати, этот же гребень волны - или её ложбину, неважно - можно условно обозначить как её "голову" и заявить, что именно с этого участка волна идёт вперёд, оставляя за собой колебания. Такой участок по-умному называется фронтом волны и строго описывается как "геометрическое место точек, имеющих одинаковую фазу колебаний". То есть все эти умные слова означают одно: участок волны, в котором все колеблющиеся находятся, держась за руки друг с другом, в одной и той же стадии колебания, и есть фронт. Опять непонятно? Ну хорошо, вот снова возьмём волну на воде. Кинули камень, и от него пошли круги. Вот этот круг и есть фронт нашей волны. Он бежит вперёд, постепенно расширяясь и оставляя за собой колебания - другие круги, каждый из которых, в свою очередь, повторяет действия первопроходца. Вот как-то так. И именно по форме фронта можно тоже разделить волны - та, что на воде, это сферическая (круги идут и вглубь тоже!), а если бы волна пошла сплошняком, "стеной", прямо (и также поднимала за собой бы только прямые "стены", параллельные себе) - это была бы плоская волна. Увы, но более-менее наглядных примеров плоской волны на глаза не попадается. Спиральная волна? Выкинуть это из головы. В школе самое большое, что про неё должны спросить, - а существует ли вообще такая. Ответ - да. Всё.
Нагрузил по самое "не могу"? Спокойно. Страшные термины позади, теперь осталось самое простое. Три цифры, подсчёт которых не проще школьной формулы s=v*t. Частота волны, длина волны и скорость волны. Частота - логика подсказывает, что это то количество колебаний, которое волна делает в секунду. Единственная поправка здесь - поскольку волна идёт туды-сюды, мы как бы хватаем её за одну точку и смотрим, сколько в ней раз она будет колебаться (в остальных будет так же). Тоже меряется в тех же герцах. Длина волны - тоже логика подсказывает, что это то расстояние, за которое колеблющаяся точка вернётся в то же самое положение. По-умному - это минимальное расстояние между двумя фронтами волны. Обозначается буквой "лямбда". Да, та самая, которую создатели одной (сами знаете, какой) игрушки обозвали периодом полураспада. Лямбдой обозначают длину волны! Измеряется в метрах. О периоде полураспада если разговор и будет, то в самом-самом конце. Ну а скорость, как уже можно догадаться, - это скорость распространения этого самого фронта волны. Ну и отсюда получаем: v = лямбда * ню. v - скорость волны, лямбда - длина волны, ню - частота (пишется почти как v, поэтому пишу русскими буквами, дабы не путать).
Выходим на финишную прямую! Остался лишь один звук. В широком и заумном смысле - это механические колебания частиц и давления, распространяющиеся в упругих средах, газах, жидкостях и твёрдых телах. Сам не понял, что написал. В узком смысле - это механические колебания, частота которых составляет от примерно 16 Гц до 20 кГц (килогерц, то есть 20 000 Гц), которые воспринимает слуховой аппарат человека. Три его основных характеристики: скорость, громкость и высота. Скорость, поскольку звук - это волна, ничем не отличается от скорости другой волны. Вообще говоря, она зависит от среды (ну уж точно не от понедельника или четверга), в которой звук распространяется. Чем плотнее среда, тем больше скорость. В воздухе это примерно 331 км/с, в воде - 1348 км/с (если вода идеально чистая; если она тёплая, солёная или на большей глубине - скорость будет расти), в твёрдом теле звук распространяется ещё быстрее и сложнее - там появляются ещё поперечные звуковые волны, с которыми мне совершенно не хочется никого знакомить. Громкость звука в основном зависит от его амплитуды, ну а высота - от частоты. Выше частота - выше звук. (В музыкальных инструментах получается как раз от колебаний струны - но, как сильно струну ни дёргай, звук будет тихим - с малой амплитудой. Для того чтобы его стало слышно лучше, используется резонанс: так, в акустических гитарах это специальное отверстие, вырезанное в корпусе, размеры его специально рассчитаны так, чтобы звук, зайдя внутрь (а внутрь он зайдёт обязательно - он распространяется во все стороны!), стал поддерживать сам себя - то есть получается, что звук усиливается оттого, что частота его колебаний поддерживается им же - именно поэтому вступает в силу резонанс, и звук становится громче. В электрической гитаре хитрее: там используется несколько "звукоснимателей", "слышащих" струну каждый на отдельном её участке, эти звукосниматели превращают звук в электрический сигнал, который потом усиливается "начинкой" специального усилителя, после чего все полученные электрические сигналы складываются и превращаются обратно в звук - получаем то, что слышим из динамика. Именно из-за этого электрического преобразования электрогитара может звучать совершенно по-разному, от мягкого джаза до какого-нибущь жесточайшего punk-metal-death-hardcore.)
