И что конечный аргумент (т.е. такой аргумент, с которым уже разобрались и покончили) может вновь быть выставлен в последующих дебатах.
И что полемика может возникнуть по любому вопросу и на любом удалении от этого вопроса.
Люди, делящие поровну одно (кварту пива), равны (обыкновенно) один другому.
Люди, отвечающие двумя на одно (слово), равны самому чёрту.
Существуют следующие приёмы голосования [33].
Alternando (
Invertendo (поворачивая вспять), как поступил мистер***, который проделал весь долгий путь от Эдинбурга, чтобы проголосовать, а в результате подал чистый бюллетень и, довольный собой, отправился восвояси.
Componendo (совокупляя), как в случае с мистером***, чьё имя значилось в бюллетенях избирательных комиссий обеих партий сразу, так что голоса он получал от всех подряд и весь день.
Dividendo (
Convertendo (обращая), удивительный пример чему явили господа*** и ***: на выборах они принялись глушить друг дружку аргументами, в результате чего по истечении двух часов каждый победил и переубедил другого.
Ex Æquali in Proportione Perturbata Seu Inordinata (вследствие равенства в соотношении — волнение и беспорядок), как на тех выборах, когда результат длительный срок был одинаков и держался в равновесии по причине того, что особо рьяные первыми проголосовали за одну сторону, стремясь образовать пару тем, кто только собирался прийти голосовать за другую, а оставшиеся не успели проголосовать за первую сторону, поскольку не были допущены теми, кто уже явился проголосовать за другую: вход в здание Конвокации был перекрыт, и люди не могли ни войти, ни выйти.
Величины алгебраически представляются буквами, люди — буквоедами и т.п. Основные системы представления таковы.
1. Декартова, т. е. посредством «карт (вин)». В этой системе хорошо, иногда даже слишком откровенно, могут быть представляемы
2. Полярная, т. е. посредством 2-х полюсов [35], «Северного и Южного». Это очень неопределённая система представления, из тех, на которые нельзя с уверенностью положиться.
3. Трёхлинейная, т. е. посредством линии, проводимой сразу в 3-х различных направлениях. Такая линия обычно обозначается тремя буквами WEG [36].
Что идея Представления была известна древним, тому в изобилии имеются примеры у Фукидида, по словам которого любимым возгласом поощрения во время состязания трирем было то трогательное поминание Полярных Координат, которое всё ещё слышится во время гонок и в наши дни: «
Логически точки подразделяются на основании их Гениальности и Речистости.
Гениальность — это классификация более общего порядка и как таковая в сочетании с Отличительными Свойствами (т. е. отличиях во мнении) продуцирует Речистость. Последняя снова естественным образом подразделяется по трём рубрикам.
Точки, относящиеся к высшему порядку Гениальности, называются «компетентными», или «просвещёнными».
Дифференцирование производит на Точку замечательное действие: первая производная зачастую имеет большую влиятельность, чем исходная Точка, а вторая — меньшую просвещённость.
Например, пусть L — это Начальник, а S — Воскресенье; тогда LS — Воскресный Начальник (точка, не имеющая особенной влиятельности). Дифференцируя один раз, получаем LSD [42], влиятельную функцию большой ценности. Сходным образом можно показать, что если взять вторую производную от просвещённой Точки (иначе говоря, возвести её в степень DD [43]), то просвещённость круто понизится. Этот эффект значительно усиливается с добавлением С [44]: в этом случае просвещённость часто полностью пропадает и Точка становится консервативной.
Следует заметить, что где бы ни применялся символ L для обозначения начальника, его следует предварять знаком ± как указанием на то, что его действие иногда положительное, а иногда отрицательное: некоторые точки данного класса приобретают свойство увлекать остальных за собой (таков воинский начальник), а другие отвращать их (такова передовица “Таймс” [45]).
Дать оценку данному Экзаменатору
Оценить утраты и приобретения
Прикинуть направление проводимой линии
Конец (т. е. «произведение крайних членов») оправдывает (т. е. «приравнивается к») середину [47].
К этому Предложению в силу очевидных причин пример не прилагается.
Продолжить данный ряд
Перейдём к иллюстрации этого торопливого наброска Динамики Партийной Горячки. Предложим здесь одну замечательную Задачу, от решения которой зависит вся теория Представления, а именно: «Удалить данную Касательную от данного Круга, а взамен привести в соприкосновение с ним другую».
Чтобы решить поставленную задачу алгебраическими средствами, лучше всего представить такой круг в тангенциальных координатах, где один тангенс задают линии WEG и WH, а другой — линии WH и GH [48]. Когда этот шаг будет выполнен, станет видно, что удобнее спроецировать линию WEG в бесконечность. Полностью эту процедуру мы здесь не даём, поскольку она требует введения множества путанных детерминантов.
Удалить данную Касательную от данного Круга, а взамен привести в соприкосновение с ним другую.
Пусть UNIV будет Большим Кругом, центр которого находится в точке О (а буква V, разумеется, лежит в верхней точке окружности) [49], и пусть WGH — это треугольник, две стороны которого, WEG и WH, соприкасаются с нашим кругом, а GH (называемая свободомыслящими математиками «основанием»), с ним не соприкасается (см. фиг. 1). Требуется нарушить соприкасаемость WEG, а вместо неё привести в соприкосновение с кругом GH.
Пусть на точку I приходится наибольшая частота озаряемости по сравнению с остальной частью данного круга, тогда как на точку E — максимум просвещённости [50] по сравнению с остальной частью треугольника. (Понятно, что абсолютная величина этого максимума изменяется обратно квадрату расстояния точки Е от О.)
Пусть WH абсолютно фиксирована и всегда остаётся в контакте с кругом, и пусть также фиксировано направление OI.
Теперь, пока WEG сохраняет совершенно прямой курс, GH не имеет возможности войти в соприкосновение с кругом, но если сила озарения, действующая вдоль OI, вынудит WEG отклониться (фиг. 2), то последует её излом и поворот GH; WEG перестанет касаться круга, а GH немедленно придёт с ним в соприкосновение. Доказательство окончено.
Теория, привлечённая для решения вышепредложенной Задачи, в настоящее время вызывает много споров, и от сторонников её требуют показать, где та фиксированная
Также следует отметить, что обсуждаемый здесь излом является всецело следствием просвещённости, поскольку точки, озаряемые так часто, что и впрямь начинают сходить за φώς [53], имеют привычку держаться одна от одной подальше; и это при том, что если смотреть в корень, то ясно ведь, что
ФАКТЫ, ФАНТАЗИИ И ПРИЧУДЫ,
относящиеся к
и
Введение
Письмо под таким заголовком было опубликовано в 1866 году в Оксфорде. Мистер Голдвин Смит адресовал его старшему цензору Крайст Чёрч, имея при этом в виду двоякую цель: открыть Университету правду о громадном политическом несчастье, совершенно неожиданно на него свалившемся, и вместе с тем предложить лекарство, призванное одновременно и облегчить горечь катастрофы, и избавить пострадавших от её повторения. Несчастье, на которое указывал автор письма, заключалось ни более, ни менее как в итогах прошедших выборов в Еженедельный совет, а именно в избрании
1. «Исключение» (из Конгрегации [58]) «неакадемических элементов, которые и обеспечивают этой партии значительную часть её перевеса». Такие «элементы» далее перечисляются: это «приходское духовенство, городские жители, имеющие профессию, и капелланы не занятые академической работой».