• как накопительное пространство – для обособления растворимых промежуточных продуктов обмена, например, глюкозы, фруктозы, яблочной и лимонной кислот и аминокислот;
• как место для экскретов – для обособления конечных продуктов обмена, например, некоторых пигментов (красные, фиолетовые и синие антоцианы, желтые флавоны и флавонолы) или токсичных полифенолов, алкалоидов и других вторичных веществ;
• как осмотическое пространство, вакуоль играет главную роль в поглощении воды растительными клетками и в создании осмотически обусловленного тургорного давления, которое растягивает упругую клеточную стену и таким образом придает жесткость неодеревеневшим частям растения;
• как лизосомное пространство для аутофагии, в которое уже при самом образовании вакуолей поступают лизосомные ферменты из пузырьков Гольджи.
3.
Вакуоли в тканях растений
В запасающих тканях растений вместо одной центральной вакуоли часто бывает несколько вакуолей, например, жировые вакуоли с жировой эмульсией или белковые (алейроновые) вакуоли с коллоидными или кристаллоидными белками и часто глобоидами фитина (кальциево-магниевая соль эфира гексафосфорной кислоты и миоинозитола – форма накопления фосфата). Такие вакуоли называются накопительными.
Запасные белки образуются в гранулярном ЭР и через гладкий ЭР попадают в расширенные цистерны, которые становятся белковыми вакуолями. При необходимости расщепления накопленного белка белковые вакуоли превращаются в лизосомы.
4.
Параплазматические (эргастические) включения
Параплазматические (эргастические) включения – это общее название для разнородных протоплазматических включений с пограничной мембраной или без нее, состоящих из запасных веществ, экскретов или конечных продуктов метаболизма. Некоторые из них широко распространены, другие (например, пигментные гранулы или гранулы зернистых лейкоцитов) встречаются только в клетках определенного типа.
Вопрос 26. Структура и функции митохондрий
1.
Характеристика и функции митохондрий
Митохондрии и пластиды представляют собой органеллы эукариотических клеток, сходные по своим функциям, морфологии и, вероятно, происхождению. Они обладают сильно развитой системой внутренних мембран, которая образуется из их оболочки и служит для интенсивного преобразования энергии.
Структура и функции митохондрий. Митохондрии снабжают клетку энергией , которую они накапливают в форме АТФ в результате окисления органических веществ (дыхание); они осуществляют окисление жирных кислот и аминокислот, цикл лимонной кислоты, реакции цепи дыхания и окислительное фосфорилирование. К побочным функциям митохондрий относится биосинтетические процессы, в частности, синтез аминокислот (глутаминовой кислоты, цитруллина) или стероидных гормонов, а также активное накопление ионов. В клетке имеется 150—1500 митохондрий у крупных простейших – до 500000. Они отсутствуют у ряда паразитических простейших, получающих энергию неокислительным путем с помощью брожения, и в некоторых специализированных клетках, в частности в зрелых эритроцитах млекопитающих. У прокариот окислительное высвобождение энергии происходит в плазматической мембране и ее выпячиваниях, или тилакоидах.
2.
Форма митохондрий
Форма митохондрий в большинстве случаев округлая или палочковидная, реже – нитевидная. Оболочка митохондрий состоит из двух мембран толщиной чаще всего 7—10 нм. Между ними находится перимитохондриальное пространство, а внутри митохондрии располагается матрикс. Внутренняя мембрана образует многочисленные выпячивания; в большинстве случаев это листовидные кристы, у многих простейших и в некоторых клетках млекопитающих (например, в клетках, продуцирующих стероидные гормоны) – трубочки (тубулы), а у растений – часто кармановидные мешочки, которые, однако, могут быть артефактом, возникшим при фиксации крист.
3.