Ну и на закуску: те звуковые волны, что по частоте ниже тех, что мы слышим (0...20 Гц) - это инфразвук, выше 20 кГц - ультразвук. Ни то, ни другое мы не слышим, но воспринимать говорят, что можем. А некоторые животные слышат их, но глухи к некоторым нашим звукам. Вот такие дела.
Вкратце и поумнее: волна - это периодический процесс, распространяющийся в пространстве. Характеризуется частотой, длиной волны и скоростью. Признаки, по которым делят волны: по признаку распространения, по плоскости распространения, по геометрии распространения, соответственно: бегущая/стоячая, продольная/поперечная, плоская/сферическая/спиральная. Фронт волны - линия или поверхность, образованная частицами, колеблющимися в одной и той же фазе. Частота волны - количество полных колебаний в единицу времени (секунду), которые совершаются в той или иной точке пространства. Единица измерения - герц. Длина волны - минимальное расстояние между фронтами волны. Единица измерения - метр. Скорость волны - скорость распространения фронта волны. Единица измерения - метр в секунду. Звук в широком смысле - это механические колебания частиц и давления, распространяющиеся в упругих средах, газах, жидкостях и твёрдых телах, в узком смысле - механические колебания с частотой от 16 Гц до 20 кГц, воспринимаемые слуховым аппаратом человека. Скорость звука зависит от среды распространения - чем плотнее среда, тем выше скорость (в воздухе - 331 км/с, в воде - 1348 км/с), громкость зависит от амплитуды звука (чем больше - тем громче), высота - от частоты (чем больше - тем выше).
2. Молекулярная физика и термодинамика.
Всё, покончили с громадной механикой. Дальше будет покороче, хотя (скорее всего) и посложнее. Но прорвёмся.
В прошлом абзаце я неаккуратно выражался про частицы. Колеблющиеся частицы, частицы в среде... Что за частицы? Молекулярная физика зарывается настолько глубоко, что невооружённым глазом уже не увидишь ничего - в строение твёрдых тел, жидкостей и газов. Ещё какие-то древние чуваки решили договориться между умными сотоварищами, что все тела состоят из маленьких частиц - настолько крохотных, что, казалось бы, они ни на что больше не разделятся. В каком-то смысле так и оказалось - именно поведением этих составных частичек можно объяснить "жизнь" того или иного тела. Самых мелких стали называть атомами, а их группы - молекулами. Это не совсем точно, потому что бывает так, что молекула состоит из одного атома, то есть это получается одно и то же. Но так бывает не всегда. Основным подопытным кроликом будет именно молекула и всё, что с ней связано. Поскольку глазами их сумели увидеть только при помощи мощных микроскопов и не так давно (десятки лет назад), то всё их поведение описывали чисто теоретически, "наощупь". Считали, что все беды (и радости) происходят от движения молекул, поэтому обозвали всё это хозяйство молекулярно-кинетической теорией (МКТ). Здесь всё основывается на трёх вещах. Во-первых, как я уже сказал, все тела считаются состоящими из молекул. Во-вторых, эти молекулы имеют какие-то размеры, и между ними есть промежутки. И, в-третьих, эти молекулы движутся, между ними есть силы притяжения и отталкивания. По размеру они настолько малы, что можно привести такое сравнение: молекул в одной песчинке примерно столько же, сколько песчинок на морском берегу. Наглядно такой набор можно представить так: взять мешок с шариками и всё время его трясти. Ясное дело, как плотно шарики ни упакуешь, какое-то "пустое" пространство между ними будет, они всё время двигаются и то приближаются друг к другу, то отталкиваются. Почему тогда тела не разваливаются? Если проводить полную аналогию с шариками - развяжешь мешок, и они все высыплются кто куда. Так-то оно так, да не совсем. Если перемешивать шарики в мешке - это получится что-то вроде сильно увеличенных молекул жидкости. А если рассыпать - то это получится как бы газ. (Чтобы получить твёрдое тело, надо внутри мешка все шарики ещё соединить прутиками друг с другом, чтобы прутики держали все шарики вместе.) Вот этот "мешок", или "прутики", которые держат молекулы вместе, образно можно назвать связью между молекулами. В реальности что-то похожее наблюдал товарищ по фамилии Броун - он видел в микроскоп, как мелкие частички вещества (не молекулы, конечно, но и не шарики - шарики шибко побольше будут) непрерывно хаотично движутся тудыть-сюдыть. Это потом назвали "броуновским движением" и решили, что молекулы двигаются точно так же - всё время, и несёт их чёрт-те куда.
