При низких температурах углеводородные остатки образуют подобие кристаллической решетки, и мембраны переходят в состояние геля. При физиологических температурах мембраны находятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вокруг своей продольной оси и диффундируют в плоскости слоя; реже перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей.
Периферические белки мембран гидрофильны, так как на поверхности их глобулярной молекулы преобладают гидрофильные аминокислоты (с полярными группами). Они относительно непрочно связаны с гидрофильными поверхностями мембран в основном электростатическими силами, т. е. ионными связями.
Интегральные мембранные белки гидрофобны (по крайней мере частично), так как на поверхности их молекул находятся главным образом гидрофобные аминокислотные остатки.
Эти белки прочно укреплены в гидрофобной толще мембраны гидрофобными взаимодействиями, а гидрофильные части молекул выступают из мембраны наружу. Некоторые интегральные белки мембран способны, как и липидные молекулы, диффундировать в плоскости мембраны, другие встроены неподвижно.
Описанная жидкостно-мозаичная модель структуры мембраны (модель Сингера) заменила принятую ранее модель Даниели (без интегральных белков).
Благодаря гидрофобным взаимодействиям мембраны способны растягиваться (расти) при включении новых молекул, а в случае разрыва образовавшиеся края могут снова смыкаться.
Мембраны полупроницаемы ; они должны обладать мельчайшими порами, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Вероятно, для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки).
Вопрос 19. Плазматическая мембрана
1.
Характеристика плазмолемм
Плазмолемма, толщина которой около 8 нм, выполняет роль барьера для диффузии веществ из клетки; это существенно и для растительных клеток, так как клеточная стенка, как правило, проницаема. Встроенные в мембрану транспортные молекулы осуществляют перенос определенных веществ. Мембранные ферменты принимают лишь ограниченное участие в метаболизме. У растений плазмолемма участвует в обмене компонентов клеточной стенки, в нервных клетках – в проведении импульсов.
При клеточном делении дочерние клетки получают плазмолемму от материнской клетки. При росте плазмолеммы (связанном с делением и ростом клеток) и при ее регенерации она образуется из пузырьков Гольджи (течение мембран).
Плазматическая мембрана животных клеток покрыта снаружи полисахаридным слоем толщиной от 10 до 20 нм – гликокаликсом. Разветвленные остатки полисахаридов ковалентно связаны с белками и сфингозинсодержащими липидами. Полисахариды состоят главным образом из галактозы, маннозы, фукозы, N-ацетилгалактозамина, N-ацетилглюкозамина и (в концевых положениях) остатков сиаловой кислоты. Сиаловыми кислотами называют N-гликозил– и N-ацетилнейраминовые кислоты; нейраминовая кислота – это циклический конденсат маннозы и пирувата.
Из компонентов гликокаликса хорошо изучен гликопротеид гликофорин в мембранах эритроцитов. Он состоит на 60 % из углеводов и несет (подобно другим гликопротеидам и гликолипидам плазматических мембран животных клеток) специфические антигены групп крови, а также участки, связывающие различные вирусы и лектины.
Карбоксильный конец полипептидной цепи выступает из мембраны с ее внутренней стороны, а с наружной стороны находится аминный конец с многочисленными сильно разветвленными боковыми цепями полисахаридов.
2.
Отличие плазматической мембраны в прокариотических клетках
Плазматическая мембрана прокариотических клеток отличается тем, что содержит в качестве интегральных белков переносчики электронов и ферменты дыхательной цепи и образует разного рода выпячивания. Некоторые выпячивания осуществляют дыхание, другие – фотосинтез и дыхание. Мезосомы бактерий представляют собой пластинчатые, трубчатые или везикулярные тельца, лежащие в карманах мембраны. Внутреннее пространство мезосом частично сообщается с внеклеточной средой. Мезосомы образуются в результате сложного складывания и слияния впяченных участков мембраны. Их функция неизвестна. Сходные структуры описаны у синезеленых водорослей и в клетках грибов (хотя последние относятся к эукариотам).
Вопрос 20. Эндоплазматический ретикулум (ЭР)
1.
Характеристика ЭР
Трубчатые или уплотненные цистерны ЭР пронизывают всю цитоплазму и окружают клеточное ядро, образуя ядерную оболочку. Пузыревидные расширения достигают 100 нм в диаметре. Многие или даже все цистерны связаны между собой и с ядерной оболочкой, а их внутреннее пространство сообщается с перинуклеарным пространством. У растений трубчатые цистерны проходят сквозь клеточную стенку в соседние клетки (десмотубулы в десмосомах).
Цистерны нельзя выделить целиком , так как при гомогенизации они разрушаются до микросом – фрагментов величиной с рибосому. Биохимический анализ ЭР проводят чаще всего на препаратах микросом.
