Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Цепная реакция идей - Федор Борисович Кедров на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Сразу после опубликования Френкелем статьи «О превращении света в тепло в твердых телах», в которой он впервые предложил понятие «экситон» (1931 год), идея Френкеля обратила на себя внимание ряда крупных физиков-теоретиков и экспериментаторов различных стран. Появились статьи об экситонах Р. Пайерлса в Германии, В. Шокли и Д. Олетера, а также Г. Ванье в США, Н. Мотта в Англии. Идеей Френкеля заинтересовались также ученые-теоретики, такие, как Джеймс Франк из Геттингенского университета и Эдвард Теллер (получивший впоследствии широкую известность как один из создателей атомного и термоядерного оружия).

Многие экспериментаторы обращались к гипотезе об экситоне как носителе энергии для объяснения тех или иных физических явлений. Например, роль экситона принималась во внимание при объяснении внешнего и внутреннего фотоэффекта.

Вопрос о том, действительно ли существует такая квазичастица в кристаллах, долго не находил ответа. Существование экситонов было позднее доказано при изучении оптических явлений в кристаллах.

Лауреат Ленинской премии, присужденной в 1966 году за исследования экситонов, ленинградский физик, член-корреспондент Академии наук СССР Евгений Федорович Гросс еще в 1952 году писал, что экситон действительно существует и его спектр есть спектр бегущего в кристалле возбуждения (экситоны были экспериментально открыты спектроскопистами). Экситонные спектры позволяют широко изучать физические явления в кристаллах. Теперь они составляют целую главу физики твердого тела. По мнению Е.Ф. Гросса, экситонные спектры в спектроскопии твердого тела могут дать для изучения энергетической структуры твердого тела столько же, сколько атомная спектроскопия дала для изучения строения отдельного свободного атома. Другими словами, экситонная спектроскопия представляет собой одно из крупнейших достижений физики.

Так, теоретическое открытие Френкеля, пройдя сложный путь развития, оказалось не только вкладом в постижение процессов в кристаллической решетке, но и стало важным орудием экспериментальных исследований в физике твердого тела — в этом обширном разделе науки, роль которого в наше время необычайно велика и разнообразна.

Е.Ф. Гросс начал экспериментальные поиски экситонов еще при жизни Я.И. Френкеля и некоторое время мог обсуждать свои результаты с Яковом Ильичом.

Е.Ф. Гросс сказал автору этой книги: «Я никогда не забуду, как несколько молодых физиков-экспериментаторов Физтеха, в числе которых был и я, решили проверить на опыте, существуют ли в действительности экситоны Френкеля. После серии опытов, давших положительные результаты, я как-то встретил в коридоре института Якова Ильича. Я сказал ему; — Яков Ильич, мы обнаружили новые явления.

Кажется, ваш экситон можно считать экспериментально доказанным.

Френкель всплеснул руками.

— Что вы говорите! Это поразительно. Приду к вам в лабораторию. Сейчас, к сожалению, не могу. Спешу на лекцию в Политехнический.

Он уже не смог прийти к нам в лабораторию. Скоро он умер. Я шел в похоронной процессии и думал о том, как радовался бы он, слушая объяснения опытов, подтвердивших существование экситонов».

Квазичастицы — экситоны, теоретически предсказанные Френкелем и экспериментально открытые Е.Ф. Гроссом — двумя советскими физиками, быстро заинтересовали исследовательские институты различных стран. Подобно цепной реакции, они порождали все новые и новые исследования, помогая ученым решить сложные проблемы физики твердого тела.

Френкеля к этому времени уже не было в живых. Но он имел счастье одним из первых узнать об экспериментальном открытии экситонов и бурно выразить свое удовольствие по этому поводу.

Френкель не стеснялся проявлять свою радость в таких случаях. Все знали, что он придавал большое значение соответствию между созданной им теоретической картиной (А.Ф. Иоффе называл теоретические построения Френкеля «интуицией, облеченной в математическую форму») и характером наблюдаемых экспериментально явлений. Правда, не всякое расхождение теории с результатами опыта он воспринимал как противоречие.

Профессор Ф.Ф. Волькенштейн, участник студенческих семинаров в Физико-техническом институте, писал; «Нередко между Абрамом Федоровичем и Яковом Ильичом возникали острые „пикировки“, за которыми мы (студенты. — Ф. К.) следили с волнением. Обычно Абрам Федорович прерывал Якова Ильича и смущенно замечал, что такие-то экспериментальные данные находятся в полном противоречии с теорией Френкеля. Это, однако, ни в малейшей мере не смущало самого Якова Ильича. Немедленно вводились поправки, уточнения, которые выправляли теорию в нужном направлении».

