Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Охотники за частицами - Виталий Исаакович Рыдник на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

они являются составными частями всех атомов;

масса этих частиц меньше, чем одна тысячная часть массы атома водорода.

Эти слова были произнесены Томсоном 29 апреля 1897 года на заседании Королевского института в Лондоне.

Томсон вначале назвал открытые им частицы «корпускулами» — самым невыразительным словом, которое только можно придумать! Ведь по-латыни оно лишь означает «частицы». В его оправдание можно сказать только то, что спустя три года Планк назвал открытые им «частицы» энергии столь же невыразительно — «квантами» (а это на той же латыни означает не более, как «количество»).

Но не в названиях дело. Тем более, что уже вскоре Томсон «поправился» и дал своему открытию имя, предложенное за четверть века до того ирландским физиком Стони, — «электрон». И это имя сразу прочно вошло в обиход всей последующей физики.

Продолжение следует

Один философ как-то назвал открытие «венцом любопытства». Согласиться с ним трудно. Ученый, сделав открытие, редко догадывается в ту же минуту о его истинном значении. Напротив, ученый весь во власти сомнений.

Не пал ли он жертвой неверного хода мыслей? Правильно, корректно ли, как говорят, поставлены опыты, проведены расчеты? А что дальше? Какие неожиданные миры открываются за дверью, на миг приоткрывшейся перед исследователем? Страшиться, однако, нет времени. Все чувства подчиняет себе — вот только теперь развернувшееся во всю силу — жадное любопытство. Только теперь начинается лихорадка открытия.

Нет, настоящий ученый не боится, что его кто-то обгонит. Да и кого бояться? Пока что он один на бескрайних туманных просторах нового мира, и даже его ближайшие соратники не торопятся следовать за ним. До тех пор, пока в этом мире не нащупана твердая почва, они предпочитают лишь сочувственно наблюдать за лихорадочными поисками первооткрывателя.

А вокруг тем временем идет работа. В том же 1897 году Чарлз Вильсон делает открытие, что на газовых ионах очень активно осаждается водяной пар, если газ насытить этим паром, а затем резко охладить.

«В сентябре 1894 года, — вспоминал Вильсон много лет спустя, — я несколько недель работал в обсерватории на вершине Бен Невис, самой высокой горы Шотландии. Удивительные световые явления, возникающие при освещении солнечными лучами облаков, окружающих вершину, и особенно разноцветные кольца вокруг Солнца или теней, бросаемых вершиной горы на окружающий туман или облака, чрезвычайно заинтересовали меня. Я решил получить их в лаборатории. С этой целью я проделал несколько опытов, образовывая облака путем расширения паров. Но сразу же я натолкнулся на нечто такое, что обещало стать более интересным, чем те световые эффекты, которые я намеревался изучать».

Это «нечто» и есть замечательное открытие Вильсона. Пока что оно никак не связано с открытием Томсона. Но подождите, пройдет пятнадцать лет, и открытое Вильсоном явление станет тем магическим окном, которое позволит воочию увидеть следы, оставленные электронами Томсона.

Томсон, однако, не собирается ждать, и уже в следующем году приспосабливает только что открытое явление к измерению заряда своих частиц. Он прогоняет ионы водорода и кислорода, полученные при разложении воды в электролизе, через воду же и получает целые облака заряженных частиц. Эти облака затем медленно оседают на дно, подчиняясь всепроникающей силе земного тяготения. Взвешивая осевшие облака, Томсон находит их массу и число частиц в них, откуда без особого труда находит и заряд одной частицы.

Этот заряд он смело приравнивает заряду электрона. Через несколько лет опыт Томсона повторяет и Вильсон, но с важным усовершенствованием: он заставляет ионное облако оседать в конденсаторе. Меняя напряженность электрического поля, Вильсон может уже регулировать скорость падения заряженного облачка. И это сразу резко повышает точность измерения заряда электрона.

Дорожка проторена. По ней уже движется целый отряд ученых, которым предстоит отшлифовать до филигранного блеска метод Вильсона — Томсона. С 1909 года их возглавляет американец Роберт Милликен. Измерение заряда электрона он первым начинает производить не на ионном облаке — метод, увы, нелегкий, таящий в себе множество подводных камней, — а на масляной капле.

Только вдумайтесь: определять ничтожнейший заряд ничтожнейшей из частиц — и на чем? — на крупной, видимой запросто в микроскоп обыкновенной кухонной масляной капле. Что ни говори, а мысль очень дерзкая!