Наружная мембрана
Наружная мембрана (как и другие мембраны эукариотических клеток), в отличие от внутренней мембраны, содержит значительное количество холестерола, а из фосфолипидов – фосфатидиэтаноламин, много лецитина и фосфатидилинозитол, но не содержит кардиолипина. Наружная мембрана проницаема для неорганических ионов и относительно крупных молекул (с молекулярной массой менее 10000), в частности, аминокислот, АТФ, сахарозы, промежуточных продуктов дыхания. Столь высокую проницаемость можно объяснить наличием туннельных белков с широкими порами. В наружной мембране находятся ферменты обмена фосфолипидов и активации жирных кислот, а также моноаминоксидаза.
4.
Внутренняя мембрана
Внутренняя мембрана с кристами очень богата белком. Она содержит очень мало холестерола; из фосфолипидов здесь имеются фосфатидиэтаноламин, большие количества лецитина и кардиолипин, но почти нет фосфатидилинозитола. Таким образом, эта мембрана по своему составу сходна с бактериальной мембраной. Кардиолипин встречается только у прокариот – в митохондриях и пластидах.
Проницаемость внутренней мембраны очень мала, через нее могут диффундировать только небольшие молекулы (с молекулярной массой менее 100). Поэтому в ней имеются транспортные белки для активного (осуществляемого с затратой энергии) транспорта таких веществ, как глюкоза, промежуточные продукты дыхания (пируват, метаболиты цикла лимонной кислоты), аминокислоты, АТФ и АДФ, фосфаты, Ca2+.
В качестве интегральных белков во внутренней мембране и кристах находятся комплексы ферментов, участвующих в транспорте электронов (дыхательная цепь). Периферические мембранные белки – различные дегидрогеназы – окисляют субстраты дыхания, находящиеся в матриксе, и передают отнятый водород в дыхательную цепь.
Со стороны матрикса на внутренней мембране и кристах с помощью электронного микроскопа можно видеть грибовидные мембранные АТФазы («элементарные частицы»).
Матрикс содержит промежуточные продукты обмена и некоторые ферменты цикла лимонной кислоты и окисления жирных кислот. Остальные ферменты, участвующие в этих процессах, являются периферическими белками внутренней мембраны, так что эти процессы осуществляются вблизи мембраны. В центральной области матрикса происходит, например, карбоксилирование или декарбоксилирование пирувата в процессе дыхания; здесь протекает также большинство митохондриальных биосинтезов.
Вопрос 27. Генетическая система митохондрий
1.
Состав матрикса
Митохондрии содержат в своем матриксе ДНК, РНК (tРНК, rРНК1, rРНК2, mРНК, но не 5S– и 5,8S-РНК) и рибосомы (70S у растений) и способны к репликации ДНК, транскрипции и биосинтезу белка. ДНК свободна от гистонов и негистоновых хромосомных белков и, судя по данным исследований некоторых простейших, представляет собой двухцепочечную кольцевую молекулу. Митохондриальные гены, как и хромосомные, содержат интроны. В каждой митохондрии имеются 2–6 идентичных копий молекулы ДНК длиной 10–25 мкм у растений. В митохондриальной ДНК закодированы митохондриальные rРНК и tРНК (с иной первичной структурой, чем у цитоплазматических РНК) и некоторые белки внутренней мембраны (цитохром В, три из семи субъединиц цитохромоксидазы, некоторые полипептиды комплекса F0). Большинство митохондриальных белков кодируется в хромосомах и синтезируются на цитоплазматических рибосомах.
2.
Размножение митохондрий
Митохондрии живут только несколько дней . Они размножаются поперечным делением, но могут также развиваться из промитохондрий. Последние представляют собой очень мелкие пузырьки с плотным матриксом и двумя мембранами. В процессе их развития в результате выпячивания внутренней мембраны образуются кристы. Новые промитохондрии возникают путем деления промитохондрий и путем отпочкования от зрелых митохондрий.
Митохондриальная информация полностью сохраняется и при половом размножении. Яйцеклетки передают потомкам митохондрии или промитохондрии. При образовании спермиев у животных большое число митохондрий сливается в нити. У млекопитающих четыре такие нити закручены спирально в средней части сперматозоида.
Вопрос 28. Пластиды. Структура и функции хлоропластов
1.
