Антонио Дуран
ИСТИНА В ПРЕДЕЛЕ.
Анализ бесконечно малых
Предисловие
Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками. Эта дисциплина зародилась в древности и развивалась очень долго. С III века до н. э., когда Архимед впервые использовал бесконечно малые величины для вычисления площади, до эпохи Ньютона и Лейбница, которые придали окончательный вид анализу бесконечно малых, прошло почти две тысячи лет. Но лишь спустя еще полтора столетия Коши и Вейерштрасс «приручили» бесконечно малые величины, найдя им адекватное логическое объяснение.
Если оставить мистические свойства бесконечности в стороне, то анализ бесконечно малых в том виде, в каком он существует сегодня, образован двумя внешне различными направлениями: дифференциальным исчислением, в основе которого лежит понятие производной, и интегральным исчислением. Их объединяет основная теорема анализа, согласно которой дифференцирование и интегрирование являются взаимно обратными операциями.
Анализ бесконечно малых находит очень широкое применение ввиду того, что производные и интегралы используются во множестве областей математики, физики, техники, экономики и других наук.
К примеру, производная — это фундаментальное понятие физики, так как ему соответствуют такие понятия, как мгновенная скорость и мгновенное ускорение, а следовательно, и понятие силы. Неудивительно, что большинство физических законов выражены в виде дифференциальных уравнений, где производные используются наравне с обычными функциями. Приведем еще один из множества примеров, показывающих, насколько разными способами может применяться анализ бесконечно малых. Кому из нас, привыкших к современному медицинскому оборудованию, не делали магнитно-резонансную томографию (МРТ)? Когда волна проходит сквозь наше тело, ее поведение можно описать интегралом, значение которого равно разности интенсивности волны на входе и выходе из нашего организма. Аппарат «угадывает», что находится внутри нашего тела, на основании значений всех этих интегралов.
Современная физика родилась во времена Ньютона, который, помимо прочего, был создателем анализа бесконечно малых. Это совпадение не случайно: по словам самого Ньютона, идеи, которые окончательно оформились с открытием его метода исчисления, родились одновременно с первыми представлениями о гравитации. Первая, рудиментарная версия анализа бесконечно малых должна была помочь Ньютону на основе законов Кеплера о движении планет вывести закон гравитации, согласно которому сила притяжения тел обратно пропорциональна квадрату расстояния между ними.
Нечто подобное произошло, когда новая версия анализа бесконечно малых была создана усилиями Лейбница. Вскоре после того как в 1684 и 1686 году были опубликованы две его статьи, в которых излагались основы нового исчисления, оно было успешно применено для решения множества разнообразных задач механики, которые до этого не могли решить даже гениальные Леонардо да Винчи и Галилей. Речь идет о задаче о цепной линии, задаче о брахистохроне и некоторых других.
Об анализе бесконечно малых и его удивительной истории и пойдет речь в этой книге.
Глава 1.
Что такое анализ бесконечно малых и для чего он нужен
Анализ бесконечно малых — это область математики, которая имеет огромное значение для науки и техники. Чтобы понять, из чего состоит эта сложная и тонкая дисциплина, наверное, следует начать с рассказа о задачах, которые решаются с ее помощью. Так читатель сможет понять, насколько важен и широко распространен анализ бесконечно малых в современной науке и технике.
Эти задачи могут существенно различаться между собой. Так, к ним относятся физическая задача на определение скорости тела при известном пройденном расстоянии и обратная ей задача, в которой нужно рассчитать пройденный телом путь, зная его скорость. С помощью этого же анализа решаются задачи, в которых требуется, например, вычислить скорость автомобиля, зная силу тяги его двигателя, или определить положение гитарной струны после того, как за нее потянули.
Также существуют и геометрические задачи, в частности о расчете угла наклона касательной, длины кривой или площади криволинейной фигуры. Многие задачи, решаемые с помощью бесконечно малых, лежат на стыке физики и инженерного дела, например, задача об определении центра тяжести тела (что крайне важно при постройке кораблей), о вычислении положения кабеля, висящего между двумя столбами (эта задача решается при прокладке воздушных линий электропередачи), о расчете распределения температуры на различных участках нагреваемой металлической пластины, об определении движения жидкостей (эта задача играет большую роль в авиационной промышленности и других отраслях) и многие другие. Этот список можно продолжать практически бесконечно.
Именно бесконечно малые величины являются основным предметом изучения анализа бесконечно малых. Понятие бесконечности придает анализу бесконечно малых удивительную мощь, подчас граничащую с волшебством. Бесконечность — это основа математического анализа, но чтобы осознать, насколько велика ее роль, сначала следует уделить несколько абзацев основным понятиям исчисления.
Как уже говорилось в предисловии, анализ бесконечно малых состоит из двух внешне различных направлений: дифференциального и интегрального исчисления, каждое из которых имеет свои понятия и методы. В дифференциальном исчислении рассматриваются задачи о вычислении угла наклона касательной к кривой и расчета скорости при известном пройденном пути. К интегральному исчислению относятся задачи о вычислении площадей и объемов, а также задачи расчета пройденного пути при известной скорости. Фундаментальным понятием дифференциального и интегрального исчисления является понятие функции.