Правда, сама идея опыта принадлежит не Милликену, а австрийскому физику Францу Эренгафту. Но Милликен может по праву считаться вторым ее отцом: до такого совершенства он довел ее воплощение в опыте.

Эта «кухонная» капля не соскальзывала по стенке кастрюли, а медленно и величественно опускалась в воздухе между пластинами конденсатора. Ей не давали осесть на дно, уйти из поля зрения микроскопа.

Включалось электрическое поле в конденсаторе, и капля столь же величественно начинала подниматься вверх. Ничтожное передвижение регулятора — и капля надолго застывала в неподвижности. Силу притяжения капли к земле уравновешивала электрическая сила притяжения к верхней пластине конденсатора.

А дальше шел точнейший промер и расчет: диаметр капли, сила трения ее о воздух, точная сила земного притяжения, плотность масла и плотность воздуха, напряженность поля в конденсаторе, учет неизбежных ошибок опыта из-за мелких движений воздуха, небольших колебаний поля — все эти «плюсы-минусы». И, наконец, появлялся результат — три или четыре цифры, за правильность каждой из которых можно ручаться каждым днем долгого сидения над микроскопом, каждой неделей новой настройки капризного прибора, каждым десятком листов кропотливых расчетов.

И когда уже совсем недавно обнаружилось, что цифру, полученную Милликеном, подпортило неверное значение вязкости воздуха, взятое им в расчет в 1913 году (и известное тогда), он, уже будучи стариком, не поленился и двадцать семь лет спустя улучшил свой собственный метод и провел новые точнейшие измерения заряда электрона. Методом Милликена еще в десятые годы нашего века удалось выяснить, что электрических зарядов, меньших заряда электрона, не существует.

А с развитием метода скрещенных полей Томсона удалось более точно определить отношение заряда к массе электрона и отсюда уже вычислить массу электрона. Она оказалась равной приблизительно 0,000 000 000 000 000 000 000 000 000 9 грамма (что сокращенно записывают 9 · 10–28 г). И она оказалась самой маленькой массой из всех существующих в природе.

Метод Томсона в свою очередь зажил самостоятельной жизнью и спустя двадцать лет привел к еще одному важнейшему открытию в атомной физике — открытию изотопов. Но об этом — в свое время и на своем месте…

Шквал открытий

Конец девятнадцатого века ничуть не схож с концом восемнадцатого. Тогда говорили наполеоновские пушки — они играли марш молодому капитализму, вступающему в безраздельное владение Европой. В конце девятнадцатого века в Европе стоит настороженная тишина. В этой тишине только очень тонкий слух может уловить громы будущих войн. Явственнее всего громы доносятся из дипломатических кабинетов европейских столиц. В тихие университетские городки они не долетают совершенно.

Да и, пожалуй, там они не были бы услышаны за безмолвным звоном великой битвы идей. Давно наука не помнит такого шквала первостепенных, ярчайших открытий, как этот — в последние годы девятнадцатого и первые годы двадцатого века. Словно все тропы, которыми до сих пор шла физика, свились в тугой узел, а из него вышла новая дорога, прорубленная в неведомый дотоле мир — мир атомных частиц.

За два года до открытия Томсоном электрона Вильгельм Конрад Рентген обнаруживает невидимые лучи, проникающие сквозь любые преграды. Спустя год Анри Беккерель открывает радиоактивность. Проходят еще три года, и Макс Планк выступает со своей гипотезой о квантах энергии. Затем — небольшая передышка. И в 1905 году молодой Эйнштейн дарит миру сразу два «алмаза» первейшей величины — гипотезу о квантах света и теорию относительности.

Под бешеным натиском новых идей рушатся основы старой физики, казавшиеся тогда монолитной твердыней. Среди физиков воцаряется растерянность. Уж слишком быстро все рухнуло…

Воспаленному мозгу неискушенных исследователей начинает казаться, что в природе все дозволено. У страха глаза велики, у несдержанного любопытства — еще более. Ошеломленная публика требует каждый день новых сенсаций. Физика вдруг стала модной наукой. И кое-кто из ученых рангом помельче не выдерживает…

За шквалом истинных открытий надвигается устрашающий шквал «псевдооткрытий».

За «икс-лучами», как скромно назвал свое открытие Рентген, разумея под «иксом» еще не познанную природу этих лучей, за радиоактивными лучами — их исследуют в те годы супруги Кюри — на свет нарождается целый сонм других всевозможных «лучей». Чтобы их занумеровать, уже не хватает всех букв алфавита.