Хлоропласты
Эмбриональные клетки содержат бесцветные пропластиды . В зависимости от типа ткани они развиваются в зеленые хлоропласты или в производные от них и филогенетически более поздние формы пластид – в желтые или красные хромопласты или в бесцветные лейкопласты.
Функция хлоропластов – фотосинтез, т. е. преобразование энергии света в химическую энергию органических веществ, прежде всего углеводов, которые эти пластиды синтезируют из бедных энергией веществ – из СО2 и Н2О.
Хлоропласты имеются в клетках высших растений, находящихся на свету, – в листьях, около поверхности стебля и в молодых плодах (реже в эпидермисе и в венчике цветка). Эти клетки бывают зелеными, если зеленый цвет не маскируется другими пигментами хлоропластов (у красных и бурых водорослей) или клеточного сока (у лесного бука). Пигмент хлоропластов поглощает свет для осуществления фотосинтеза. Это в основном хлорофилл. У высших растений и зеленых водорослей 70 % пигмента приходится на хлорофилл А (сине-зеленый), а 30 % – на хлорофилл В (желто-зеленый; хлорофилл С, D и E встречается у других групп водорослей. Кроме того, все хлоропласты содержат каротиноиды: оранжево-красные каротины (углеводороды) и желтые (реже красные) ксантофиллы (окисленные каротины). У красных и синезеленых водорослей встречаются также фикобилипротеиды: голубой фикоцианин и красный фикоэритрин. У бурых водорослей хлоропласты окрашены в коричневый цвет благодаря ксантофиллу фикоксантину (феопласты), а у красных водорослей – в красный благодаря фикоэритрину и фикоцианину (родопласты).
Клетки водорослей содержат один или несколько хлоропластов различной формы. В клетках высших растений, как и у некоторых водорослей, имеется около 10—200 чечевицеобразных хлоропластов величиной всего лишь 3—10 мкм. Оболочка хлоропласта, состоящая из двух мембран, окружает бесцветную строму, которая пронизана множеством плоских замкнутых мембранных карманов (цистерн) – тилакоидов, окрашенных в зеленый цвет.
2.
Прокариоты
Прокариоты не имеют хлоропластов, но у них есть многочисленные тилакоиды, ограниченные плазматической мембраной. У фотосинтезирующих бактерий они трубчатые или пластинчатые либо имеют форму пузырьков или долек. У синезеленых водорослей тилакоиды представляют собой уплощенные цистерны, образующие сферическую систему или расположенные параллельно друг другу либо располагающиеся беспорядочно. В эукариотических растительных клетках тилакоиды образуются из складок внутренней мембраны хлоропласта. Хлоропласты от края до края пронизаны длинными тилакоидами стромы, вокруг которых в мелких чечевицеобразных хлоропластах (и только в них) группируются плотно упакованные и короткие тилакоиды гран. Стопки таких тилакоидов гран видны в световом микроскопе как зеленые граны величиной 0,3–0,5 мкм.
3.
Тилакоидные мембраны
Между гранами тилакоиды стромы сетевидно переплетены. Тилакоиды гран образуются из накладывающихся друг на друга выростов стромальных тилакоидов. При этом внутренние ( интрацистернальные) пространства многих или всех тилакоидов остаются связанными между собой.
Тилакоидные мембраны имеют толщину 7—12 нм и очень богаты белком (содержание белка – около 50 %, всего свыше 40 различных белков). В мембранах тилакоидов осуществляется та часть реакций фотосинтеза, с которой связано преобразование энергии, – так называемые световые реакции. В этих процессах участвуют две хлорофиллсодержащие фотосистемы I и II, связанные цепью транспорта электронов, и продуцирующая АТФ мембранная АТФаза.
Используя метод замораживания—скалывания , можно расщеплять мембраны тилакоидов между двумя слоями липидов. В этом случае с помощью электронного микроскопа можно видеть четыре поверхности: мембрану со стороны стромы, мембрану со стороны внутреннего пространства тилакоида, внутреннюю сторону липидного монослоя, прилегающего к строме, и внутреннюю сторону монослоя, прилегающего к внутреннему пространству. Во всех четырех случаях видна плотная упаковка белковых частиц, которые в норме пронизывают мембрану насквозь, а при расслоении мембраны вырываются из того или другого липидного слоя.