Но прямое подтверждение экспериментаторами его теории было всегда кульминационным моментом, которого Френкель ждал с нетерпением, никому в этом, правда, не признаваясь.

Необходимость подтверждения его теорий экспериментами вызывалась почти во всех случаях и особенно в любимых Френкелем областях, рассматривающих физические явления, связанные со структурой вещества и происходящими в нем физическими явлениями на уровне молекул.

В тридцатых годах многие физики, занимавшиеся молекулярной физикой, переходили к исследованиям атома и ядра. Из Ленинградского физико-технического института, где долгие годы изучали свойства полупроводников и диэлектриков, а также различные вопросы молекулярной физики, естественно, вышли почти все первые крупнейшие советские физики-атомники. Среди них был и академик И.В. Курчатов. Впоследствии он руководил всеми научными работами по атомной проблеме в нашей стране. В области молекулярной физики начинали свою деятельность академики А.П. Александров, Ю.Б. Харитон, И.К. Кикоин, Л.А. Арцимович и многие другие наиболее видные участники атомных исследований.

Для того чтобы сделать решительный шаг в ядерной физике, которая к середине века приобрела наибольшее значение из всех физических наук, пришлось сконцентрировать все физические (и не только физические) знания, полученные человеком в XIX и XX веке.

Вскоре после того, как физики впервые обратили внимание на процессы, происходящие в ядрах атомов, и тем более.. когда возникли первые предположения о гигантских энергетических ресурсах ядер (а такие предположения высказывали Кюри, Резерфорд, Содди и многие другие ученые еще в начале XX века), стало ясно, что эти проблемы очень сложны. Для решения их необходимо было не только сконцентрировать знания, но и объединить ученых в мощные коллективы, поставив перед ними трудно выполнимые специальные задания. Во всей истории ядерной фпзики и атомной энергетики как нельзя лучше проявилась исключительная ценность теоретических идей, которые часто указывали экспериментаторам, что им нужно делать, чтобы добиться существенного прогресса в этой области.

Ядерная проблема требовала участия в общей работе многих выдающихся ученых (не говоря уже о грандиозных контингентах рядовых исследователей и технического персонала). Можно уверенно сказать, что из крупнейших современных физиков, игравших решающую роль в исследовании ядра и ядерных процессов, многие по своему дарованию не уступали таким великим ученым прошлого, как Ньютон, Фарадей, Максвелл, Галилей, а некоторые и превосходили этих людей, прославленных всемирной историей.

Не говоря уже о больших общих и принципиальных теоретических и экспериментальных проблемах универсального характера, многие даже сравнительно узкие задачи могли быть решены только очень одаренными, оригинально мыслящими учеными.

Френкель заинтересовался теоретическими вопросами ядерной физики в начале тридцатых годов, но только в 1936 году он, впервые выступая в прениях по докладу Нильса Бора, изложил свою идею о капельной модели ядра.

Первая статья Френкеля по ядерной физике была опубликована осенью 1936 года харьковским журналом «Физический журнал Советского Союза», где печатались статьи на немецком и английском языках.

Эта и последующие статьи Френкеля привлекли внимание специалистов. Однако тогда еще вопросы деления тяжелых ядер (а Френкель именно первым высказал мысль о принципиальной возможности такого деления) не вызвали такой сенсации, какой они сопровождались несколько позже. Теперь, оглядываясь назад и окидывая взором триумфальные успехи в области ядерной физики и атомной энергии, можно сказать уверенно, что работы Френкеля имели огромное значение для прогресса физики последних 20...30 лет.

Открытие Чадвиком в начале тридцатых годов нейтрона начинало новую эпоху в физике и технике. Вскоре после этого американский ученый Карл Андерсон обнаружил в космических лучах ранее неизвестную частицу — позитрон с такой же массой, как у электрона, но с противоположным знаком электрического заряда. Появилась первая античастица (термин «античастица» возник гораздо позже) в списке, ныне включающем также антипротон, антинейтрон и другие античастицы и частицы (всего их более 200).

Открытия Чадвика, Андерсона и других ученых, тока еще немногих специалистов по ядерной физике, привлекли внимание к этой области более широкого круга исследователей. Тогда же, в 1930 году, по инициативе А.Ф. Иоффе, обладавшего удивительным «чутьем» не только по отношению к людям, но и к физическим открытиям, была создана группа экспериментаторов для работы по физике атомного ядра. Сотрудники нескольких лабораторий приступили к исследованиям. Некоторыми из них руководили И.В. Курчатов и Д.В. Скобельцын, впоследствии известные ученые-академики. Начал работу и теоретический семинар во главе с Френкелем. Результаты первых работ были опубликованы.

В следующем 1931 году накопилось уже достаточно материалов, и поэтому в Ленинграде была созвана Первая Всесоюзная конференция по атомному ядру. Ее приурочили к 15-летию со дня основания Физико-технического института.

Конечно, и в Москве и Харькове ядерная физика также включается в тематику крупных, хорошо оснащенных научно-исследовательских институтов.

Френкель внимательно следит за этими работами. Он замечает, как иностранные физики, среди которых многих он хорошо знает лично, перешли от других вопросов к работам в области ядра. Да и в его институте уже наметился такой переход.

В институте инициатива прежде всего была проявлена экспериментаторами. Первые работы в области ядра принадлежали им. Но вскоре понадобилось привлечь к исследованиям теоретиков.

И.Н. Головин в своей книге приводит «обращение» Курчатова к своим сотрудникам в Физико-техническом институте, в котором между прочим есть такие слова: «Не наше дело абстрактные теории проверять. Мы будем на опытах изучать ядро, его особенности. Если и обнаружим что-то непонятное, попросим теоретиков — Френкеля, Тамма, Ландау — призадуматься и создать общую странную картину явлений. Ведь нейтрон еще совсем не изучен. А если он в любое ядро проникает, то у него великое будущее».

Но Френкель не ждал сигнала экспериментаторов. Он уже понимал, что физика стоит на пороге новых возможностей овладения атомной энергией при помощи нейтрона и серьезно занялся проблемами ядерной физики.

В тридцатых годах Я.И. Френкель и Нильс Бор впервые указали на возможность применения статистических методов к ядру. Физики-теоретики получили возможность осуществить новые важные исследования. Исходя из идей Френкеля — Бора Г. Бете исследовал распределение ядерных уровней по энергиям. Но Бете рассматривал ядро как идеальный газ. Это было неверно, так как в ядре существовало сильное взаимодействие частиц. Л.Д. Ландау (впоследствии лауреат Нобелевской премии) в 1937 году опубликовал статистическую теорию ядер, в которой рассматривал ядро как квантовую жидкость, а не идеальный газ. В работе Ландау благодаря применению статистических методов удалось получить ряд важных соотношений, характеризующих тяжелые ядра.

Весной 1934 года Френкель встретился в Ленинграде с Нильсом Бором и обсуждал с ним вопросы быстро развивающейся в то время теории ядра. Затем они встретились в Москве и вместе поехали в Харьков на конференцию по теоретической физике.

В различных странах с большой интенсивностью велись теоретические и экспериментальные работы по ядерной физике, в результате которых были сделаны важные открытия, предвещающие новую эпоху в физике и технике. Из экспериментальных открытий можно упомянуть об исторических опытах Энрико Ферми по облучению элементов нейтронами и открытие эффекта замедления нейтронов в парафине, графите и тяжелой воде, получившего в физике название эффекта Ферми и сыгравшего важную роль в разработке способов выделения ядерной (атомной) энергии. С не меньшей интенсивностью работали и физики-теоретики, осмысливая огромный материал, накопившийся у экспериментаторов.

В марте 1936 года на сессии Академии наук Френкель, выступая в прениях по докладу И.Е. Тамма, посвященному теории атомного ядра, предложил свою статистическую модель ядра. Примерно за две недели до этого выступления в английском журнале «Нейчер» была опубликована теория компаунд-ядра Н. Бора. Френкель рассматривал ядро как твердое или жидкое тело, состоящее из большого количества связанных друг с другом частиц. Энергию, возникающую в такой системе при захвате нейтрона, можно представить себе как тепловую энергию этого ядра, а процесс захвата нейтрона — как своеобразную его адсорбцию, сопровождающуюся нагревом сложного компаунд-ядра с последующим испарением из него нейтрона, протона или частицы. Основываясь на этой аналогии, он ввел понятие температуры ядра и позднее в других статьях облек свои идеи в математическую форму. Эти идеи получили признание и развитие, в частности, в работах самого Бора, а также в работах Л.Д. Ландау и В. Вейскопфа и Г. Бете.

Летом 1937 года Нильс Бор снова приехал в Москву и в своих лекциях уже пытался дать прогноз относительно практического использования ядерной энергии, в том числе и в виде оружия. Знаменательно было и то, что Бор, как и некоторые другие ученые, в частности и Френкель, уже серьезно рассматривали вопрос об атомной энергии. Френкель в своих лекциях довольно подробно излагал этот вопрос.

В начале Великой Отечественной войны Ленинградский физико-технический институт, где продолжал работать Френкель, эвакуировался в Казань.

Сорокасемилетний ученый решил пойти добровольцем на фронт, где находились уже многие его ученики и молодые сотрудники института. Военком, возвращая ему заявление, сказал: «Профессор Френкель, подумайте сами, где вы будете полезнее? На фронте мы сможем использовать только ваши руки. Ваши знания нужны нам больше».

В период эвакуации в крайне суровых условиях жизни Френкель продолжал вести научную работу в институте, совмещая ее с чтением лекций студентам Казанского университета. Он также выезжал в командировки в высшие учебные заведения и научно-исследовательские институты других городов для чтения лекций и консультации.

За лето и осень трудного 1943 года Яков Ильич написал одну из выдающихся своих монографий «Кинетическая теория жидкостей». Академик И.Е. Тамм писал, имея в виду эту работу, что в истории науки редко встречаются примеры, когда физик излагал бы столь обширную область науки, основываясь в такой степени на собственных идеях и работах. Этот труд Я.И. Френкеля был отмечен Государственной премией первой степени.

Лекции Френкеля для студентов были необычными. В них творчески излагался предмет и содержались идеи самого лектора, оригинальные трактовки результатов новейших исследований, учитывались последние успехи науки. Его курс квантовой механики непрерывно пополнялся данными о самых новых теоретических и экспериментальных открытиях. Две лекции на одну и ту же тему могли быть совершенно различными в зависимости от результатов последних работ или в связи с изменением точки зрения Френкеля, вызванным более углубленным изучением и обдумыванием того или иного научного факта.

В то же время Френкель всегда заботился о том, чтобы его лекции были доступны слушателям.

Иногда выводя на доске сложный и длинный набор цифр и уравнений, Яков Ильич на какой-то стадии терял «минус» или «плюс», или «корень квадратный». Тогда он поручал студентам найти этот «легкомысленный» знак, умудрившийся сбежать. Студенты бросались на поиски и в конце концов находили беглеца. Этот маленький фокус Френкель делал, конечно, умышленно, создавая, таким образом, небольшую разрядку и в то же время проверяя внимательность своих студентов.

Френкель обладал крепким физическим здоровьем. Это доказывала его огромная работоспособность. Он отлично катался на коньках, совершал длинные пешеходные прогулки, водил автомобиль. Тем не менее утомление, вызванное усиленной работой на протяжении многих лет, лишения военного времени, а также многие жизненные трудности к концу сороковых годов стали сказываться на его здоровье. Он прекрасно понимал, что болен, но не хотел мириться с этим и продолжал трудиться, как в молодые годы. Однако теперь болезнь довольно часто побеждала его, и он вынужден был на время прекращать работу.

В ночь на 23 января 1952 года Я.И. Френкель скоропостижно скончался у себя дома в профессорском корпусе, расположенном в парке Политехнического института, где он провел почти всю жизнь. 10 февраля ему исполнилось бы 58 лет.

Когда умер Френкель, в научных журналах по физике рядом с некрологами о нем оказались и его научные статьи. Они были напечатаны отнюдь не в связи со смертью ученого. Нет, просто подошла их очередь для опубликования и они появились на страницах журналов, как будто бы автор продолжал работать...

Хотя физика в нашем столетии оказывает непосредственно влияние на все сферы деятельности человека, она пока еще не стала доступным для всех объектом. Более широко известны некоторые успехи физики, связанные с различными техническими устройствами, поражающими воображение. К ним относятся, например, атомные электростанции, термоядерное оружие, космические аппараты, гигантские ускорители частиц, радиолокаторы, солнечные батареи, полупроводниковые приборы.

Но многие ли знают о тех научных открытиях, в том числе и «чисто» теоретических, предшествовавших созданию таких технических устройств?

Теоретические идеи, подобные тем, которые рождались в уме Френкеля, всегда «возбуждают» науку, питают живительными соками все области физики и смежных с нею наук. Работа физика-теоретика остается пока еще «невидимой» для широкого круга людей. Лишь спустя много лет и даже десятилетий становятся понятными идеи, которые при возникновении казались безумно сложными и были недоступны для восприятия человека со «средними знаниями».