Они и невидимы, эти «лучи» — спасительное свойство! — которое страхует их «первооткрывателей» от мгновенного разоблачения. Они и всепроникающи — поди докажи, что это не так. Вот эти «лучи» — чисто «животного» происхождения, а те испускаются только некоторыми минералами. И автор новых «лучей» подносит к вашим глазам целую коллекцию разнообразнейших камней. Они имеют друг с другом лишь то общее, что не имеют ничего общего с мифическими «лучами».

Были и шарлатаны, были и жертвы «научных» галлюцинаций. Последних как-то особенно жалко — как и всех тех, кто заблуждается совершенно добросовестно, чьи «глаза видят то, что хочет видеть ум».

Американский физик Роберт Вуд с усмешкой (немало и горечи в этой усмешке) вспоминает свой визит к французскому коллеге Блондло — «открывателю N-лучей». Блондло усадил Вуда в затемненной комнате, включил источник невидимых лучей и стал объяснять Вуду, что с помощью вот этой призмы он разлагает «N-лучи» в спектр. Вуд вежливо слушал. Затем Блондло стал «водить» Вуда по спектру, называя разные его оттенки. Вуд по-прежнему вежливо поддакивал. Затем «сеанс» окончился. Блондло казался оживленным и очень усталым. Вуд поблагодарил, вежливо распрощался и уехал.

И только потом рассказал своим спутникам о цене этой вежливости. Во время «сеанса» Вуд просто-напросто снял со стола и сунул в карман ту самую призму, с помощью которой Блондло разлагал свои «N-лучи». Так что, во всяком случае, Блондло мог видеть что угодно, но только не спектр своих «лучей».

Сенсации, сенсации! А ведь в то время не одни лишь любители легких сенсаций, но даже и более серьезные ученые не догадывались о том, что физика только-только выбирается из острейшего кризиса, в который вверг ее луч… обыкновенного, каждодневно видимого нами света.

Война научных миров

Ни в одной области физики ученые не поломали в борьбе столько копий, как в вопросе о природе света. Знаменитую поговорку «Ученье свет, а неученье — тьма» в недавние времена можно было перефразировать как «Ученье о свете — тьма».

Нам придется снова ненадолго заглянуть в великую книгу истории. Откроем те ее страницы, которые повествуют о научных подвигах Исаака Ньютона. Мы без труда убедимся в величайшей широте «спектра» его научных интересов.

Кстати, сам спектр — тоже открытие Ньютона. Кроме механики, он немало занимался и оптикой. Казалось, нельзя было пройти при этом мимо такого интересного и в те времена совершенно загадочного вопроса, как вопрос о природе света. Но Ньютон прошел. А вернее, уделил этому вопросу слишком мало внимания. Если учесть масштабы его гения, это равносильно полному пренебрежению. И в этом проявляется характернейшая черта ньютоновской манеры работать. Главное для него — получить результат, а результат пусть объясняют другие. Но все-таки, что не вполне справедливо, корпускулярную теорию света ведут от Ньютона.

Нагретые тела светятся, испуская крошечные световые «искры» — корпускулы. Ненагретые тела светятся, отражая корпускулы. Попадая в глаз, эти частички и вызывают ощущение света. Корпускулы разных цветов имеют разную массу.

Что же, все это можно сегодня прочитать в школьном учебнике физики под рубрикой «Взгляды Ньютона на природу света». Дальше можно бы привести такой мысленный диалог Ньютона с «нашим корреспондентом»:

— Вы согласны с вышесказанным, уважаемый сэр Айзек?

— Не могу сказать, что не разделяю этого взгляда, досточтимый мой собеседник. Но могу сказать, что я не вполне доверяю этой сомнительной гипотезе.

— А какая же несомненная, уважаемый сэр?

— Я гипотез не строю! Все гипотезы сомнительны, мой друг. Я полагаю, что предпочтение правильной из них отдаст время.

— Вы, простите, уклоняетесь от ответа, сэр Айзек!

— Мой друг, вы правы. Я работаю с данной гипотезой за неимением лучшей, но не требуйте от меня еще, чтобы я признал ее правильной.

«Наш корреспондент» откланивается. На пороге его встречают ученики:

— Ну, что сказал великий учитель?

— Да ничего, ни да ни нет!

— Это его скромность! Он никогда ни во что окончательно не верит!

— Ну, а вы-то? — спрашивает огорченный «корреспондент».

— А для нас световые частички так же ясны, как божий день! Мы горой стоим за эту идею.