4.
Белковые комплексы
С помощью детергентов (например, дигитонина) можно выделить из тилакоидных мембран 6 различных белковых комплексов:
• I. Крупные ФСII-ССК-частицы, которые можно разделить на частицу ФСII и несколько одинаковых богатых хлорофиллом ССК-частиц (частиц светособирающего комплекса), которые «собирают» кванты света и передают их энергию частице ФСII,
• II. Частицы ФСI,
• III. Частицы с компонентами цепи транспорта электронов (в частности, цитохромами), оптически неотличимые от ФСI,
• IV. CF0 – закрепленная в мембране часть мембранной АТФазы величиной 2–8 нм; она, как и все названные выше частицы, представляет собой гидрофобный интегральный белок мембраны,
• V. CF1 – периферическая и легко отделяемая гидрофильная «головка» мембранной АТФазы. Комплекс CF0—CF1 действует так же, как F0—F1 в митохондриях,
• VI. Периферический, гидрофильный , очень слабо связанный фермент рибулозобисфосфат-карбоксилаза, в функциональном отношении принадлежащий строме.
ФСII-ССК находится в основном в тех местах, где мембраны соприкасаются с соседним тилакоидом, а CF0—CF1 – только там, где они не соприкасаются. Молекулы хлорофилла содержатся в частицах ФСI, ФСII и ССК. Они амфипатические, с гидрофильным дисковидным порфириновым кольцом и гидрофобным остатком фитола. Вероятно, порфириновые кольца лежат на поверхности мембраны (в строме, во внутреннем пространстве тилакоида или с обеих сторон), а фитольные остатки – в гидрофобных белковых частицах.
5.
Биохимический синтез в строме хлоропластов
В строме хлоропластов осуществляются процессы биохимического синтеза (фотосинтеза), в результате которых откладываются зерна крахмала (продукт фотосинтеза), пластоглобулы и кристаллы железосодержащего белка фитоферритина (накопление железа). Пластоглобулы состоят из липидов (главным образом гликолипидов) и накапливают хиноны: пластохинон, филлохинон (витамин К1) и токоферилхинон (витамин Е).
Вопрос 29. Генетическая система пластид
1.
Белковый состав стромы
В строме находятся ДНК, mРНК, tРНК, rРНК1, rРНК2, 5S-РНК и 70S-рибосомы. Как и в митохондриях, молекула ДНК замкнута в кольцо, несет гены с интронами и свободна от гистонов и негистоновых хромосомных белков. Имеется от 3 до 30 идентичных копий ДНК на каждый хлоропласт. Молекулы длиннее, чем в митохондриях (40–45, иногда до 160 мкм) и содержат больше информации : ДНК кодирует rРНК и tРНК, ДНК– и РНК-полимеразу, некоторые белки рибосом, а также комплексы CF0 и CF1, пластидные цитохромы и большинство ферментов теленового процесса фотосинтеза . Однако большая часть белков пластид кодируется в хромосомах.
2.
Характеристика лейкопласт
Лейкопласты – это бесцветные пластиды округлой, яйцевидной или веретенообразной формы в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Они содержат ДНК, зерна крахмала, пластоглобулы, единичные тилакоиды и пластидный центр.
Образование тилакоидов и хлорофилла чаще всего либо генетически подавлено (корни, эпидермис), либо тормозится отсутствием света (например, у картофеля: на свету лейкопласты зеленеют и превращаются в хлоропласты). Пластидные центры (проламеллярные тельца) состоят из скопления пузырьков или из сети разветвленных трубочек.
Лейкопласты в узком смысле неактивны и обычно имеют небольшие размеры (например, в ситовидных трубках, в эпидермисе). Чаще встречаются аминопласты, образующие крахмал из глюкозы и накапливающие его главным образом в запасающих органах (клубнях, корневищах, эпидермисе и т. п.).