Мембраны цистерн имеют толщину около 6 нм. Составляющие их липиды – главным образом глицерофосфатиды (90–95 %), в частности лецитин (55 %).
2.
Гранулярный ЭР
Гранулярный (шероховатый ) ЭР густо усеян полисомами, а гладкий (агранулярный) ЭР, состоящий в основном из трубчатых элементов, не связан с ними. Плотные слои цистерн гранулярного ЭР – так называемая эргастоплазма – окрашиваются основными красителями благодаря высокому содержанию нуклеиновых кислот, поэтому скопления этих цистерн видны в световой микроскоп, особенно в клетках, секретирующих белки (в слюнных железах и поджелудочной железе).
В гранулярном ЭР происходит синтез определенных белков. Рибосомы, прикрепленные своими большими субчастицами к мембране, проталкивают вновь синтезируемые полипептидные цепи в цистерны, откуда белки выводятся из клетки, чаще всего с помощью трубчатых цистерн гладкого ЭР.
3.
Гладкий ЭР
В гладком ЭР протекают различные этапы обмена углеводов, жирных кислот, жиров, терпеноидов и других веществ. Прежде всего это центр синтеза липидов и мембранных стероидов (холестерола) и тем самым начальный пункт течения мембран, т. е. образования и регенерации всей системы эндомембран и плазматической мембраны. В мышечных клетках ЭР, называемый здесь саркоплазматическим ретикулумом , обслуживает двигательную функцию.
В быстро растущих животных клетках (эмбриональных, раковых) в цитоплазме и в клеточном ядре встречаются кольчатые мембраны, сходные по структуре с ядерной оболочкой, – короткие и плоские изолированные фрагменты двойной мембраны с порами.
Цистерны ЭР могут «размножаться», синтезируя собственные структурные компоненты. Кроме того, они образуются, по-видимому, и из других мембран (например, цистерн Гольджи) или в результате слияния пузырьков, отшнуровывающихся от других частей ЭР.
Вопрос 21. Система Гольджи
1.
Характеристика системы Гольджи
Система Гольджи используется в клетке для образования роста и регенерации плазматической мембраны и для образования экскретов в самом широком смысле (прежде всего углеводов и белков).
Диктиосомы – это стопки из 3—12 дискообразных замкнутых цистерн Гольджи (диаметром в большинстве случаев до 0,2–0,5 мкм), от краев которых отшнуровываются пузырьки Гольджи с диаметром около 20 нм. Как правило, их бывает от нескольких сотен до нескольких тысяч на клетку. Более старые цистерны продырявлены; между ними могут появляться тонкие параллельные трубчатые или фибриллярные элементы.
Аппарат Гольджи в зрелых клетках позвоночных представляет собой результат слияния всех диктиосом, часто лежащий вблизи ядра, окрашивающийся и видимый в световой микроскоп. В яйцеклетках, некоторых эмбриональных клетках и во время клеточного деления еще встречаются диктиосомы, но при дифференцировке клеток они сливаются благодаря росту цистерн и их агрегации. Кроме пузырьков, в результате расширения цистерн образуются крупные вакуоли Гольджи.
2.
Синтез системы Гольджи
Система Гольджи – производное эндоплазматического ретикулума. На одной стороне стопки цистерн слияние отдельных частей ЭР (пузырьков или фрагментов) ведет к формированию новых цистерн Гольджи. По мере дальнейшего поступления веществ из ЭР с пузырьками (везикулярный поток) или через трубчатые соединения в цистернах образуется секрет и одновременно происходит перестройка мембран: тонкая (до 6 нм) мембрана ЭР превращается в более толстую (8 нм) и более плотную мембрану с иным составом липидов и белков, сходную с плазматической. Липиды поступают из гладкого ЭР, а белки – частью из гранулярного ЭР, а частью – от свободных полисом.
Зрелые цистерны на секреторной стороне стопки используются для формирования пузырьков, или вакуолей, Гольджи, заполненных секретом (у быстро работающих диктиосом весь процесс длится от 20 с до 2 мин). Пузырьки Гольджи подходят к плазматической мембране, сливаются с ней, изливают свое содержимое наружу (экзоцитоз), а их мембрана включается в плазматическую мембрану. Аналогичным образом они могут опорожняться и во внутренние компартменты, например в секреторные вакуоли у растений.
Диктиосомы образуются заново из частей ЭР, может быть, умножаются путем деления надвое; последнее весьма спорно.
Цистерны Гольджи активно извлекают моносахариды из основного вещества протоплазмы и синтезируют из них олиго– и полисахариды. У растений таким способом образуются протопектин и гемицеллюлоза для формирования клеточной стенки, реже – целлюлоза, а также полисахаридная слизь. При клеточном делении пузырьки Гольджи скапливаются на новой границе между клетками и сливаются, их содержимое образует первичную клеточную стенку, а мембраны – плазмолемму. Для последующего роста клеточной стенки новые пузырьки Гольджи путем эндоцитоза добавляют к ней свое содержимое.