И действительно, весь восемнадцатый век стояли горой — грозно и… недвижимо. Во всяком случае, первое утро девятнадцатого века застает эти представления о свете почти в том же младенческом состоянии, что и во времена сэра Айзека.

Пока что и «старый враг» дремлет. Собственно, он на каких-нибудь несколько лет моложе представлений, о которых мы только что говорили. Светом во времена Ньютона занимались не только в Англии. И в 1672 году в Парижскую академию наук поступает «Трактат о свете» голландца Христиана Гюйгенса.

Париж в те годы — центр мира. Парижская академия наук — центр ученого мира. Со всех концов Европы шлют туда свои работы ученые и считают честью для себя, когда эти работы выходят в свет в Париже. Но всяко бывает в этом веселом городе: бывает, что работы годами валяются в шкафах академиков, бывает, что и вовсе пропадают.

Обижаться? Не стоит. И Гюйгенс терпеливо ждет целых восемнадцать лет. Наконец, за пять лет до смерти, он получает свежие оттиски своего «Трактата».

В нем доказывается, что свет — это продольные волны в некоей нематериальной среде, которая впоследствии получит название эфира. Сложные геометрические построения, формулы — вот это уже не ньютоновское «ни да ни нет», а суровое и точное изложение взгляда. Теория кажется убедительной. Она, кроме того, имеет еще преимущество перед своей соперницей в том, что, в отличие от той, правильно решает задачу о преломлении света.

Но сторонников в восемнадцатом веке она почти не находит. Тут числом не возьмешь: тогда, на нашу сегодняшнюю мерку, физиков почти не было!

Первое утро девятнадцатого века видит оживление в стане сторонников волновой теории Гюйгенса. Собственно говоря, все это оживление производит один человек — англичанин Томас Юнг. Без преувеличения сказать, биография одного только Юнга могла бы снять со всех англичан обвинение в чопорности и холодном темпераменте. Циркач, музыкант, математик, языковед, физик — и все это на полном серьезе, на высочайшем уровне и в прямом и переносном смысле.

Да, такой человек может оживить целую науку! Действительно, «на минуточку» заглянув в застывший храм оптики, Юнг сразу же делает крупнейшее открытие — открывает интерференцию света. Оно и определяет крутой поворот в ходе войны обеих теорий.

Через двадцать лет — после трудов французской «могучей кучки» в составе Этьена Малю, Доминика Араго и, наконец, Огюстена Френеля — о корпускулярной «ньютоновской» теории света никто и не вспоминает. Разгром ее кажется полным и окончательным.

Вплоть до сокровенных тонкостей поведения света — все объяснила волновая теория. А спустя тридцать лет Джемс Максвелл, наконец, выясняет, что за волны — свет. Оказывается — электромагнитные.

Сомнительная победа

«Тебя погубят твои же дети» — эти знаменитые слова древнего предостережения можно начертать у дверей любой новой научной теории.

Да, это так. Научная теория переживает робкое детство и могучую юность, когда теория словно шутя расправляется с труднейшими задачами, недоступными для ее предшественниц. Со временем к ней приходит и зрелость, когда теория словно разливается вширь, охватывая новые, ею же предсказанные явления, устанавливая контакты с другими областями науки. Это время ее торжества, время наивысшего расцвета… Затем подкрадывается старость — в непрерывных сражениях с новыми фактами, открытыми благодаря самой же теории, но которые она бессильна объяснить.

Тогда наступает, на первый взгляд, застой в теории. Ее верные приверженцы выбиваются из сил, пытаясь как-то оживить ее. Другие бессильно опускают руки и уходят в другие области науки, где положение не кажется таким безнадежным.

Но остаются еще и третьи. В тиши кабинетов они вынашивают дерзкие идеи, которые уже никак не лезут в тесные рамки старой теории. Неприметные вначале, эти идеи в один действительно прекрасный день рушат стены того же дома, в котором они родились. Вот когда наука делает прыжок вперед!

Так случилось и с учением о свете в конце прошлого века. После первых внушительных побед волновой теории оптика быстро вышла на широкую практическую дорогу. И — совершенно закономерно — за решением вопроса о природе света на повестку дня стал вопрос: а как, собственно говоря, возникает сам свет?

— Стоило ли ломать голову! — воскликнет неискушенный читатель: нагрей любое тело, и оно начнет светиться.

Правильно. Это видно и без особых умственных усилий. Но все же, почему нагретые тела испускают свет?

