Вероятность летального исхода от прямого воздействия на людей избыточного давления определяется с помощью пробит-функции:
Вероятность разрыва легких оценивается по формуле:
где
P0 — начальное давление, m — вес живого организма, кг. Нижний уровень контузии связан с повреждением органов слуха и зависит только от перепада давления в волне. Он определяется пробит-функцией:
Рг6 = 12,6 - 1,524 lnΔР . (2.24)
Существенным фактором опасности представляется разлет осколков и фрагментов оборудования и стекла. К числу объектов, потенциально опасных по осколочному фактору поражения, можно отнести работающие при повышенном давлении оборудование для хранения и транспортировки горючего, помещения и емкости для сжатых газов, химических соединений и т.д. Обычно подобное оборудование изготавливается из особых сортов сталей и при разрыве образуется сравнительно малое число осколков. Однако разлет объемных удлиненных элементов оборудования может сопровождаться истечением жидкого или газообразного рабочего тела, что придает фрагментам дополнительный импульс. При разрыве сосудов и аппаратов высокого давления, при отрыве специализированных легко сбрасываемых конструкций или разрушении вышибных мембран также образуются дискообразные элементы. Полет таких элементов определяется не только силами тяжести и инерции, но и находится под влиянием подъемной силы. Это обстоятельство заметно влияет на дальность разброса фрагментов. Массивные фрагменты способны отлетать на весьма большие расстояния от места образования (на открытом воздухе до 100 м и более) и вызывать тяжелые вторичные разрушения при столкновении с объектами промышленной и жилой застройки.
Особого внимания требует вопрос об осколочном действии разрушающихся стеклянных перегородок и окон. Как правило, газовоздушный и пылевой взрыв сопровождается разрушением остекления. Так при избыточном давлении 3 кПа будет разрушено 50 % оконных стекол. Основное значении при определении поражений имеет информация о скорости и дальности разлета стеклянных осколков. С учетом опытных данных скорость разлета осколков стекла при типичных внутрицеховых взрывах может быть оценена величиной 20 + 7 м/с [105]. Также на основе опытов считается, что масса кусков стекла после взрыва не превышает 100 г.
Для определения поражения людей осколки при авариях условно делят на две подгруппы [77, 107]:
— режущие осколки,
— ударные осколки.Режущие осколки отличаются способностью пробивать кожный покров и проникать внутрь тела. Ударные осколки не пробивают кожный покров, а наносят удар по телу, так что основной фактор поражения связан с механическим повреждением внутренних органов от соударения. Различие этих подгрупп осколков связано с их скоростью полета и формой. При некоторой скорости полета осколка V > V50 его относят к режущим осколкам, а при V < V50 к ударным. Для оценки уровня V50 в м/с можно использовать выражение
V50 = 1247 (A/m) + 22, (2.25)
где А — площадь миделевого сечения осколка, м2, m — масса осколка, кг. Вероятность тяжелых поражения людей разлетающимися режущими осколками с массой m < 0,1 кг оценивается по соотношению:
Рг7 = -29,15 + 2,1 In S7 (2.26) где S7 = m V5’115 ’ (2.27)
Вероятность тяжелых поражений персонала разлетающимися ударными осколками с массой 0,1 кг < m < 4,5 кг оценивается по соотношению
Рг8 = -17,56 + 5,3 In S8 (2.28) где S8 = 0,5m V2. ’ (2.29)
Для массивных ударных осколков при m > 4,5 кг вероятность тяжелых повреждений определяется только скоростью осколка и оценивается по соотношению
Рг9 = -13,19 + 10,54 In V. (2.30)
Как правило взрывная волна действует на человека не только через перепад давления. Вызванное скачком давления кратковременное перемещение воздуха способно отбросить человека с большой скоростью в направлении движения волны. Вероятность подобного события оценивается как:
Повреждения могут возникать либо на стадии ускорения, либо во время тормозящего удара. Степень повреждения, обусловленная тормозящим ударом, намного более значительна и определяется изменением скорости при ударе, а также временем и расстоянием, на котором происходит торможение, типом ударяющей поверхности и площадью соударения.
2.3. Пожары.
Приведем описания пожаров различных видов в терминологии работ [1,112,113]. По условиям газообмена и теплообмена с окружающей средой все пожары подразделяются на два обширных класса [114]:
— на открытом пространстве;
— в ограждениях.
Пожары на открытом пространстве условно могут быть разделены на три вида:
— распространяющиеся;
— не распространяющиеся (локальные);
— массовые.
Пожары в заграждениях бывают двух видов:
— открытые;
— закрытые.
Пожар развивается на определенной площади или в объеме и может быть условно разделен на три зоны, не имеющих, однако, четких границ:
— горения;
— теплового воздействия;
— задымления.