Великий физик-теоретик Альберт Эйнштейн создал всем известную, но до сих пор сравнительно немногим понятную теорию относительности. Конечно, наступит время, когда теория Эйнштейна станет общепонятной; но для этого нужна дальнейшая разработка ее и повышение уровня образованности людей.

В печати часто подчеркивался большой диапазон научных интересов Якова Ильича, простиравшихся «от математики через все разделы физики вплоть до ядерной физики, геофизики, физиологии и техники». Редкая разносторонность Френкеля неизменно отмечалась всеми исследователями его научного творчества.

Ум современного человека обычно направлен в довольно ограниченную область интересов чаще всего потому, что и эта область сама по себе настолько глубока, что требует от человека всей его жизни.

В щедром потоке работ Френкеля почти каждая представляла собой ценное научное исследование, способное возбудить мысль других ученых.

До самой смерти Френкель продолжал безостановочно работать, ни на мгновение не утрачивая способности творчески мыслить. Поэтому и случилось так, что последние его статьи появились в печати одновременно с некрологами. Немало неоконченных рукописей осталось в ящиках его письменного стола.

Но к этому времени многие теоретические идеи Френкеля уже были «в деле». Они вошли в науку, и исследователи на основе этих идей развивали различные области физики. Эта коллективная работа не прекращается и сейчас.

Научное наследие Френкеля составляет более 20 книг и около 300 статей. Точно учесть все его печатные произведения сложно.

Тем более никто не смог бы сосчитать книги и статьи, написанные в развитие идей Френкеля или в результате совместного с ним обсуждения проблем физики. Такие издания появляются и ныне. Трудно предвидеть какие-либо границы времени для развития идей этого выдающегося и разностороннего ученого.

Далеко не до конца известны «потенциальные возможности» идей и гипотез Френкеля. Возможно, что развитие трудов Френкеля другими учеными в дальнейшем приведет к расширению списка крупных открытий. Некоторые работы Френкеля спустя много лет после смерти их автора продолжают занимать важное место в теоретической физике.

Конечно, новые открытия, в основе основ которых будут лежать идеи Френкеля, не всегда воскресят в памяти его имя. Но таков закон развития науки в наши дни, когда в одной даже узкой области работают многие талантливые ученые. Жизни одного поколения ученых не хватает для решения больших проблем науки. Труд ученых не только коллективен в рамках одной генерации, а охватывает последовательно несколько поколений. Проблемы физики стали несравнимо сложнее, чем в прошлом, и быстро продолжают усложняться.

Френкелю не хватило жизни даже для выполнения собственных заранее намеченных планов, тем более что он был ученым исключительно многосторонним по своим научным интересам. Его мышление, казалось, не имело границ. Без всяких передышек и пауз ученый стремился к истолкованию самых различных физических явлений. Естественно, что наибольшую радость и удовлетворение ему доставляли работы в излюбленных им областях. Их тоже было немало — теория твердого тела и кристаллов, теория жидкостей, молекулярная физика.

Яков Ильич занимался и другими областями теоретической физики и биофизики. Высокообразованный специалист мог бы, конечно, отыскать взаимосвязь между всеми этими областями, но многим они казались далекими друг от друга. Например, в 1939 году Френкель в докладе о действии ультразвука на живые организмы указал на возможность использовать ультразвук наряду с радиоактивными излучениями для лечения раковых опухолей. Это предложение вызвало широкий отклик у медиков. Сейчас врачи и биологи, применяющие ультразвук для опытов по лечению рака, вряд ли связывают свою практику с именем Френкеля, впервые выдвинувшего эту идею. Предложение Френкеля было хорошо научно аргументировано автором и возникло в результате глубокого обдумывания теоретических основ акустики и биологических процессов, связанных с ростом клеток.

За год до этого Френкель в статье о механизме мышечной деятельности утверждал, что сокращение мышц вызывается процессом, аналогичным хорошо известному процессу вулканизации резины. При раздражении мышц происходят химические реакции с выделением ионов, которые и приводят к сокращению их. Независимо от того, насколько подобное объяснение привилось в науке, его значение очевидно уже хотя бы потому, что оно содействовало привлечению внимания физиков и химиков к биологическим процессам. Сейчас увлечение биологией захватило многих физиков и химиков, и это, как можно было ожидать, привело к значительным достижениям.

Сохранилось много писем Френкеля. Помеченные различными городами нашей страны и других стран, они как бы сочетают в себе и его научные заметки, и мемуары, и дневники. В письмах Яков Ильич отмечал свои душевные переживания, описывал встречи со многими замечательными людьми. Кажется невероятным, что ученый, постоянно испытывавший переуплотненность времени, тем не менее смог за свою не очень длинную жизнь написать такое количество писем.