Наш неискушенный критик, кажется, задумался. Ну ничего, пускай думает — это полезно. Десятки теоретиков думали над этим с виду простым вопросом десятки лет.

Трудностей здесь было сразу несколько. Во-первых, что испускает свет при нагревании тел? Очевидно, то, из чего они состоят, — атомы. Свет — это электромагнитные волны (что доказал Максвелл). А электромагнитные волны испускает любой электрический заряд при своем движении (Максвелл это установил «на бумаге», а Герц — в своих знаменитых опытах).

То, что атом в целом электрически нейтрален, физиков уже не смущает. Коль скоро были произнесены слова «атом в целом», то это уже доказывает, что ученые додумались до «атома не в целом». Действительно, уже кончается девятнадцатый век, идея электрона носится в воздухе и только ждет своего воплощения в открытии Томсона.

Можно перескочить через кой-какие нерешенные «мелочи» и сразу заявить: электромагнитные волны испускаются электронами, движущимися в атомах. Чем сильнее нагрето тело, тем интенсивнее это движение, тем более яркий свет вырывается из атомов.

Все? Нет, не все. Электромагнитные волны уносят с собой энергию. Откуда они ее берут? От электрона, конечно. Поэтому, излучая волны, электрон вынужден замедлять свое движение.

Теперь второе обстоятельство. В электромагнитном излучении зарядов должны, как непреложно доказывает теория, присутствовать волны всевозможных частот. Как говорят физики, спектр этого излучения должен быть непрерывным.

Если бы вы «нацелили» свой радиоприемник на такой электрон, то не было бы необходимости в его настройке: электрон был бы слышен на всех волнах. А пустив электронное излучение на призму, вы должны были бы получить сплошную цветную полосу на экране.

— Солнце за меня! — воскликнете вы и будете правы. Солнце, действительно, «выдает» практически именно такой спектр. Но не единственный же оно источник света на свете. И лампочка за меня! — тоже верно.

Но намочите в соленой воде тряпочку, высушите и подожгите ее. Чем не источник света?

А посмотрите на его свет сквозь призму. Вам долго придется искать взглядом в полнейшей темноте, пока вы не натолкнетесь на узенькую желтую линию. Вместо непрерывного спектра — сплошной провал, и на нем одна-единственная линия! То есть электромагнитные волны от тряпочки, вымоченной в соли, имеют одну-единственную частоту.

Я нарочно привел такой старинный пример, чуть ли не вековой давности. Сегодня подобные примеры бросаются вам в глаза на каждом шагу. Взять хотя бы неоновые вывески, в которых, кстати говоря, светятся не только неон, но и аргон, криптон и другие газы.

Что-то здесь тоже не видать непрерывного «всецветного» спектра! Подвел электрон! А вернее, подвела теория. Выходит, есть и такие непредусмотренные ею условия, при которых получается, как говорят, линейчатый спектр. Что же это за условия? Физики той поры только беспомощно разводят руками.


Согласно кривой Рэлея — Джинса интенсивность излучения в области коротких волн должна неограниченно возрастать. Кривая Вина — Голицына, напротив, плохо ведет себя в области длинных волн. Пунктирная кривая показывает, как удачно Планк «сшил» оба эти закона. Эта кривая отлично оправдывается на опыте.

Что ж, пойдемте дальше. Физика в те годы весьма усердно изучает свечение при нагревании тел. Оно так и называется «тепловым излучением». Уже известный нам Людвиг Больцман и австрийский физик Иозеф Стефан находят точное математическое выражение словам «чем горячее тело, тем оно ярче светится». А другой австриец Вильгельм Вин и — независимо от него — выдающийся русский физик Борис Борисович Голицын тем временем открывают закон, по которому изменяется цвет свечения тел при их нагревании.

После чего два английских физика — лорд Рэлей и Джемс Джинс — делают попытку объединить эти два закона в один.

Этот объединенный закон должен описать, как изменяется яркость свечения нагретых тел, если «пробежаться» по их спектру.

Но «пробежаться» не удалось. Разразилась катастрофа…

Понятное дело, катастрофа в теории… Она так и получила название «ультрафиолетовой катастрофы». Пока мы путешествовали где-то в области радиоволн и инфракрасных волн, все шло нормально. Пробежали и видимый спектр, удалились в фиолетовую область и тут заметили, что бежать становится все труднее. Вместо спуска, как подсказывает здравый смысл, перед нами — гора, да и какая! Чем дальше залезаешь в ультрафиолет, тем она круче.



Поделиться книгой:

На главную
Назад