Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Медицинская биология: конспект лекций для вузов - Жанна Анатольевна Ржевская на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

1.

Характеристика наследственности

Генетика изучает закономерности наследственности и изменчивости. Наследственность и изменчивость относятся к основным свойствам живой материи.

Наследственностью называется свойство организмов повторять в ряде поколений сходные признаки и обеспечивать специфический характер индивидуального развития в определенных условиях среды. Благодаря наследственности родители и потомки имеют сходный тип биосинтеза , определяющий сходство в химическом составе тканей, характере обмена веществ, физиологических отправлениях, морфологических признаках и других особенностях. Вследствие этого каждый вид организма воспроизводит себя из поколения в поколение.

2.

Характеристика изменчивости

Изменчивость – это явление, противоположное наследственности. Изменчивость заключается в изменении наследственных задатков, а также в вариабельности их проявлений в процессе развития организмов при взаимодействии с внешней средой.

3.

Связь наследственности и изменчивости

Наследственность и изменчивость тесно связаны с эволюцией. В процессе филогенеза органического мира эти два противоположных свойства находятся в неразрывном диалектическом единстве. Новые свойства организма появляются только благодаря изменчивости, но она лишь тогда может играть роль в эволюции, когда появившиеся изменения сохраняются в последующих поколениях, то есть наследуются.

Передача наследственных свойств осуществляется в процессе размножения. Размножение, в свою очередь, обусловлено делением клетки. При половом размножении передача наследственных свойств осуществляется через половые клетки (гаметы) – яйцеклетки и сперматозоиды.

При размножении спорообразованием единственным носителем наследственных свойств является спора, при вегетативном размножении – соматические клетки.

В гаметах, спорах и вегетативных клетках нет готовых миниатюрных органов, в них заложена только генетическая информация, обусловливающая возможность развития определенных свойств и признаков.

4.

Единицы наследственности

Элементарными единицами наследственности служат гены, представляющие собой отрезки молекулы ДНК. Каждый ген определяет последовательность аминокислот в одном из белков, что в конечном счете приводит к реализации тех или иных признаков в онтогенезе особи.

Открытие материальных носителей наследственности опровергает виталистические объяснения сущности явлений наследственности, связывающие ее с нематериальными силами.

Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, принято называть аллельными парами. Аллели одного и того же гена, детерминирующие одинаковое состояние признака, называются изоаллелями. Следует помнить, что гены не могут быть ни пурпурными, ни белыми, ни желтыми, т. е. гены – это факторы, обеспечивающие при определенных условия развитие тех или иных проявлений признаков , например цветов с белыми либо пурпурными лепестками и т. д. Если в обеих гомологичных хромосомах находятся аллельные гены , кодирующие одинаковое состояние признака (например, желтую окраску семян), то такой организм называется гомозиготным. Если же аллельные гены кодируют различные состояния признака, то такой организм носит название гетерозиготного.

5.

Фенотип

Совокупность всех наследственных факторов организма (генов) в диплоидном наборе хромосом ядра получила название генотипа. Термин «генотип» используется и в более узком смысле – для обозначения тех генов, наследование которых составляет предмет изучения.

Совокупность всех признаков и свойств организма называется фенотипом. Фенотип обусловлен генотипом, но внешняя среда, в которой реализуется генотип, может в значительной степени изменить его проявление. Даже организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Пределы, в которых в зависимости от условий среды изменяются фенотипические проявления генотипа, называются нормой реакции.

Процесс передачи наследственной информации от одного поколения к другому получил название наследования. М.Е. Лобанов отмечал, что термины «наследственность» и «наследование» неравнозначны и должны быть четко дифференцированы.

6.

Способы передачи наследственной информации

Наследственность – общее свойство живого, которое одинаково проявляется у всех организмов, обусловливает хранение и репродукцию наследственной информации, обеспечивает преемственность между поколениями. Итак, наследственность есть свойство живой материи, которое заключено в ее материальности, дискретности и целостности.

Наследование – способ передачи наследственной информации, который может изменяться в зависимости от форм размножения При бесполом размножение наследование осуществляется через вегетативные клетки и споры, чем обеспечивается большое сходство между материнскими и дочерними поколениями. При половом размножении наследование осуществляется через половые клетки. Сходство между родителями и детьми в этом случае меньше, чем в предыдущем. Но зато имеет место большая изменчивость, а следовательно, обеспечивается гораздо более богатый материал для отбора и процесса эволюции.

Итак, наследование есть способ распределения наследственной информации родительских организмов в ряду последующих поколений.

Вопрос 52. Закономерности наследования

1.

Открытие Менделя

Основные закономерности наследования были открыты Менделем . Из-за уровня развития науки своего времени Мендель не мог еще связать наследственные факторы с определенными структурами в клетке. В настоящее время установлено, что гены находятся в хромосомах, поэтому при изучении закономерностей, полученных Менделем, мы будем исходить из современных представлений на клеточном уровне. Мендель достиг успеха в своих исследованиях благодаря совершенно новому разработанному им методу, получившему название гибридологического анализа .