Френкель обладал литературным талантом, который проявлялся в его популярных очерках и статьях, написанных для широкого читателя, в его импровизированных стихах, которые он декламировал на вечерах самодеятельности в Ленинградском политехническом институте. Стихи и многие письма Френкеля проникнуты блестящим, хотя порой несколько грустным юмором.

Жизнь Якова Ильича Френкеля и его научное творчество в высшей степени интересны и неповторимы. Как бы ни был высок уровень требований к современному ученому, Френкеля можно по праву причислить к плеяде выдающихся физиков-теоретиков XX века.

Большой талант ученого в сочетании с личными достоинствами, из которых прежде всего следует отметить принципиальность и благородство, делают Френкеля подлинно исторической личностью в науке и культуре нашей страны.

Ирен и Фредерик Жолио-Кюри

Эксперименты. Взгляды. Борьба за мир

Французские ученые Ирен и Фредерик Жолио-Кюри получили мировое признание в годы своей молодости. Им принадлежит одно из замечательных открытий, которое известно под названием «искусственная радиоактивность». Оно сделано в период необыкновенно активной работы физиков-экспериментаторов во всем мире в тридцатые годы. Как известно, эти годы богаты открытиями, создавшими реалистические основы для овладения человеком атомной энергией.

Быстро нарастающий поток экспериментальных открытий во многих странах, началом которого следует считать открытие радиоактивности, в большой мере стимулировался работами Резерфорда по расщеплению ядер. Успешно расщепив ядра многих легких элементов, Резерфорд, однако, не добился результатов, когда пытался то же самое сделать с ядрами тяжелых элементов.

То, что не удалось сделать Резерфорду, сделали Ирен и Фредерик Жолио-Кюри. Они не только открыли эффект «искусственной радиоактивности», но и создали важные предпосылки для открытия учеником Резерфорда Джеймсом Чадвиком незаряженной частицы — нейтрона. Многие считают чету Жолио-Кюри соавторами Чадвика в этом открытии исключительной важности.

Таким образом, даже этот один эпизод, правда, весьма значительный в истории науки, наглядно показывает, что физические исследования могут развиваться только при взаимных контактах, оценках, критике.

Как свидетельствует история науки, выдающиеся открытия способны возбуждать идеи и исследования неограниченно долгое время. Именно к таким работам относится совместное научное достижение супругов Ирен и Фредерика Жолио-Кюри, за которое они были удостоены в 1935 году Нобелевской премии, — явление искусственной радиоактивности.

В 1933 году на Сольвеевском конгрессе в Брюсселе, где присутствовали самые яркие звезды физики нашего столетия, доклад Жолио-Кюри об открытии искусственной радиоактивности был встречен скептически. Но Резерфорд — великий экспериментатор и мыслитель — поддержал молодых ученых. Вернувшись после конгресса из Брюсселя в Кембридж, он написал письмо в Париж, в Институт радия, в котором высоко оценил их открытие.

Ирен и Фредерик Жолио-Кюри часто приезжали в нашу страну, и многие советские физики были их друзьями.

Первый раз это произошло весной 1933 года — их пригласил в Ленинград академик А.Ф. Иоффе для участия в конференции по физике атомного ядра.

Ирен и Фредерику было тогда немногим более 30 лет, по известность, полученная ими после открытия искусственной радиоактивности, простиралась уже далеко за пределы их родины — Франции.

Спустя три года после первого посещения СССР, Ирен и Фредерик второй раз приехали в нашу страну для участия в Менделеевских чтениях, проводившихся в Москве.

В тридцатые годы интерес советских ученых к атомной и ядерной физике быстро возрастал. В Ленинградском физико-техническом институте приступили к организации исследований в этих областях и к подготовке специалистов-атомников. Многие научные сотрудники института, ранее изучавшие свойства полупроводников и диэлектриков, а также занимавшиеся различными вопросами молекулярной физики, выразили желание переключиться на экспериментальную работу в области атомной и ядерной физики. Среди них оказались, например, будущие академики: И.В. Курчатов, А.П. Александров, Ю.Б. Харитон, И.К. Кикоин, Л.А. Арцимович, Г.Н. Флеров, Я.Б. Зельдович, А.И. Алиханов, И.Я. Померанчук.

Многие из них приехали в Москву для участия в первых Менделеевских чтениях. Здесь присутствовали и зарубежные знаменитости из мира физики и химии. Симпозиум состоялся в Московском Доме ученых на Кропоткинской улице.

В день открытия академик А.Ф. Иоффе представил аудитории французских исследователей. Он сказал, что открытие искусственной радиоактивности супругами Ирен и Фредериком Жолио-Кюри привело к созданию большого числа «новых атомов», которые были не известны Д.И. Менделееву. «Искусственная радиоактивность дала, таким образом, новый смысл системе Менделеева, — заключил А.Ф. Иоффе, — как системе всех возможных устойчивых атомных ядер. Нельзя было выбрать лучшего автора для первого чтения, связанного с именем Менделеева, чем Фредерик Жолио».

Доклад делал Фредерик Жолио-Кюри. Он подробно рассказал об опытах по облучению алюминия альфа-частицами полониевого излучателя и о последующем развитии экспериментальных работ вплоть до получения различных искусственных радиоактивных изотопов в чистом виде. Жолио-Кюри также подчеркнул практическое значение открытия и в подтверждение указал, в частности, на то, что им заинтересовалась известная американская промышленная корпорация «Дженерал электрик».

В те годы в живом и остром воображении молодого французского ученого открытие искусственной радиоактивности вызывало фантастические образы, связанные с поразительной возможностью создавать и разрушать химические элементы по желанию физика. В своем докладе он сказал, что в конце концов исследователи найдут способы осуществлять превращения одних элементов в другие, превращения, имеющие взрывной характер. Здесь же Фредерик Жолио-Кюри пытался отыскать непосредственную связь между явлением искусственной радиоактивности (в результате которой некоторые элементы под действием облучения превращались в радиоактивные изотопы, не существующие в природе) и возможностью практического использования атомной энергии. Но в то время эта идея казалась далекой от осуществления. Никто, разумеется, не мог тогда предсказать, что вскоре изобретут радиоизотопные источники электрического тока (идея Ф. Жолио-Кюри сбылась через несколько лет), и эти источники будут успешно работать даже на космических аппаратах.

Самым фантастическим в докладе Фредерика Жолио-Кюри было, пожалуй, предположение, что превращения взрывного характера одних элементов в другие могут охватить все вещества, из которых состоит наша планета. Если бы такое случилось, то, по его словам, произошла бы невиданная, грандиозная катастрофа. Говоря об этом воображаемом трагическом эксперименте, молодой ученый задал вопрос: «Если когда-нибудь исследователь найдет способ вызвать такую катастрофу, то попытается ли он сделать такой опыт? Думаю, что он этот опыт осуществит, так как исследователь пытлив и любит риск неизведанного».

Ирен и Фредерик Жолио-Кюри, точно так же, как Мари и Пьер Кюри, предвидели опасность использования научных открытий в качестве мощного средства разрушения. Фредерик, говоря в своем докладе об исследователе, готовом пойти на все ради удовлетворения своей пытливости, разумеется, хотел предостеречь от подобного «опыта». Исходя из современного уровня научных знаний сегодня можно заключить, что катастрофа, подобная описанной Ф. Жолио-Кюри, не угрожает нашей планете, но зато существуют другие серьезные опасности, связанные с созданием атомного оружия.

В 1937 году автору этой книги посчастливилось встретиться с Фредериком и Ирен Жолио-Кюри. По заданию редакции журнала «Техника — молодежи» я задал им несколько вопросов, касающихся их открытия и его практического использования.

В моей статье «Искусственная радиоактивность», напечатанной в журнале «Техника — молодежи» после интервью (№2, 1937), было рассказано о нарисованной Фредериком Жолио-Кюри воображаемой картине уничтожения планеты в результате эксперимента «пытливого исследователя». Редакция сочла нужным снабдить статью следующим примечанием: «Мы не разделяем опасений Фредерика Жолио-Кюри о возможности подобной катастрофы. Разрушение элементов в таком грандиозном масштабе будет непосильно какому-либо маньяку-одиночке, который не остановится перед тем, чтобы взорвать мир из своей лаборатории. Такие работы теперь не составляют тайны одиноких исследователей, а ведутся коллективами научных учреждений в различных странах. Задача будущей науки и техники и заключается в том, чтобы найти способы, как „обуздать“ и использовать колоссальную атомную энергию».

Статья опубликована всего за три года до того, как были полностью засекречены все научные работы, связанные прямо или косвенно с проблемами использования атомной энергии, и в связи с этим исчезли со страниц научной печати статьи по этим вопросам. Исследования, о которых идет речь, действительно выполнялись не учеными-одиночками и поэтому не составляли секрета отдельных людей. Они стали объектом действий научных коллективов и являлись отныне государственной тайной.