Обычно, всегда, когда начинается какая-нибудь непонятная тема, язык поворачивается спросить: ну зачем вообще это нужно? Механика - та ладно ещё, считать движение тел ещё куда ни шло. Но тут? У молекулярной физики одной определённой задачи, как у механики, нет, но она суёт свой нос во всё, что касается поведения веществ на уровне молекул, как то: почему текут жидкости, почему сжимаются газы, почему тела находится в разных агрегатных состояниях (твёрдые тела, жидкости, газы) и как поменять то или иное состояние; что будет происходить, если заставить два туловища долго соприкасаться друг с другом, почему над водой всегда есть пар, почему по воде могут ходить мелкие насекомые, а более крупные в неё проваливаются со всплеском (и почему вода плещет, тоже), и так далее. Короче, общая мысль - молекулярная физика описывает свойства вещества как целого, опираясь на его молекулярное строение - то есть любой "каприз" вещества объясняется тем или иным родом толчеи молекул, копошащихся внутри него.
Вкратце и поумнее: основных положений молекулярно-кинетической теории три: 1) все тела состоят из молекул, между которыми имеются промежутки; 2) все молекулы непрерывно хаотически двигаются; 3) между молекулами существуют силы притяжения и отталкивания (взаимодействия). Броуновское движение - хаотичное непрерывное движение малых частиц вещества под действием молекул жидкости или газа, в которых эти частицы находятся.
Теперь придётся сообразить, что значит ещё одно странное понятие. Количество вещества. Первая мысль, бросающаяся в голову, - а чем масса не угодила? Или объём? Всё было бы хорошо, если б все вещества имели одинаковую структуру - то есть количество молекул в любой массе или любом объёме было одинаковым. Но, как уверяют физики, в сказку мы не попали и на этот раз, и это не так. У каждого вещества своё строение, молекулы по-своему разбросаны (или построены), и одно и то же количество молекул у разных веществ будет давать разную массу или разный объём. А чтобы можно было померить именно количество молекул, взяли такое понятие - количество вещества. Единицу измерения взяли как будто с потолка, да ещё и с непонятным названием - моль. Ну и что? Чему равен один моль? А кто его знает. Поэтому, чтобы знать, договорились о следующем. Один моль - это такое количество вещества, в котором число молекул равно так называемому числу Авогадро. Это чувак, который как раз и занимался тем, что молекулы считал. Конечно, делал это не на счётах и не глазами-пальцами, но сейчас не об этом. Дак вот, за число Авогадро взяли то количество, которое он, по заверениям, точно посчитал - а посчитал он число молекул в 12 г углерода. Не надо спрашивать, почему именно углерод и почему именно 12 грамм. Когда вводят какую-то совсем новую величину, которой не от чего оттолкнуться, берут что-то измеренное, договариваются и говорят: вот теперь все и всегда при подсчётах будем это считать за 1 единицу, а остальные как бы отсчитывать от неё. Хоть тот же метр был введён именно таким образом - взяли расстояние между Парижем и Северным полюсом и разделили его на 40 миллионов. (Сейчас метр определяют по-другому, но тоже мутно.) Почему Париж? Почему 40 миллионов? Почему Северный полюс? Ну вот так людям в голову взбрело. А нам теперь по всему этому отсчитывать... (Опять отвлекаясь: были товарищи, не согласные с французами, когда вводили метры, - так, на Руси длину мерили вершками, саженями, вёрстами, у англоязычных товарищей до сих пор используют фут и милю, до французов длину считали в шагах и т.д.)
Ладно, заматываем теперь этот заковыристый клубок обратно. Значит, вот число Авогадро - это число молекул, соответствующее одному молю вещества. Оно равно 6.03*10^23 штук/моль, или моль^-1 ("штука" в физике - величина безразмерная). Значит, в одном моле любого вещества будет содержаться столько молекул. В двух молях соответственно - 12.06*10^23 = 1.206*10^24 молекул. В трёх - 1.809*10^24 штук. И так далее.
Количество вещества и число Авогадро (больше даже последнее) будут использоваться при расчётах дальше.
Вкратце и поумнее: один моль - это такое количество вещества, в котором содержится число молекул, равное числу Авогадро. Число Авогадро - это число молекул в 12 г углерода-12. Оно равно 6.03*10^23 моль^-1.
Всё ещё в ожидании страшных формул? Формулы будут, но не то чтобы дико страшные - уж точно без синусов-косинусов. Только чтобы добраться до математики, нужно сначала сообразить, а что ей описать-то можно - как известно, жизнь с математикой дружат не всегда. Вот в молекулярной физике дружба сошлась только на газах. Почему именно они? Потому, что у газов самое слабое взаимодействие между молекулами. Случайность - страшнейший враг жёсткой математической логики (в принципе, математика пробралась и туда, но для школы это уже слишком сложно, и в школьные годы такими вещами головы не забивают), потому что когда точно не известно, что произойдёт после очередного удара молекул друг о друга, весь математический аппарат рушится, как карточный домик. Да даже если и удастся как-то посчитать все закономерности для одной молекулы, в реальности их не то что тысячи, миллионы или миллиарды - в одном моле (от единиц до сотен грамм, если пересчитать в массу) вещества содержится сами видите, сколько молекул - десять в двадцать третьей степени! Попробуй посчитай всё для каждой из них - жизни не хватит! А в твёрдых телах и жидкостях от этого взаимодействия никуда не денешься. Зато в газах, и то - при определённых условиях - им можно пренебречь. Газ при таких "определённых" условиях называют идеальным, и именно идеальные газы участвуют во всех дальнейших расчётах. А условие достаточно только одно: настоящий газ при не очень высоком давлении вполне может вести себя как идеальный - собственно, вот она, точка стыковки физики жизненной и физики-математики. Молекулы такого газа, как и любого другого вещества, тоже двигаются, и энергию их полёта туда-сюда описывает очень известная штука - температура. Больше температура - быстрее летают. Если взять два тела с разными температурами - например, горячий чай и коктейль со льдом, - налить каждый в свой стакан и поставить их в комнате, то горячий чай будет потихоньку остывать, а коктейль - потихоньку согреваться, и так до тех пор, пока температура каждого не сравняется с комнатной. Это что-то вроде того принципа минимума потенциальной энергии в механике - если считать, что комната изолирована (воздух в ней всегда один и тот же), то система "воздух-чай-коктейль" стремится к тому, чтобы уравновесить движение всех своих молекул до какого-то одного значения. А то так получится - одни молекулы летают быстрее, другие (неважно, что они другого вещества) - медленнее... Природа такое не терпит и стремится восстановить равновесие. Которое, если так вот выравнивается температура, так и называется - тепловым равновесием. Или термодинамическим равновесием, если речь идёт о термодинамике (она как раз отвечает за тепло и тому подобное. Но об этом - попозже.)
Вкратце и поумнее: идеальный газ - это газ, молекулы которого принимаются за материальные точки, и воздействием между ними пренебрегают. Реальный газ при невысоких давлениях можно считать идеальным. Температура - физическая величина, характеризующая кинетическую энергию поступательного движения молекул идеального газа. Тепловое равновесие - состояние, которое достигает изолированная система тел с разными температурами, заключается в равенстве температур между всеми частями системы.
Ну, вот теперь, когда окончательно обозначили, с чем будем иметь дело, - а именно с идеальными газами, - начнём сверлить их математикой. Первое, самое-самое основное уравнение МКТ: p = 2*n*m0*v^2/3 = 2n*E/3. Буквы означают следующее: p - давление идеального газа, Па. n - концентрация молекул (число их в единице объёма, м^-3), m0 - масса одной молекулы, кг. v^2 - средний квадрат скорости теплового движения молекул, м^2/(с^2). E - средняя кинетическая энергия поступательного движения молекул, Дж.
По-русски это значит следующее. Чем быстрее движутся молекулы газа, тем сильнее он давит на стенки сосуда, в котором находится. И чем больше число этих молекул, тоже тем сильнее он давит. Масса на скорость в квадрате пополам - это кинетическая энергия. Почему ещё умножить на 2/3? Сложный вопрос. Говорят, это получилось из экспериментов. Вместе с тем, эта дробь ещё зависит от того, из скольких атомов состоит молекула. Потому что когда он один - атом может дрыгать ногами аж в 6 направлениях, и всё это надо учесть; когда атомов два, они связаны, и дрыгать ногами могут уже в меньшем количестве направлений. В школе, к счастью, таких вещей не касаются. По крайней мере, без углублённого изучения физики. 2/3 используют, если в молекуле газа два атома (у большинства газов именно так).
С другой стороны, ну и что даёт эта формула? Концентрация - бог с ней, ещё как-то померить можно. А энергия? Джоульметр пока ещё никто не придумал и придумывать не собирается. Почему? Потому, что энергию молекул можно легко связать с их температурой. А именно: E = 3*k*T/2. Опять-таки, 3/2 - это если в молекуле два атома. E - энергия, T - температура, k называется постоянной Больцмана - по имени ещё одного физика. Она просто связывает энергию с температурой - данный товарищ обнаружил, что одно от другого отличается умножением на одно и то же число. И здесь есть ещё одна закавыка. Если температура ноль градусов, энергия тоже ноль получится? А если минусовая?..
Тут придётся чуть-чуть уйти в сторону. С измерением температуры примерно та же история, что с молями и метрами. Было несколько человек, каждый из которых решил мерить температуру по-своему. У нас чаще всего используют градусы Цельсия, в Америке - градусы Фаренгейта, есть ещё градусы Реомюра и Кельвина. Дак вот, две самые употребляемые из них - Цельсий и Кельвин. Отличие у них только в одном: Кельвин - это тот же Цельсий, только отодвинут на некое количество градусов вперёд. Да не на абы какое. Как принято считать, молекулы всё время двигаются - и чем ниже температура, тем медленнее они двигаются. Логичный вопрос: а ведь есть температура, при которой они должны вообще остановиться навсегда? Ответ: да, такая есть. Кучей экспериментов эту температуру пытались определить и пытались достичь, и получилось следующее: в градусах Цельсия это чуточку ниже -273 градусов, а именно - -273.15. Но вот получить ровно-ровно минус 273.15000... не получалось никак, хоть убей. Было и -273.149, и -273.1499, и -273.14999... Но девятки в бесконечное число обращаться не хотели вообще никак. В итоге народ принял как должное то, что такую температуру достичь нельзя в принципе. Если сообразить головой, то что-то, остужённое до абсолютного нуля (именно так назвали эту температуру), будет автоматически нагреваться от всего окружающего. То есть единственный способ достичь абсолютного нуля - остудить до него вообще всё. В самом глобальном смысле. Я не могу себе это представить при всём богатстве фантазии.
Дак вот, к чему весь этот длинный разговор. Именно этот абсолютный нуль и служит точкой отсчёта для шкалы Кельвина. И, к счастью, это её единственное отличие от нашей привычной шкалы Цельсия - чтобы перевести одну в другую, нужно просто прибавить к "цельсиям" 273 градуса. То есть 20 градусов по Цельсию - это 293 кельвина (кельвин употребляем без "градуса"). И именно температуру в кельвинах уже можно переводить в энергию при помощи этой постоянной Больцмана, ради которой я так всё подробно тут и разжёвываю. Итого k = 1.38*10^-23 Дж/К. То есть 1 молекула температурой в 300 К (27 градусов Цельсия) имеет в себе энергию в 4.14*10^-20 Дж. Маловато, да. Но этих молекул столько, что вместе они способны набирать и джоули, и килоджоули (1000 Дж) энергии!
Для особо любопытных: шкала Фаренгейта отличается от Цельсия тем, что ноль по Фаренгейту - это температура замерзания водной смеси нашатырного спирта (это около -18 по Цельсию), а 100 градусов - это нормальная температура человеческого тела, которую тот мерил засовыванием градусника в рот, а не под мышку - в результате "здоровые" 36.6 по Цельсию равны 97.9 по Фаренгейту, а не 100 ровно. Но при этом есть аж три других любопытных факта: точки 0 и 100 по Цельсию - температура замерзания и кипения воды - делятся на 100 частей у Цельсия и на 180 у Фаренгейта; температуру можно перевести из одной шкалы в другую по специальной формуле; наконец, есть одна температура, значение которой совпадает для обеих шкал: это -40 градусов. Вредное домашнее задание: проверить это, используя формулу перевода из Цельсия в Фаренгейт: температуру умножить на 9/5, после чего прибавить 32. У Реомюра использовался тоже спирт, но ещё мутнее: при повышении температуры на 10 градусов Реомюра смесь воды со спиртом расширялась на 1%. Посчитали, что 80 градусов Реомюра равны 100 градусам Цельсия. Много кто ещё выдумывал свои шкалы, но народ не то ратовал за здоровый образ жизни, не то тупо хотел быть проще, но почти все в итоге остановились на воде - то бишь на градусах Цельсия.
Вкратце и поумнее: основное уравнение МКТ: p = 2n*E/3, где p - давление идеального газа, n - концентрация его молекул, E - средняя кинетическая энергия его молекул. Связь между энергией и температурой устанавливает соотношение E = 3k*T/2, где T - температура по абсолютной температурной шкале Кельвина, k - постоянная Больцмана (1.38*10^-23 Дж/К). Абсолютная температурная шкала - шкала, за ноль которой принят абсолютный нуль температуры. Абсолютный нуль - температура, при которой останавливается движение молекул. Приближённо равна -273.15 градусов по Цельсию, на практике недостижима. Перевод температуры из градусов Цельсия в Кельвины - к температуре в градусах Цельсия необходимо прибавить 273.
Ну что же, чисто молекулярная физика уже начинает потихоньку махать ручкой на прощание, а мы так же потихоньку переползаем в сторону термодинамики. Именно потихоньку, потому что сейчас грянет то ужасное уравнение, которым также обожают компостировать мозги на уроках в школе. К сожалению, это оправдано - при его помощи можно посчитать достаточно много. Его вывели товарищ Менделеев (да-да, тот самый, которому таблица приснилась) и некто Клапейрон, причём чисто экспериментальным путём, опять без всякой математики. В двух словах, о чём оно. У любого газа есть какие-то параметры, которые могут меняться. Основных три: это его давление, объём и температура. Дык вот, это самое уравнение устанавливает связь между всеми тремя: зная, как меняется одно и при каких условиях, можно предсказать, как будут (или не будут) меняться остальные два. Связь такая: p*V = m*R*T/M. Буквы означают: p - давление газа, V - его объём, m - масса газа, T - температура, M - молярная масса, R - универсальная газовая постоянная, которая всего лишь равна k*Na. Чуть подробнее о последних двух.
Молярная масса - это то, что написано в таблице Менделеева под буквой (или буквами), обозначающими химический элемент, о котором идёт речь. Ну, например, если речь идёт о гелии, которым детские воздушные шарики надувают - у него молярная масса равна 4 граммам на моль. То есть это связь между количеством вещества и его массой - ясен барабан, что 1 моль воды будет всяко легче 1 моля ртути. Чтобы знать, насколько, эту штуку и посчитали, а так как для каждого вещества она всегда одна и та же, её и запихнули в таблицу Менделеева. (Воздух - исключение, поскольку это смесь газов, в таблице Менделеева его нет. Тем не менее, его молярная масса тоже хорошо известна, она равна 29 г/моль). Иногда, чтобы не мучаться с дробью m/M, вместо неё пишут ню - количество вещества. Но количество так просто не посчитаешь, в отличие от массы. А универсальная газовая постоянная - это при выводе формулы (если выводить уже по-умному, по-строгому, со всей математикой из основного уравнения МКТ - такое можно сделать, как оказалось) можно увидеть, что в какой-то момент нужно перемножить число Авогадро и постоянную Больцмана. Ясен пень, что получится тоже какое-то не меняющееся число, да ещё и без этих жутких степеней, да ещё и для каждого газа она одинакова! И всё бы хорошо, да только размерность кривая стала: R = 8.31 Дж/(моль*К). Но всё-таки это легче, чем 6.03, 10 в плюс 23-ей, 10 в минус 23-ей, 1.38...
Из всего этого хозяйства можно получить дофига закономерностей, законов и так далее. Выделяют основные три, которые оказываются видны сразу, "в лоб" (по мнению умных физиков и математиков). Принцип построения простой: один из трёх параметров остаётся неизменным, и при этом смотрим, как меняются остальные два в зависимости друг от друга. Да, и строят унылые графики, типа игрек от икс равно ка икс плюс бэ, всё в таком духе. Но всё не так плохо: знать, чему равны все эти ка и бэ, не надо - они для каждого случая свои, а все возможные случаи запомнить в принципе невозможно. Важно только одно: знать, как примерно (качественно, не количественно) идут эти графики, и что от чего зависит. Рисовать ничего не буду, потому что кто хочет понять - тот и без рисунков поймёт, а кто не хочет - тот это всё равно пропустит.
Значится, три основных закона. Причём каждый назван ещё и именем, не всегда одним! И каждому ещё соответствует название того, что происходит, тоже умное!
1) Закон Гей-Люссака. Не меняется давление, называется изобарным процессом ("бар" - ещё одна единица измерения давления, это ещё как-то можно запомнить). При этом если меняется температура, то объём меняется по линейному закону в зависимости от неё, то есть V/T = const, как пишут по-умному. Была температура 200 градусов, газ занимал объём 2 кубических метра. Если оставить давление тем же самым (я с трудом себе могу это представить), то при нагреве до 400 градусов газ сам собой расширится до 4 кубических метров. По-умному это будет называться изобарный нагрев, или изобарное расширение. Наоборот - соответственно, изобарное охлаждение или изобарное сжатие.
2) Закон Шарля. Не меняется объём, называется изохорным процессом (по-моему, самое сложное в запоминании; даже я, будучи ботаном, в первый раз узнал о том, что "хор" - это объём, именно на уроке физики об этом). При этом если меняется температура, то давление будет меняться так же по линейному закону в зависимости от неё, то есть p/T = const, если писать по-умному. То есть была температура в 25 градусов - газ давил, например, 100 тысяч паскаль. Охладили баллон с газом (объём остался тот же) до 5 градусов - давление должно снизиться до 20 тысяч. По-умному это будет изохорное охлаждение или изохорный нагрев. (Сжатие-расширение, понятное дело, подразумевают, что объём меняется, а тут он не меняется, поэтому здесь такие слова считаются нецензурными. Кто не понял - это была очередная глупая шутка.)
3) Закон Бойля-Мариотта. Самый противный из всех трёх. Не меняется температура, называется изотермическим процессом ("термо" и температура - вроде бы можно запомнить; например, "термо"с сохраняет температуру одной и той же). В предыдущих двух она же и менялась, поэтому здесь придётся менять что-то другое. Обычно в роли козла отпущения выступает объём - наверное, потому, что его легче померить. С одной стороны всё вообще круто: вся правая часть уравнения Клапейрона-Менделеева получается постоянной - а значит, постоянна должна быть и левая (p*V = const). Так-то оно так, только тогда давление от объёма будет зависеть никак не по прямой, а по гиперболе. И прямую тут, как ни бейся, не получишь. То есть давил газ 100 тысяч паскаль и занимал объём 2 кубических метра. Если оставить его температуру такой же, то при расширении до 4 кубических метров он станет давить уже 50 тысяч паскаль. Это будет изотермическое расширение или изотермическое сжатие.
И вот как это всё запомнить? Я использовал следующий способ. Заранее хочу предупредить: он совсем не политкорректный, и придумывал я его ещё тогда, когда не знал, что гомосексуальность не считается болезнью или чем-то с ней связанным. Кто сможет найти способ запомнить лучше - давайте знать, обмозгуем.
Первое, что запоминается, - закон Гей-Люссака, благодаря первой части фамилии. Ассоциация: гей - трансвестит (не знаю, насколько далёк один от другого, не интересовался). У последнего есть объём (накладные груди). При этом товарищ, поскольку имеет нетрадиционную ориентацию, болен (то есть у него температура). То есть Гей-Люссак - это объём с температурой, а третье - давление - постоянно. Где можно менять температуру - там меняем, и везде, где меняется она, второй параметр меняется по линейному закону. Второй - Бойль-Мариотт, самый сложный, именно поэтому его сумели вывести только два человека: это гипербола, а значит, здесь меняем не температуру. Объём легче померить, поэтому меняем его, и в зависимости от него меняется давление - p(V). График гиперболы, увы и ах, придётся запомнить с математики. Ну и последний - это Шарль, уже методом исключения: остаются давление с температурой, постоянный - объём. Температуру тоже можно менять, значит, здесь тоже давление будет меняться по линейному закону. Как-то так.
Вкратце и поумнее: уравнение Клапейрона-Менделеева описывает состояние идеального газа и связывает три его основных параметра - давление, объём и температуру - между собой. Выведено экспериментальным путём. p*V = m*R*T/M, p - давление газа, V - объём, m - масса, R - универсальная газовая постоянная (R = k*Na = 8.31 Дж/(моль*К)), T - температура, M - молярная масса газа. Три основных закона и изопроцесса, которые вытекают из этого уравнения: закон Шарля, описывающий изохорный процесс (V = const, p/T = const), закон Бойля-Мариотта, описывающий изотермический процесс (T = const, p*V = const), закон Гей-Люссака, описывающий изобарный процесс (p = const, V/T = const).
Всё. Теперь мы окончательно покинули молекулярную часть и перешли в термодинамику. В чём отличие? По сути, обе обожают говорить про тепло и его энергию. Но при этом молекулярная физика рассматривает всё в такой микроскоп, которого при её создании ещё и не было (на уровне отдельных молекул), в то время как термодинамика ударяется в другую крайность - рассматривает огроменные системы тел в целом - начиная от тела, к которому приложен мерящий его температуру градусник, и заканчивая всё той же нашей многострадальной Вселенной. Наверное, единственный отголосок молекулярной части, оставшийся в термодинамике, - это слова в определении одного из самых основных её понятий, - внутренней энергии. Грубо говоря, это сумма кинетических и потенциальных энергий всех молекул системы. То есть это та энергия, которая сама собой вырабатывается внутри того или иного туловища просто потому, что у того есть какая-то не равная нулю температура, вне зависимости от желания оного. При изменении температуры внутренняя энергия тоже меняется - и, соответственно, при неизменной температуре она остаётся точно такой же.
Вообще, термодинамика, как и молекулярная физика, не имеет одной какой-то чёткой задачи - ей просто нужно знать, как и во что будет превращаться тепловая энергия, если её куда-нибудь кому-нибудь дать. То есть здесь больше важна меркантильная составляющая: как драгоценное тепло использовать максимально полезно для себя любимых?
И, раз уж заговорили об энергии, первым делом нужно ткнуть всё тех же себя любимых носом в тот же вездесущий закон сохранения энергии. В термодинамике он ударился головой о тепло и получился в следующем виде: дельтаQ = дельтаU + A. "Дельта" означает "изменение", буквы - следующее: Q - количество теплоты, полученное той или иной системой, U - внутренняя энергия этой системы, A - работа, совершённая системой (если работа совершается над системой, она будет отрицательна).
Теперь придётся уйти чуть-чуть в сторону, чтобы ясно по-русски объяснить, почему эта несчастная энергия сохраняется именно в такой форме. Для примера можно взять, например, металлическую пластинку. Как её можно нагреть? В широком смысле есть всего два способа. Первый - это совершить над ней работу (например, распилить) - практически независимо от того, какая это именно работа (механическая, электрическая, химическая...), она в любом случае, так или иначе, нагреется. Второй способ - это просто передать тепло от чего-нибудь более горячего: огня; другой, более горячей пластинки; просто оставить её греться на солнце. В любом случае оба эти способа ведут к увеличению внутренней энергии нашей пластинки (повышается её температура). Итого получается: то изменение внутренней энергии, которое будет у нашей пластинки (системы), складывается из количества тепла, полученного теплопередачей ("от чего-нибудь более горячего") и совершённой над ней работой (которая здесь будет положительной - она же тоже увеличивает нашу энергию!). И вот если теперь работу перетащить в другую часть уравнения, то получим как раз первый закон термодинамики, причём в нём положительной будет считаться работа, совершённая уже самой системой. Чтобы не запутаться, где какая работа будет с "плюсом" или с "минусом", всегда проще всего включить логику. Тепло не приходит из ниоткуда и не уходит в никуда, часть его обязательно пойдёт на "ненужный" нагрев (если надо, чтобы тело только совершало работу) или на "ненужную" работу (если надо, чтобы тело только грелось).
Ну хорошо, а как всё это считать? Работа - бог с ней, какие-нибудь формулы откопаем (и их действительно откопали; об этом попозже). Внутренняя энергия? Увольте. Это надо опять считать, как ударяются друг о друга молекулы, - мы уже выяснили, что на это целой жизни не хватит. Количество теплоты? А вот его можно посчитать проще всего. При теплопередаче то или иное тело нагревается хуже или лучше - например, металл нагреть куда проще, чем воду, и наоборот - вода остывает всегда медленнее суши, поэтому реки и леденеют поздно, и вскрываются поздно. Естественно, физики и здесь подсуетились и обозвали критерий этого "хорошо-плохо нагревается" удельной теплоёмкостью. Это энергия, которую нужно затратить для того, чтобы нагреть 1 кг вещества на 1 кельвин (равно как и градус Цельсия, но мы условились - всё считать в кельвинах!) У воды эта самая удельная теплоёмкость достаточно большая - 4200 Дж/(кг*К). Да, единица измерения кривая, зато сразу подсказывает, как считать: надо размерность довести до джоуля. Итого получаем: Q = c*m*дельтаT, где Q - количество теплоты, полученное/отданное телом при нагреве/охлаждении, c - удельная теплоёмкость вещества, m - его масса, дельтаT - разность температур, которое испытывает вещество (с какой и до какой нагревалось/остужалось). Например, чтобы нагреть стакан воды (200 г) до кипячения (от 20 до 100 градусов - это 80 градусов разница) нужно затратить Q = 0.2*4200*80 = 67 200 Дж. Если считать, что 150-ваттный чайник тратит абсолютно всю энергию только на нагрев (чего, кстати, никогда не бывает), то получится, что для кипячения воды таким чайником надо подождать 67 200 / 150 = 448 с, или примерно 7.5 минут. Для сравнения - чтобы нагреть чугун (из которого сделаны старые чайники) до такой же температуры, достаточно потратить почти в 8 раз меньше энергии - у него c = 540 Дж/(кг*К). Так что если случайно оставить пустой чугунный чайник (без воды) на газовой плите, он очень быстро сгорит.
Кстати, есть ещё такая штука, как теплопроводность. От теплопередачи и теплоёмкости отличается тем, что это просто то, насколько быстро тепло проходит по всему туловищу. Как правило, у твёрдых тел она самая большая, у жидкостей хуже, а у газов - совсем плохая. В том числе она отвечает за то, что металл при прикосновении кажется холодным. Если взять любую металлическую вещь, то металл сразу же быстро начнёт впитывать тепло руки и нагреваться, а рука - охлаждаться. (Это можно заметить, если потрогать руку сразу же после прикосновения или ту же вещь другой рукой - она будет горячее.) Дерево такой же температуры казаться холодным не будет - у него теплопроводность хуже, оно тепло отдаёт медленнее. Они будут казаться на ощупь одинаковыми только при температуре нашего тела - то бишь 36.6 градусов Цельсия. Теплопроводность используют на полную катушку: посуда, в которой что-то греется, металлическая (быстрее передаст тепло еде), на зиму ставят двойные рамы (у стекла плохая теплопроводность, у воздуха между стёклами тоже, итог - они ещё больше не дают теплу внутри дома уйти наружу, чем обычная одинарная рама). Поэтому той же зимой надевают шерстяные свитера или шубы с шерстяной подкладкой - у шерсти тоже плохая теплопроводность, и благодаря этому тепло тела очень плохо уходит наружу, в холод. Так что это не шуба греет, а мы сами обогреваем себя, шуба же просто не даёт нашему теплу улетучиться к холоду.