3.
Диктиосомы
У животных система Гольджи синтезирует гликопротеиды и гликолипиды гликокаликса. Гликозилирование начинается в эндоплазматическом ретикулуме; полисахаридные остатки, синтезируемые далее в цистернах Гольджи, выступают во внутреннее пространство этих цистерн, а после экзоцитоза попадают на наружную поверхность плазматической мембраны.
«Экспортируемые» белки химически изменяются во внутреннем пространстве цистерн (и пузырьков) Гольджи. Они могут связываться с сахаром или сульфатом, как это происходит в слизистых клетках кишечного эпителия, или активируются в результате отщепления аминокислотных остатков (процессинг), как, например, в случае превращения проинсулина в инсулин в лангергансовых островках поджелудочной железы.
4.
Синтез пищеварительных ферментов
В секреторных клетках поджелудочной железы пищеварительные ферменты (в частности, трипсиноген) синтезируются в эргастоплазме. Они появляются там между цистернами как мелкие просекреторные гранулы, не одетые мембраной. Затем они (возможно, в вакуолях Гольджи) попадают в аппарат Гольджи и сливаются там в очень крупные (0,5–1,5 мкм) секреторные пузырьки (зимогеновые гранулы). Последние при определенной стимуляции выбрасывают свое содержимое из клетки, а их мембраны сливаются друг с другом и с плазматической мембраной. Сходным образом вырабатываются и выделяются амилаза в слюнных железах, пептидные гормоны в гипофизе, коллаген в ряде тканей млекопитающих.
Аппарат Гольджи участвует также в образовании белков молока в молочных железах, желчи в печени, веществ хрусталика, зубной эмали и т. п.
Вопрос 22. Пузырьки, эндо– и эктоцитоз
1. Эндоцитоз
Пузырьки – это округлые или овальные образования с одиночной мембраной . Они либо имеют гладкую стенку, либо покрыты снаружи волокнистой оболочкой из белка клатрина (окаймленные пузырьки).
Эндоцитоз – это образование пузырьков путем выпячивания плазматической мембраны при поглощении твердых частиц (фагоцитоз) или растворенных веществ (пиноцитоз). Возникающие при этом гладкие или окаймленные эндоцитозные пузырьки называют также фагосомами или пиносомами. Путем эндоцитоза осуществляются, во-первых , питание (яйцеклетки поглощают таким способом желточные белки, фагосомами являются пищеварительные вакуоли простейших), во-вторых, защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобулины), в-третьих, транспорт (почечные канальцы всасывают белки из первичной мочи). Избирательный эндоцитоз определенных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфическими рецепторными участками на плазматической мембране.
Материалы, попадающие в клетку путем эндоцитоза , расщепляются («перевариваются»), накапливаются (например, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза.
2.
Экзоцитоз
Экзоцитоз – процесс, противоположный эндоцитозу: различные пузырьки (например, из эндоплазматического ретикулума, аппарата Гольджи, эндоцитозные пузырьки, лизосомы) сливаются с плазматической мембраной, освобождая свое содержимое наружу. При этом мембрана пузырька может либо встраиваться в плазматическую мембрану, либо в форме пузырька возвращаться в цитоплазму. У растений экзоцитоз широко распространен; в отдельных случаях был обнаружен фагоцитоз, а пиноцитоз, по-видимому, не встречается.
Вопрос 23. Лизосомы
1.
Характеристика лизосом
Лизосомы осуществляют внутриклеточное переваривание. Это пузырьки величиной до 2 мкм, бесструктурные или содержащие полупереваренный материал. Их главный наиболее характерный фермент – кислая фосфатаза, но, кроме того, в них имеется свыше 30 ферментов, осуществляющих гидролитическое расщепление белков, нуклеиновых кислот, углеводов и липидов.
2.
Гетерофагия
Гетерофагия – это расщепление чужеродного и поглощенного путем эндоцитоза материала в гетеролизосомах (фаголизосомах), а аутофагия – расщепление в аутосомах (цитолизосомах) собственных материалов, например, запасных веществ, а также макромолекул или органелл, утративших функциональную активность. Аутолиз – самопереваривание клеток после разрушения мембран лизосом, вызванного патологическими изменениями или старением.
3.
Активность лизосом
Первичные лизосомы еще неактивны, они не содержат перевариваемого субстрата. Это чаще всего мелкие, гладкостенные, реже – окаймленные пузырьки. Они отшнуровываются от цистерн Гольджи. Ферменты образуются в гранулярном ЭР и собираются чаще всего в цистернах Гольджи. Вторичные лизосомы обладают гидролитической активностью.