2.

Гибридологический анализ

Основные черты этого метода заключаются в следующем:

• I. В отличие от своих предшественников, Мендель не учитывал весь разнообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным альтернативным признакам.

• II. Был проведен обычный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений.

• III. Было прослежено не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности при самоопылении. После вторичного открытия основных законов наследования гибридологический метод нашел широкое применение в биологической науке и практике.

3.

Объект исследования Менделя

Объектом исследования Мендель избрал горох , имеющий много рас, отличающихся альтернативными признаками. Выбор объекта оказался удачным, так как наследование признаков у гороха происходит очень четко. Горох – самое опыляемое растение, поэтому у Менделя была возможность проанализировать потомство каждой особи отдельно. Прежде чем начать опыты, Мендель тщательно проверил чистосортность материала.

Все сорта гороха он высевал в течение нескольких лет и, лишь убедившись в однородности материала, приступил к экспериментам. Мендель проанализировал закономерность наследования как в тех случаях, когда родительские организмы отличались по одной альтернативной паре, так и в случаях, когда они различались по нескольким парам признаков.

Скрещивание , в котором родительские особи анализируются по одной альтернативной паре признаков, называются моногибридным, по двум признакам – дигибридным, по многим – полигибридным. Сначала следует ознакомиться со способом наследования на примере моногибридного скрещивания.

Вопрос 53. Моногибридное скрещивание. Правило единообразия гибридов первого поколения

1.

Результат опыта Менделя

В опытах Менделя при скрещивании сортов гороха, имеющих желтые и зеленые семена, все потомства (то есть гибриды первого поколения) оказалось с желтыми семенами. При этом не играло роли, какую именно окраску семян имели материнские или отцовские растения. Следовательно, оба родителя в одинаковой мере способны передавать свои признаки потомству.

Аналогичные результаты обнаружились и в других опытах, в которых во внимание принимались иные признаки. Так, при скрещивании сортов растений с гладкими и морщинистыми семенами все потомство имело гладкие семена. При скрещивании сортов растений с пурпурными и белыми цветами у всех гибридов оказались исключительно пурпурные лепестки цветов и т. д.

2.

Правила единообразия

Обнаруженная закономерность получила название правила единообразия гибридов первого поколения . Состояние признака, которое появляется в первом поколении, получило название доминантного , а не проявляющееся, подавленное состояние – рецессивного.

Наследственные факторы признаков Мендель предложил обозначать буквами латинского алфавита. Гены, относящиеся к одной паре, принято обозначать одной и той же буквой, причем аллель доминантного состояния признака обозначают прописной буквой, а рецессивного – строчной. Исходя из сказанного, аллель пурпурной окраски цветов следует обозначить, например, буквой «А», а аллель белой окраски цветов – буквой «а»; аллель желтой окраски семян – буквой «В», а аллель зеленой окраски семян – буквой «в» и т. д.

3.

Генотипическая формула

Вспомним, что каждая клетка тела имеет диплоидный набор хромосом . Все хромосомы парные, аллельные же гены находятся в гомологичных хромосомах. Следовательно, в зиготе всегда присутствуют два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двум буквами.

Особь, гомозиготную по доминантному аллелю , следует записывать как АА, а рецессивную – как аа; гетерозиготную особь записывают как Аа. Опыты показали, что рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Гены расположены в хромосомах . Следовательно, в результате мейоза гомологичные хромосомы расходятся в различные гаметы. Но так как у гомозиготы оба аллеля одинаковы, все гаметы несут одни и те же гены. Таким образом, гомозиготная особь дает один и тот же тип гамет.

4.

Схема генотипической формулы

Опыты по скрещиванию предложено записывать в виде схемы . Условились родителей обозначать как Р, особей первого поколения – F1, а особей второго поколения – F2.

Скрещивание обозначают знаком умножения (x), генотипическую формулу материнской особи записывают первой, а отцовскую – второй.

В первой строке выписывают генотипическую формулу родителей, во второй – типы их гамет, а в третьей – генотипы первого поколения. Таким образом, опыт по скрещиванию гомозиготного гороха с пурпурными цветами и гороха с белыми цветами можно записать так:

• P: AA x aa.

• Гаметы: A, Aa, a.

• F1: Aa, Аа, Аа, Аа.

Все гибриды первого поколения являются однородными – гетерозиготными по генотипу, но доминантными по фенотипу. Следовательно, первое правило Менделя, или правило единообразия первого гибридного поколения, в общем виде можно сформулировать так: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Вопрос 54. Правило расщепления

1.

Расщепление при скрещивании однородных гибридов

При скрещивании однородных гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, как и с рецессивными признаками, т. е. возникает расщепление, которое происходит в определенных частотных соотношениях.