3.
Пигменты
Хлоропласты являются причиной желтой, оранжевой и красной окраски многих цветков, плодов и некоторых корней. Они бывают округлыми, многогранными, чечевицеобразными, веретеновидными или кристаллоподобными, содержат пластоглобулы (часто в большом количестве), крахмальные зерна и белковые кристаллоиды, не имеют пластидного центра. Тилакоидов в них мало или совсем нет.
Пигменты – свыше 50 видов каротиноидов (например, виолоксантин у анютиных глазок, ликопин в помидорах, бета-каротин в моркови) – локализуются в пластоглобулах, трубчатых или нитевидных белковых структурах или образуют кристаллы.
Хромопласты первично нефункциональны. Их вторичная роль состоит в том, что они создают зрительную приманку для животных и тем самым способствуют опылению цветков и распространению плодов и семян.
Вопрос 30. Развитие пластид
1.
Характеристика пластид
Незрелые пластиды (пропластиды) имеют неправильную форму, окружены двумя мембранами и способны к амебоидному движению. Наиболее молодые пропластиды (до 50 нм) не имеют внутренних структур. В процессе развития они увеличиваются в размерах (до 1 мкм), синтезируют крахмальные зерна и кристаллы фитоферритина, в них образуются трубчатые или листовидные выпячивания внутренней мембраны.
2.
Влияние света на синтез
Для превращения пропластид в хлоропласты необходим свет. При синтезе белка, хлорофилла и липидов из выпячиваний мембраны в результате образования все новых складок и выростов, их перемещения и упаковки возникают тилакоиды стромы и гран.
В темноте процессы синтеза и формирование мембран прерываются . Образуется небольшое количество протохлорофиллида (предшественника хлорофилла), из выпячиваний мембран создается большей частью сетевидный пластидный центр , из пропластиды возникает лейкопластоподобный лишенный крахмала каротинсодержащий этиопласт. При освещении из протохлорофиллида образуется хлорофилл, а из пластидного центра – тилакоиды, и этиопласт превращается в хлоропласт.
Возникновение лейкопластов сходно с образованием этиопластов. Из хлоропластов часто формируются хромопласты (созревание плодов – помидоров, лимонов и т. п., изменение цвета листьев осенью). Тилакоиды и хлорофилл разрушаются, освобождающиеся и вновь синтезируемые каротиноиды откладываются в уже существующих или новых глобулах или в различных белковых структурах.
3.
Размножение пластид
Размножение пластид связано с репликацией ДНК и последующим делением пропластиды или хлоропласта надвое. Деление хлоропластов у многих водорослей является правилом, у мхов встречается достаточно часто, у высших растений наблюдается тем реже, чем старше хлоропласт. Пропластиды не только быстро делятся, но и могут возникать путем отпочковывания от хлоропластов или перестройки целых хлоро– или лейкопластов.
При половом размножении пропластиды у одних растений передаются обеими гаметами, у других – только яйцеклеткой. В последнем случае речь идет о чисто материнском наследовании информации пластид.
Вопрос 31. Филогенез митохондрий и пластид
1.
Роль митохондрии и пластид
Митохондрии и пластиды занимают в эукариотической клетке совершенно особое положение . Они имеют собственную генетическую систему, размножаются относительно независимо от деления всей клетки и ядра и отграничены от остальной протоплазмы двойной мембраной.
Согласно гипотезе эндосимбиоза , они являются потомками прокариот, сходных с бактериями или синезелеными водорослями, которые (вероятно, в результате фагоцитоза) проникли в гетеротрофные анаэробные клетки и стали в них жить как симбионты.
2.
Явление эндоцитоза у грибов
Моделью может служить явление эндоцитоза у некоторых грибов, жгутиковых и амеб: клетки синезеленых водорослей фагоцитируются, окружаются двумя мембранами (собственной внутренней и наружной, происходящей из плазмолеммы клетки-хозяина) и сохраняют способность к фотосинтезу.