Они образуются различными способами из первичных лизосом после поглощения субстрата:
• первичные лизосомы могут активно поглощать
макромолекулы из окружающей цитоплазмы (аутофагия);
• первичные лизосомы могут сливаться с эндоцитозными пузырьками (гетерофагия). Возможно повторение этого процесса – слияние вторичных лизосом с новыми эндоцитозными пузырьками, доставляющими субстрат, и с новыми первичными лизосомами, добавляющими свои ферменты;
• множество мелких лизосом могут сливаться в одну большую первичную лизосому, которая целиком захватывает клеточные органеллы или эндоцитозные пузырьки, прежде всего – пиносомы (аутофагия или гетерофагия). Вторичные лизосомы с большим числом видимых поглощенных пузырьков называют мультивезикулярными тельцами.
4.
Вторичные лизосомы
Остаточные тельца – это вторичные лизосомы, закончившие процесс переваривания. В них почти или совсем нет ферментов; они содержат лишь непереваренные остатки, т. е. негидролизуемый материал, например жирные кислоты. Остаточные тельца либо накапливаются, либо растворяются и смешиваются с цитоплазмой, либо выводятся путем экзоцитоза.
В растительных клетках широко распространены «нормальные» лизосомы (аутофагия). Кроме того, функции лизосом выполняет центральная вакуоль, содержащая кислую фосфатазу и другие лизосомные ферменты и поглощающая клеточные органеллы. Во время прорастания белковые вакуоли также играют роль лизосом.
Вопрос 24. Микротельца
1.
Их характеристика
Микротельца – это короткоживущие гладкостенные пузырьки величиной 0,1–1,5 мкм с относительно проницаемой мембраной, тонкозернистым матриксом (главный компонент – белок) и иногда с кристаллоидами белка или аморфными включениями. Их основной фермент – каталаза – встречается, по-видимому, только в микротельцах.
Микротельца образуются из расширенных и заполненных ферментом цистерн ЭР, которые отделяются от ЭР или, возможно, сохраняют с ним связь. Наиболее известны пероксисомы и гилоксисомы.
2.
Пероксисомы
Пероксисомы содержат оксидазы , образующие Н2О2; окисляемым веществом (RH2) может быть, например, мочевая кислота (в перокисомах печени) или гликолевая кислота (в пероксисомах листьев). Образующаяся Н2О2 расщепляется по каталазному или пероксидазному типу; в последнем случае окисляемым веществом может быть, например, этанол или метанол (в печени). Эти реакции используются в различных метаболических процессах, например при фотодыхании (в листьях) и при расщеплении мочевой кислоты и других пуринов в печени и почках.
3.
Гилоксисомы
Гилоксисомы – специализированные периксисомы с малатсинтазой в качестве главного фермента. Они расщепляют (как и митохондрии) жирные кислоты до ацетил-СоА, превращая последний (специфическим для гилоксисом способом) в так называемом цикле гилоксисоновой кислоты в сукцинат, который вне гилоксисом может использоваться для синтеза углеводов. Таким образом, они участвуют в образовании углеводов из жиров, ацетата или этанола (глюконеогенез). Гилоксисомы встречаются в жиронакопляющих тканях растений, а также у водорослей, грибов и некоторых простейших.
Вопрос 25. Вакуоли. Параплазматические (эргастические) включения
1.
Сократительные вакуоли
Вакуолями называют крупные пузырьки с преимущественно водным содержимым. Они образуются из пузыревидных расширений ЭР или из пузырьков Гольджи.
Сократительные ( пульсирующие) вакуоли служат для осмотической регуляции (прежде всего – у пресноводных простейших), так как в их клетки путем осмоса непрерывно проникает вода из окружающего гипотонического раствора. Эту воду, а также воду, поглощенную путем пиноцитоза, вакуоли осмотически всасывают и затем выводят наружу, периодически сокращаясь с помощью пучков эластических волокон, имеющихся в их мембране. У сложных форм происходят волнообразные сокращения центрального резервуара с выделительной порой, ведущей наружу, и лучеобразно расположенных радиальных каналов.
В эмбриональных клетках растений возникает много небольших вакуолей из пузыревидных расширений ЭР. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает большую часть объема клетки и может быть пронизана тяжами протоплазмы; такая вакуоль лишь редко отсутствует, например во многих железистых клетках. Окружающая ее мембрана – тонопласт – имеет толщину мембраны ЭР (6 нм) в отличие от более толстой, более плотной и менее проницаемой плазмолеммы. Содержимое вакуоли – клеточный сок.
2.
Центральные вакуоли, их цель
Центральная вакуоль служит различным целям: