И оставили путешественники попытки забраться на эту гору. А физики-теоретики оставили всякую попытку понять, откуда взялась эта гора. Нет, не может быть, чтобы по мере увеличения частоты света его яркость бешено росла! Если бы это было так, мир был бы залит чудовищными потоками ультрафиолетовых, рентгеновских и гамма-излучений!
Закон Рэлея — Джинса рухнул. И потянул за собой в пропасть всю теорию излучения, всю старую теорию света. Если теория с железной логикой приводит к абсурдному закону — это крах всей теории.
Хватит с вас хотя бы этих двух трудностей? Наверное, хватит. Теперь надо подумать, как из них выбраться…
Большинству ученых вторая трудность кажется серьезнее. Среди них — сорокалетний профессор Берлинского университета Макс Планк. Сорок лет — это может показаться много. Иной ученый уже от двадцати до тридцати «выложится до дна» и в остальные годы будет лишь счастливо пожинать плоды своей яркой вспышки. Планк к тому времени — довольно известный ученый, автор солидных трудов по теплофизике, механике и во многих других областях. «Глубокий ученый, прекрасный человек», — с уважением отзываются о нем коллеги. Но не более. Великим или гениальным его никто не называет, а в сорок лет уже нет надежды, что назовут. Да и не нужно это Планку. «Улыбка истины — дороже всех наград!»
И вот эта-то «улыбка» пока ускользает от него. Есть два закона, хороший каждый в своем «царстве», — закон Вина, отлично работающий в области коротких волн, и злосчастный закон Рэлея — Джинса, как раз никуда не годный в этой области. Но зато виновский закон плох там, где все-таки рэлеевский закон как будто бы вполне приемлем — в «царстве» длинных волн.
Планк после долгих раздумий выбирает, как ему кажется, путь наименьшего сопротивления: пытается каким-либо образом «сшить» оба упомянутых закона. В математике такая портновская операция называется интерполяцией.
Интерполяционную формулу и ищет Планк. Наконец она появляется на свет — плод долгих и трудоемких расчетов. Остается проверить ее на опыте. Проверка производится — и груда расчетов летит в корзину! Не подошла формула!
Тем временем коллеги Планка — спектроскописты — производят новое тщательное измерение спектра теплового излучения. В октябре 1900 года Планк узнает об этом результате. И начинаются «героические две недели».
Бывает так: вдруг все, чем жил до сих пор, отодвигается на задний план, перед глазами день и ночь стоит заветная задача, сутки за сутками сливаются в один бесконечный день, метущийся в вихре мыслей. Растет бумажная груда, уже не знаешь, где начало, где конец, где основное, где второстепенное. Накал мысли достигает такой яркости, что кажется, еще минута — голова разлетится на куски. И вдруг наступает тишина…
Прозрение. Пришло прозрение. И уже не нужно лихорадочно рыться в груде бумаг, ловить ускользающие мысли. И вообще ничего не нужно. Мысли выстроились стройными рядами, как на параде. И все так удивительно, так потрясающе просто! Но в душу уже снова закрадывается беспокойство. Надо докладывать. Как преподнести открытие? Ведь прозрение пока осенило лишь его одного.
Надо признаться, основания для беспокойства у Планка есть. Очень радостно, просто замечательно, как результаты измерений тютелька в тютельку укладываются на новую кривую. И формула не выглядит громоздкой и отвратительно неуклюжей — почти верное свидетельство ее безошибочности!
Но… но в ее основе лежит предположение, подрывающее основы из основ старой физики. Той физики, в стенах которой вырос Планк и которой он сам отдал немало сил.
Это предположение о квантах энергии.
Классическая физика со времен Ньютона считает, что любая энергия, какое бы происхождение она ни имела, приобретается ли она, отдается ли телами — она непрерывна. Она расходуется, переносится, приобретается так же ровно и бесперебойно, как вытекает вода из крана.