В 1945 году люди всего мира стали свидетелями катастрофы, вызванной атомной энергией. Над густонаселенными городами Японии Хиросимой и Нагасаки взорвались атомные бомбы, что привело к гибели сотен тысяч людей и колоссальным разрушениям. Это отнюдь не был опыт, поставленный «пытливым исследователем». Фредерик Жолио-Кюри без колебаний присоединился к армии активных борцов за мир, против зловещего атомного оружия, угрожавшего народам.

На протяжении всей своей научной деятельности Ирен и Фредерик Жолио-Кюри проявляли большой интерес к работам советских ученых-физиков и поддерживали с ними личные контакты. Они хорошо знали Д.В. Скобельцына, который долгое время работал под руководством Мари Кюри в Институте радия в Париже, академика А.Ф. Иоффе, приезжавшего несколько раз к Мари Кюри и участвовавшего в Сольвеевских конгрессах в Брюсселе, члена-корреспондента АН СССР Я.И. Френкеля, который посетил Институт радия и обсуждал с Жолио-Кюри некоторые вопросы теоретической ядерной физики.

В 1937 году супруги Жолио-Кюри вновь побывали в Ленинграде и посетили Физико-технический институт. Они особенно интересовались лабораториями И.В. Курчатова и Д.В. Скобельцына, где с 1930 года проводились исследования по ядерной физике. Они присутствовали на теоретическом семинаре по ядерной физике, руководимом Я.И. Френкелем, обсуждали некоторые проблемы с ним и с Л.Д. Ландау.

Вскоре после описанных событий в печати появились фундаментальные теоретические работы Я.И. Френкеля о статистической модели ядра и по электрокапиллярному делению ядер медленными нейтронами, работа Я.Б. Зельдовича и Ю.Б. Харитона, в которой было показано, что при одном акте деления ядра выделяется больше двух «вторичных» нейтронов. Последняя работа по времени почти совпала с экспериментальным установлением этого важного факта в работах Жолио-Кюри и Ферми.

Наиболее важные открытия были сделаны Ирен и Фредериком совместно.

Ирен Кюри родилась в Париже 12 сентября 1897 года. Рождение дочери было настоящим праздником для Мари и Пьера Кюри, и на некоторое время даже их работа отодвинулась на второй план. Судя по воспоминаниям, мать и отец нежно заботились о ребенке, разделяя, насколько можно было, эти заботы между собой.

Пьер Кюри много времени уделял подросшей девочке, которая проявляла необычную для своего возраста любознательность и умственно развивалась быстрее своих сверстниц. Вот что об этом писала Мари Кюри: «Наша старшая дочь, подрастая, стала маленькой подругой отца, который очень интересовался ее воспитанием и охотно гулял с ней в свободные минуты, особенно в дни каникул. Он вел с ней серьезные разговоры, отвечал на все ее вопросы и радовался быстрому развитию ее юного ума».

После смерти Пьера Кюри семья жила вместе с дедом — доктором Эженом Кюри, пережившим сына на четыре года. В дальнейшем воспитание Ирен и младшей дочери Евы легло целиком на плечи Мари.

Ева Кюри — впоследствии журналистка и писательница — в своей известной книге о Мари Кюри отмечала, что в результате влияния Эжена Кюри и матери у Ирен выработалась духовная уравновешенность, неприязнь к унынию, антиклерикализм, отвращение к насилию, левые политические убеждения.

Первоначальное образование Ирен и Ева получили под руководством матери. Мари Кюри и ее коллеги по университету организовали для своих детей необычную школу, которую посещало около десяти учеников и учениц. Физику в этой школе преподавала сама Мари Кюри, занятия она проводила в Парижской школе промышленной физики и химии, где в то время работала. Учителем химии был Жан Перрен; дети приходили на его уроки в Сорбонну. Математику преподавал Поль Ланжевен. Детей обучали также истории, литературе, иностранным языкам, рисованию, шитью. Вместе с Ирен обучались сын Жана Перрена — Франциск, впоследствии известный физик-атомник и верховный комиссар Франции по атомной энергии, сменивший на этом посту Фредерика Жолио-Кюри, и сын Поля Ланжевена — Жан, ставший также известным физиком. Мари Кюри уделяла большое внимание и спортивному воспитанию своих дочерей.



Поделиться книгой:

На главную
Назад