Так, в опытах Менделя на 929 растениях второго поколения оказалось 705 растений с пурпурными цветами и 224 – с белыми. В опыте, в котором учитывалась окраска семян, из 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых и т. д. Обобщая фактический материал, Мендель пришел к выводу, что во втором поколении происходит расщепление признаков.

2.

Выводы

Таким образом, в современных терминах можно сделать следующие выводы:

• аллельные гены, находящиеся в гетерозиготном состоянии, не изменяют друг друга;

• при созревании гамет из гибридов образуется приблизительно равное число гамет с доминантными и рецессивными аллелями;

• при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.

3.

Результаты скрещивания двух гетерозигот

При скрещивании двух гетерозигот (Аа), у каждой из которых образуется два типа гамет – половина с доминантными аллелями (А) и половина с рецессивными аллелями (а), следует ожидать четыре возможных варианта. Яйцеклетка с аллелем А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелем А, так и сперматозоидом с аллелем а. Получаются зиготы АА, Аа, Аа, аа. По внешнему облику (фенотипу) особи АА и Аа неотличимы. Поэтому расщепление получается в соотношении 3:1. Однако по генотипу отношение будет таким: 1АА: 2Аа: 1аа.

Понятно, что если в дальнейшем от каждой группы особей второго поколения получать потомство лишь при самоопылении, то первая (АА) и последняя (аа) группы, являющиеся гомозиготными, будут давать только единообразное потомство без расщепления, а гетерозиготные формы будут продолжать расщепляться и дальше.

4.

Второе правило Менделя

Второе правило Менделя следует сформулировать так: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (то есть гибридов), в потомстве ожидается расщепление по фенотипу в соотношении3:1, а по генотипу – в соотношении 1:2:1.

Вопрос 55. Гипотеза «чистоты» гамет и анализирующее скрещивание. Неполное доминирование

1.

Парность отдельных генов

Аллельные гены, находясь в гетерозиготном состоянии, не сливаются, не разбавляются, не изменяют друг друга. Этот феномен несмешивания альтернативных признаков в гаметах гибридного организма вошел в науку под названием гипотезы «чистоты» гамет, предложенной Менделем

Это явление основано на парности отдельных генов . Особь, гетерозиготная по какому– либо признаку, имеет в ядрах соматических клеток в одной из гомозиготных хромосом доминантный аллель гена, а в другой – рецессивный. В результате мейоза в каждой гамете оказывается лишь одна из гомозиготных хромосом , т. е. с каким-то одним из аллелей гена: либо доминантным, либо рецессивным. Естественно, что гетерозиготная особь образует два типа гамет, причем и тех и других поровну. Таким образом, в норме гамета от второго поколения аллельной пары всегда «чиста».

О генотипе организма , проявляющего рецессивный признак, можно судить по его фенотипу. Ведь если этот организм гетерозиготный, то у него должен проявиться доминантный признак. Следовательно, если отмечается рецессивный признак, организм обязательно должен быть гомозиготным по рецессивному гену.

2.

Проявление доминантных признаков

Проявляющие доминантные признаки гомозиготные и гетерозиготные особи по фенотипу неразличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип интересующей особи по потомству. Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть установлен, скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным , значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна. Определение генотипа имеет большое значение при селекционной работе в животноводстве и растениеводстве.

3.

Неполное доминирование

В своих опытах Мендель имел дело с признаками полного доминирования , поэтому гетерозиготные особи в его опытах оказались неотличимы от доминантных гомозигот. Но в природе наряду с полным доминированием часто наблюдается неполное, т. е. гетерозиготы имеют собственный фенотип. Так, у душистого горошка известны две расы – с красными и белыми цветами. Гибриды, полученные при скрещивании этих рас, имеют промежуточную розовую окраску. Во втором поколении расщепление по фенотипу соответствует расщеплению по генотипу, то есть происходит в отношении 1 красный: 2 розовых: 1 белый.

В ряде случаев расщепление во втором поколении может отличаться от ожидаемого в связи с тем, что зиготы, содержащие определенные генотипы, оказываются нежизнеспособными. Так, при скрещивании желтых мышей с черными в потомстве появляются желтые и черные индивиды в соотношении 1:1, при скрещивании черных мышей между собой все потомство будет только черным, а при скрещивании желтых в первом поколении отмечается расщепление в соотношении 2 желтые: 1 черная.

4.

Доминантность аллельного гена

Такое странное наследование желтой окраски объясняется тем, что она обусловлена доминантным аллелем гена , но, вероятно, желтая окраска реализуется только в гетерозиготном состоянии, о чем соответствует анализ всех типов скрещиваний. Реально предположить, что гомозиготные доминантные особи погибают еще в эмбриональном состоянии.



Поделиться книгой:

На главную
Назад