Функции
Большинство изучаемых нами процессов, будь то природные, экономические или любые другие, можно смоделировать с помощью функций, а затем проанализировать математическими методами. Иными словами, функции — это язык, который используется в науке при изучении всех этих процессов.
Функция — это правило, сопоставляющее одному числу другое. Обычно (но не всегда) это правило выражается с помощью алгебраических операций над числами.
Так, функция может сопоставлять одному числу (обозначим его
Так как число
В частности, когда мы присваиваем переменной
при
В следующей таблице приведены несколько значений переменной и соответствующих им значений функции:
Простейшая физическая система — это движущееся тело. Его перемещение можно описать функцией s, которая сопоставляет каждому моменту времени t путь s(t), пройденный телом, или функцией
Рассмотрим конкретный пример. Если тело по истечении
Приведем еще один конкретный пример. Пусть дано тело, которое в течение t секунд двигалось со скоростью, равной
Аналогично с помощью функций можно описать совершенно разные явления: изменение курса акций определенного банка или компании на фондовой бирже, плотность каждого участка тела человека (так мы сможем определить без хирургического вмешательства, где находятся кости, мышцы и внутренние органы) или силу, с которой потоки воздуха воздействуют на крылья самолета во время полета.
Чтобы использовать анализ бесконечно малых при решении задач, сначала требуется описать задачу на языке функций.
После того как природные, физические или экономические процессы, которые мы хотим изучить, представлены в виде функций, в дело вступают фундаментальные понятия анализа бесконечно малых. С их помощью можно извлечь из функций интересующую нас информацию.
Производные
Основное понятие дифференциального исчисления — это понятие производной. В действительности это один из краеугольных камней не только математики, но и науки в целом, ведь за ним скрываются такие фундаментальные понятия, как скорость или сила в физике, угол наклона касательной к кривой в геометрии и многие другие.
Производная функции f в точке
Заметьте, что функция
Чтобы измерить эти изменения, то есть чтобы определить производную, выберем произвольное число
Продолжим рассматривать функции
Наибольшее значение этой дроби для функции
при
Однако это лишь кажущаяся неопределенность, поскольку, как показано в предыдущей таблице, для наших функций
определены и равны соответственно 0,5 для функции
Деление ноля на ноль, возникающее при определении производной, представляло трудность для ученых XVII века и их предшественников всякий раз, когда они пытались рассчитать, например, угол наклона касательной к кривой или мгновенную скорость движения тела, зная пройденный им путь.
Бесконечность, основа анализа бесконечно малых, скрывается именно в этой операции деления ноля на ноль. Как мы только что сказали, нас интересует значение дроби
при
Анализ бесконечно малых, созданный Ньютоном и Лейбницем и усовершенствованный Леонардом Эйлером (1707—1783) и другими математиками XVIII века, можно назвать искусством манипулирования бесконечно малыми величинами. Как рассказывается в следующих главах, парадоксально, но ни один из этих гениальных математиков не определил сколько-нибудь точно понятие бесконечно малой величины, которое легло в основу математического анализа.
Ньютону и Лейбницу удалось завершить работу множества их коллег — математиков XVII века и создать анализ бесконечно малых, одним из разделов которого является дифференциальное исчисление. Ньютон и Лейбниц определили простые правила, позволявшие устранять неопределенность, которая заключается в делении ноля на ноль и возникает всякий раз, когда мы хотим вычислить производную функции. Это были правила вычисления производных элементарных функций, в частности степенной:
тригонометрических функций:
логарифмов:
показательных функций:
а также правила вычисления производной для основных операции с функциями, в частности суммы:
произведения:
деления:
и для сложных функций:
Гордиевым узлом анализа бесконечно малых на протяжении XVII, XVIII и начала XIX века оставалось четкое определение того, как следует понимать значение дроби
при
Так как мгновенная скорость, с которой движется тело, является производной, то трудности при делении ноля на ноль препятствовали развитию физики, пока Ньютон не решил эту проблему, создав анализ бесконечно малых. До конца XVII века, когда был сформирован анализ бесконечно малых, ученые могли изучать только простейшие виды движения: равномерное движение, при котором пройденный путь пропорционален затраченному времени, следовательно, скорость постоянна, а ускорение отсутствует, а также равноускоренное движение, при котором пройденный путь пропорционален квадрату времени, скорость пропорциональна времени, а ускорение постоянно.
Проиллюстрируем это на примере. Рассмотрим, как и в прошлых примерах, движущееся тело, которое в момент времени t прошло расстояние в
Но что, если нас интересует не средняя скорость, а мгновенная скорость в конкретный момент времени? Чтобы упростить рассуждения, допустим, что мы хотим вычислить мгновенную скорость в тот момент, когда проходит ровно одна секунда от начала движения. Выберем приращение времени
Чтобы вычислить мгновенную скорость в первую секунду, достаточно свести приращение времени
Это происходит потому, что мгновенная скорость соответствует значению производной функции пройденного пути
В предыдущей таблице с числами указано, что значение этой производной должно равняться 0,5. Покажем, что это и в самом деле так, устранив неопределенность следующим способом:
Умножим числитель и знаменатель на √(1+h) + 1 и упростим выражение:
Если в последнем выражении свести приращение времени
Следовательно, мы устранили изначальную неопределенность, которая возникает из-за деления ноля на ноль, и получили, что если тело проходит за