Кажется даже смешным утверждать обратное. Еще никто не видел, чтобы свеча то вспыхивала, то гасла, излучая световую энергию, чтобы камень, летящий в пропасть, дергался, рывками набирая скорость и энергию.
Планк уже убежден, что так оно, в сущности, и есть. Но убедить в этом других — пусть даже только физиков! Что ни говори, а Планк беспокоится не зря.
19 октября 1900 года Планк сделал сообщение о своем открытии — квантах энергии — на заседании Берлинского физического общества. Ученые — народ вежливый, доклад Планка был встречен с «некоторым интересом». Планк на большее и не рассчитывал. Он еще сам не понимал колоссального значения своей работы.
А назавтра начинаются опять будни. Надо снова не торопясь пройти торным уже путем рассуждений и обосновать — попытаться обосновать — новую формулу. Но очень скоро Планк убеждается в том, что формула не желает обосновываться. Ей нет места в старой доброй почве классической физики.
Теперь уже не спеша проходят год за годом. Формулой Планка интересуются экспериментаторы, охотно пользуются ею в своих исследованиях теплового излучения. Но ни Планк, ни кто-либо другой не пытаются расширить поле деятельности планковских квантов.
Так проходит пять лет. И в широко известном немецком журнале «Физическое обозрение» появляется небольшая статья никому раньше не известного автора. В этой статье сотрудник швейцарского патентного бюро Альберт Эйнштейн пытается объяснить совершенно необъяснимые свойства интереснейшего физического эффекта. Открытие этого эффекта связано опять же с именем Генриха Герца. А его исследование — с именем Филиппа Ленарда.
…Наверное, многие из вас прочли замечательную книгу Митчелла Уилсона «Жизнь во мгле». Помните одного из самых мрачных персонажей книги — профессора Ригана? Так вот, Риган — это портрет Ленарда, «пересаженного» на американскую почву. Талантливый исследователь, зараженный и в конце концов погубленный микробом неутолимого тщеславия.
Да это же драма шекспировского масштаба! Всего лишь за два года до открытия Рентгена Ленард, изучая «лучистую субстанцию», выпускает ее через тонкое металлическое окошко из разрядной трубки. И что же: она сохраняет свое действие в воздухе. Ленард получил первые рентгеновы лучи — но он не догадался об этом! Он думал, что в воздух выходят те же лучи, что и бегущие в трубке, — то есть электроны.
И лишь когда Рентген делает действительное открытие, Ленард спохватывается. Теперь он понял, мимо чего прошел. Теперь можно втихомолку локти кусать.
Ленард поступает иначе. Он начинает кричать на всех научных перекрестках о том, что первооткрытие знаменитых лучей принадлежит именно ему. Но физики не поддерживают его домогательств. Они согласны со старейшиной английских физиков Габриелем Стоксом, который ворчливо заметил, что «Ленард, быть может, открыл рентгеновы лучи в своем мозгу, тогда как Рентген направил их в кости других людей».
Так родилось озлобление. Ленард работает, но в душе он затаил ненависть ко всему научному миру. Пройдут долгие годы, и это подспудно тлевшее низменное чувство вдруг вспыхнет ярким пламенем. Вместе с гитлеровскими выродками Ленард будет рьяно изгонять из Германии «проклятую еврейскую теорию относительности» вместе с ее автором. И за измену науке, измену человечеству он получит свои иудины тридцать сребреников: гитлеровская «академия наук» торжественно переименует рентгеновы лучи в «лучи Ленарда». Что ж, Ленард достиг, чего хотел.
Он умер в 1947 году, когда советские люди уже забили осиновый кол в могилу «арийского духа» и похоронили мрачнейшую пору в истории человечества. Умер, непрощенный и забытый современниками.
Но история науки не забыла Ленарда. Она помнит, что важнейшими сведениями о фотоэффекте физика обязана ему.
Генрих Герц открыл, что ток в разрядной трубке усиливается, если освещать катод ультрафиолетовым светом. Двенадцать лет спустя, на самом пороге нового века, Ленард выясняет, что катод при таком освещении выбрасывает электроны. А еще спустя три года он обнаруживает сразу два поразительных свойства нового явления.
Оказалось, что электроны вылетают из катода лишь до тех пор, пока частота света не перейдет некоторый предел. После этого явление мгновенно исчезает — словно ножом отрезали. А если оно существует, то увеличение освещения увеличивает только число электронов, вовсе не меняя их энергию.
Оба эти свойства в корне противоречили тому, что предсказывала волновая теория света. В самом деле, не все ли равно, какая энергия поступает в металл вместе со световой волной? Раз она поступает, она должна приобретаться электронами. Она должна приводить к их вылету из металла. А чем больше эта энергия, тем большей должна быть и энергия электронов.
Между тем на опыте ничего даже близко похожего!
Кто же ответит на этот вопрос? А это зависит от того, кто первый не только воспримет новые представления Планка, но и усвоит их. Им оказался Эйнштейн.
Свет «работает» в фотоэффекте не как волны, показывает он. Свет ведет себя здесь как потоки частиц. Ударила такая частица по электрону, передала ему свою энергию — и вылетел он из металла. Но вылетел лишь в том случае, если ему передана достаточная энергия. Каждая световая частица несет с собой планковский квант энергии! Мал квант — нет фотоэффекта. А энергия кванта просто пропорциональна его частоте.
Чем сильнее свет, тем больше в нем квантов. А чем больше квантов, тем больше они могут выбить электронов, конечно, при условии, что у каждого из квантов хватит на это энергии. Ведь каждый квант света «ударяет» только по одному электрону.
Так… торжествующая победа волновой теории света над своей «корпускулярной» соперницей оказалась сомнительной. Проходит век, и та снова поднимает голову. Фотоэффект, который бессильны вызвать волны, вызывают частицы. Кажется, опять разгорится вековая война обеих теорий.
Нет, этого не произойдет. Оттого, что обнаружен фотоэффект, не перестали существовать интерференция, дифракция, поляризация света, а их никакими частицами не объяснишь. Свет — это и волны и частицы одновременно!
Но как это может быть, как это себе представить?! А представить это действительно трудно. Не один десяток лет физики двадцатого века вживались в это представление. С «частицей-волной» света — спустя двадцать лет из уст американского физика Гильберта Льюиса она получит название «фотона» — в науку вошла первая двуликая сущность. Время показало, что такой двуликости не избежать ни одному предмету нашего мира. Но об этом разговор еще впереди.
Казалось бы, фотоны могли и не ждать до 1905 года. Еще за двадцать лет до того Аристарх Аполлонович Белопольский, замечательный русский астроном, заметил, что хвосты у комет можно объяснить отталкиванием кометного вещества солнечными лучами.
Световое давление! Его действительно открывает и измеряет несколько лет спустя — не в бескрайних космических просторах, а в тесных стенах скромной лаборатории — столь же скромный Петр Николаевич Лебедев.
Град фотонов, бомбардирующих поставленную на их пути поверхность! «Застревая» в ней, отражаясь от нее, фотоны передают телу то количество движения, которым они обладали «в полете». Пусть очень слабеньким будет этот град, пусть Лебедеву для обнаружения его потребуется потрясающая по своей чувствительности аппаратура, — давление света прямо указывает на существование фотонов. Так же, как давление газа на стенки сосуда было за много лет до того объяснено существованием молекул, их ударами о стенки.
Все это так. Но волны тоже переносят с собой количество движения. Тоже отдают его телам, на которые «натыкаются» при своем распространении. И формула этого давления, которую теоретики вывели для света — электромагнитных волн, — отлично согласуется с первыми же опытами Лебедева.
Да, к сожалению, давление света — это одно из тех немногих явлений, где результаты расчета что с помощью электромагнитных волн, что с помощью фотонов — абсолютно одинаковы. Потому-то фотону и пришлось ждать еще несколько лет, пока не применили мысль о нем к другому, более «удобному» для его открытия явлению. Если уж говорить более точно, то была открыта не новая частица. Открыто было новое важнейшее свойство света.
Почему же в обыденной жизни никто из нас не замечал отдельных квантов света? Прежде всего, конечно, потому, что каждый из них несет с собой чрезвычайно малую порцию энергии. Но даже и не в этом главное, а в том, что они слишком быстро следуют друг за другом. Обычная двадцатисвечовая лампочка испускает в каждую секунду неисчислимые их полчища — 60 миллиардов миллиардов!
Не то что глаз, никакой самый быстродействующий автомат не сосчитает их все поодиночке. А на глаз пенять нечего: с очень неважной быстротой срабатывания (на том и основана иллюзия непрерывности смены кадров в кино) он соединяет неимоверно высокую чувствительность.
Много лет спустя замечательный физик Сергей Иванович Вавилов провел очень поучительный опыт. Он посадил в темную комнату человека, выждал, пока глаза его привыкнут к темноте, а затем включил очень слабенький источник света. Такой слабенький, что по сравнению с ним светлячок показался бы солнцем! Этот источник давал считанные кванты света в секунду. И что же? Глаз сосчитал их почти поодиночке!
Так в жизнь вошла вторая частица, рядом с которой люди жили веками, даже не подозревая о ее существовании. Частица света — фотон.
И не только света. Из фотонов состоят и радиоволны, и инфракрасные лучи, и ультрафиолетовые, и рентгеновы, и гамма-лучи. Все то, что называется электромагнитными волнами, может быть с равным основанием названо фотонами.
Понятно, что свою двуликую природу фотоны проявляют в разных явлениях. В одних они волны, в других — частицы. Отдать предпочтение какой-либо из «сторон медали» нет никаких оснований. Нет оснований и не будет.
Атом «в целом» электрически нейтрален. Атом «в нецелом» выбрасывает электроны. И не только электроны. Магнит, поднесенный к радиоактивному препарату, расщепляет вылетающие из него частицы на три пучка. Одни магнитный ветер сбивает вправо, другие — влево, третьи — оставляет без влияния. Мы уже догадываемся, что частицы в одном луче несут на себе отрицательный заряд, в другом — положительный, в третьем нет никакого заряда.
Об этом догадался шестьдесят лет назад и молодой ученик почтенного профессора Томсона. Он только недавно работает в тихой кембриджской лаборатории — этот молодой новозеландец. Он покинул далекую идиллическую страну на краю света, страну тучных пастбищ и голых гор, склоны которых залиты окаменевшими потоками лавы и окутаны паром гейзеров. Он переплыл моря и океаны, чтобы «приземлиться» в старинном английском городке и заняться физикой.
Сегодня такой поступок не вызвал бы никаких особых эмоций. Но в начале века, когда физиков, занимавшихся атомом, было куда меньше, чем хотя бы электронов в атоме урана, — над ним и склонился молодой Эрнест Резерфорд, — что ж, в те годы это было подвигом.
Подвиг в ожидании научных подвигов! Они не заставляют себя долго ждать. Первый из них — «разбор по косточкам» радиоактивного излучения. Несколько лет напряженной работы — и в 1903 году Резерфорд может сообщить ученому миру, что альфа-лучи — это потоки дважды заряженных положительным электричеством частиц, по массе очень близких к атомам гелия, а бета-лучи — это потоки незадолго до того открытых электронов. Гамма-лучи, как определяет Мари Кюри, сходны с рентгеновыми лучами.
Секрет происхождения гамма-лучей будет ждать окончательной разгадки еще добрых два десятка лет. Лишь в 1926 году немецкая исследовательница Луиза Майтнер докажет, что это — электромагнитное излучение, возникающее после радиоактивных превращений.
То, что из атома урана выбрасываются положительные частицы, Резерфорда не удивляет. Еще не нашлось в природе такого повара, который мог бы состряпать атом из одних лишь электронов. Они же мгновенно разлетятся в разные стороны, распихиваемые могучими силами взаимного отталкивания.
Значит, в атоме должен обязательно найтись такой положительный цемент, чтобы он мог связать воедино враждующие электроны. Как выглядит атом в таком случае? Наподобие пирога, полагает Томсон. Электроны — словно изюмины, увязшие в клейком тесте пирога. Похоже на пудинг — излюбленное блюдо англичан. Что ж, может быть и так — Резерфорд до поры до времени не сомневается в такой «картине». Правда, он часто обсуждает с коллегами и другие модели атома.
В 1909 году он вместе со своими учениками Эрнстом Марсденом и Гансом Гейгером ставит на пути радиоактивных излучений небольшие листочки металла. Установка предельно проста: ампулка с радием, тонкий металлический листочек, да еще экран — стеклянная пластинка, покрытая слоем цинковой обманки. Как выяснил Крукс, такой экран светится каждый раз, когда на него попадает заряженная частица.
Меняются листочки, двигается экран, а наши исследователи все сидят месяцами в затемненной лаборатории и считают вспышки. Непонятное начинается, когда экран устанавливается по ту же сторону листочка, что и препарат радия. Экран вспыхивает и при этом!
Дайте понять… Пока экран за листочком, в его вспышках нет ничего необычного: альфа-лучи проходят через тесто «атомного пирога», конечно рассеиваясь в нем, и идут дальше, к экрану. Но вот экран обогнул листочек и стал перед ним по ту же сторону, что и препарат. Число вспышек резко уменьшилось, но они все же остались. Может быть, альфа-частицы попадают на экран прямо из ампулы? Это легко проверить — достаточно убрать листочек. Вспышки прекращаются, как по мановению волшебной палочки. Значит, не в ампуле дело.
Но тогда в чем же? Как могут альфа-частицы отразиться от «клейкого пирога» и вернуться назад? Вот где пища для раздумий Резерфорду!
…Что-то когда-то он читал о кометах. Кометами много занимались в начале века. Длинные хвосты, огибающие Солнце, издревле поражали людское воображение. «Грозят кометы мором и войной!» — изрекали взволнованные поэты, а на папертях церквей толкался испуганный народ, слушая грозные пророчества юродивых.
В начале века мрак рассеялся.
Петр Николаевич Лебедев доказал, что свет оказывает давление на тела. И хвосты оказались выбросами кометного вещества под действием солнечных лучей. Но тело кометы все же притягивается Солнцем. Да, что-то не то…
А что было бы, если комета вся отталкивалась бы Солнцем? Как бы она шла мимо Солнца? Здесь одно размышление не помогает, нужен расчет. Резерфорд считает… Через несколько дней, довольный и шумно веселый, он является в лабораторию, отряхивает снег с шапки и голосом, похожим на львиный рык, объявляет: «Теперь я знаю, как выглядит атом!»
«Белые рабы» Гейгер и Марсден вопросительно смотрят на учителя, а тот, не раздеваясь, присаживается к столу и рисует… солнечную систему. Вот он посадил в центре Солнце, жирно зачернил его, пририсовал орбиты планет. Возле Солнца крупно написал «ядрышко». А чтобы снять последние следы недоумения с лиц учеников, в центральном кружочке жирно поставил «+» и по планеткам разбросал «минусы». Планетки — электроны!..
Только так можно понять странное отражение альфа-частиц назад, взволнованно говорит Резерфорд Гейгеру и Марсдену. Словно альфа-частицы в глубине атома наталкиваются на высокую электрическую горку. Как саночки! — те из них, что попадают на горку сбоку, проходят дальше, только немного сбившись с пути. А те, что налетают на горку в лоб, — те скатываются назад. Назад — в этом весь секрет!
Через два месяца рисунок «солнечного атома» появится на страницах «Философского журнала», издаваемого Кембриджским университетом. А оттуда начнет свое полувековое шествие по страницам бесчисленных книг…
Атом, подобный Солнечной системе, как-то сразу и бесповоротно входит в сознание физиков. Странный, всем своим видом бросающий вызов классической физике, еще далеко не сдавшей своих позиций, — и все же… Иногда красота научной идеи сразу поражает в сердце, минуя слабые протесты ума.
Но надо еще доказать, что эта «красота» имеет право на существование. Электроны не могут вращаться вокруг ядра, как планеты вокруг Солнца.
Помните? Ускоренно движущийся заряд должен непрерывно излучать. Излучая, он теряет энергию. Теряя энергию, он должен замедлять свое вращение. Замедляя свое вращение, он должен в конце концов остановиться.
И в этот момент сила электрического притяжения электрона к ядру атома станет безраздельным хозяином положения. Мгновение — электрон исчезает в ядре, за ним второй, третий. И с ними прекращает свое существование сам атом.
Что-то здесь не так… Снова исследователь оказывается, подобно Планку, подобно Эйнштейну, перед тяжелейшим выбором: либо неверна модель, либо неверна… старая физика. На сей раз эта альтернатива стоит перед Резерфордом и молодым датчанином Нильсом Бором. Он только третий год работает с Резерфордом, но уже успел проникнуться глубочайшим уважением к своему учителю.
Обидно будет, если любимое творение учителя отвергнет строгая критика. Но она необходима. «Платон мне друг, но истина дороже!» Бор ищет истину. И в клещах трудного выбора, что ни говори, ему все же легче, чем его предшественникам, дерзнувшим первыми посягнуть на старую физику.
Уже идет 1913 год. Уже позади теория квантов и теория относительности. И великие эти примеры не могут не придать Бору смелости.
Электрон можно сохранить от гибели в ядре, а с ним сохранить и сам атом, если электрон не будет излучать на орбите электромагнитные волны. Другого выхода нет. Так пусть это и будет выход. Запретить электрону излучать на орбите! На какой бы орбите он ни был. Ибо, как показывает несложный подсчет, таких орбит может быть много.
Запретить — и без всяких! Бор пока не знает, как обосновать свой запрет. И поэтому скромно называет его постулатом, то есть предложением, принимаемым без доказательств.
Но атом все же испускает излучение — свет, например. Надо в запрете, выходит, оставить лазейку? Что-то вроде «нет правил без исключений»? Так Бор приходит ко второй находке. Правда, чтобы не покривить душой, он должен признать долю участия в этой находке за своим «научным дедом» Томсоном.
Электрон испускает излучение в тот неуловимо короткий миг, когда прыгает с орбиты на орбиту. И в этот момент на свет рождается… фотон.
Вот когда атом Резерфорда обретает физическую плоть! Не беда, что второе положение Бора тоже постулат, что оно пока что столь же недоказуемо, как и первое. Притягательная сила новой теории атома столь велика, что перед ней не может устоять ни один физик. Не проходит и трех лет, как она, подобно палочке-считалочке, уже выдает ответы на сотни вопросов, которыми ее забросали физики. И правильные ответы!
Сразу удалось разрешить серьезнейшую трудность старой физики — помните, с линейчатыми спектрами? Перестает быть загадкой удивительная повторяемость свойств химических элементов, впервые подмеченная Дмитрием Ивановичем Менделеевым.
Эта повторяемость и легла в основу созданной им периодической системы химических элементов. Чем объяснить ее? — Менделеев не знал. Конечно, к тому времени уже были известны атомы. И Менделеев установил, что свойства химических элементов периодически зависят от веса их атомов.
Но почему? На этот вопрос в те годы ответа дать было нельзя. Еще не были известны электроны, еще не знали, как устроены атомы.
Теперь же, в десятые годы нашего века, «солнечноподобная» атомная картина Резерфорда и Бора без промедлений объясняет периодический закон Менделеева. Химические свойства атомов — а о периодичности именно этих свойств идет речь — определяются просто числом электронов на самой внешней, наиболее удаленной от ядра оболочке атома.