Зона горения занимает часть пространства, в котором протекают процессы термического разложения твердых горючих материалов или испарение жидкостей, горение газов и паров в объеме диффузионного факела пламени. Зона горения может ограничиваться ограждениями здания (сооружения), стенками различных технологических установок, аппаратов, резервуаров и т. п.
В зависимости от агрегатного состояния горючего вещества различают три вида горения:
1. гомогенное горение газов и парообразных горючих веществ в среде газообразного окислителя;
2. гетерогенное горение жидких и твердых горючих веществ в среде газообразного окислителя;
3. горение взрывчатых веществ.
По скорости распространения пламени горение, протекающее с дозвуковыми скоростями, подразделяют на ламинарное и турбулентное.
При развитии пожара в здании приток воздуха в зону горения и удаление из нее продуктов сгорания происходят через проемы. Давление продуктов сгорания в верхней части здания (помещения) больше, а в нижней части меньше давления наружного воздуха. На определенной высоте давление внутри помещения равно атмосферному, т.е. перепад давления равен нулю. Плоскость, где давление внутри здания равно атмосферному, называется плоскостью равных давлений или нейтральной зоной.
Зоной теплового воздействия называется прилегающая к зоне горения часть пространства, в пределах которого протекают процессы теплообмена между поверхностью пламени, окружающими строительными конструкциями и горючими материалами. При этом передача тепла осуществляется тремя способами:
— конвекцией;
— излучением;
— теплопроводностью.
В горящем помещении излучение является основным способом передачи тепла от поверхности пламени к окружающим поверхностям горючих материалов, внутреннего интерьера и строительных конструкций по всем направлениям до момента, когда дым становится ослабляющей световой поток средой в результате поглощения и рассеяния лучистой энергии.
На стадии развившегося пожара в зданиях конвекцией передается значительно больше теплоты, чем при пожарах на открытом пространстве. Нагретые до высокой температуры газы способны вызвать возгорание горючих материалов по пути своего движения в коридорах, лифтовых шахтах, вентиляционных каналах, лестничных пролетах и т.д.
При пожарах на открытых пространствах теплота передается окружающим объектам главным образом излучением. Несмотря на то, что доля теплоты, передаваемой конвекцией, достигает 75%, значительная ее часть передается верхним слоям атмосферы и не изменяет обстановки при пожаре.
Зоны задымления при пожаре в зданиях (сооружениях), внутри помещения и на открытых пространствах имеют свои особенности.
Внутри помещений объем зоны задымления зависит от условий распространения потоков продуктов горения и газообмена с окружением, а также от свойств горящих веществ и материалов.
На открытом пространстве объем и площадь задымления зависят главным образом от мощности источника горения, скорости выгорания материалов, разности температур окружающего воздуха и зоны горения и скорости движения газовых потоков.
Дым представляет собой дисперсную систему, твердые частицы которой, как и ядовитые газы, вредны для человека.
Опасными факторами пожара для людей являются:
— открытый огонь и искры;
— повышенная температура воздуха и предметов;
— токсичные продукты горения;
— дым;
— пониженная концентрация кислорода;
— обрушение зданий, сооружений;
— возможность взрыва.
Продолжительность пожара зависит от скорости выгорания материалов и скорости распространения пламени. Эти же величины, в свою очередь, зависят от состояния окружающей среды, которое характеризуется:
— метеорологическими параметрами (температурой, влажностью, давлением, степенью прозрачности атмосферы, скоростью и направлением приземного ветра);
— пожарной нагрузкой (горючестью, температурой самовоспламенения и воспламенения, влажностью и плотностью веществ и материалов, содержанием летучих веществ, критическим тепловым потоком, вызывающим их воспламенение или самовоспламенение от лучистой теплоты, взрывоопасностью, удельной пожарной нагрузкой и ее высотой, плотностью распределения горючих материалов по площади и в объеме);
— условиями газообмена и распространения пожара (расположением объектов горения, назначением и особенностями объемно-планировочных и конструктивных
— решений зданий и сооружений, площадью и взаимным расположением проемов, высотой помещения, расстоянием между центрами вытяжных и приточных проемов, этажностью, характеристикой имеющихся систем противодымной защиты);
— параметрами местности и застройки (рельефом и особенностями примыкающего к зданиям почвенного покрова, огнестойкостью и этажностью зданий и сооружений, противопожарными разрывами, шириной улиц, плотностью застройки, пожаро- и взрывоопасностью производств).
В качестве основных типов техногенных пожаров можно выделить [113]:
— пожар пролива или разлития;
— вспышечный пожар;
— струйный пожар;
— огневой шар.
Под пожаром пролива или разлития понимают горение пролитого вещества, испаряющегося с поверхности жидкости. Пожар разлития может иметь место при горении жидкости в резервуаре для хранения, когда резервуар остается без крышки, например в результате взрыва. При этом стенки верхней части резервуара (до уровня жидкости) могут оплавляться. В подобном случае четко определены границы и форма пожара. Пожар разлития может возникнуть также и в случае, когда горючая жидкость в результате аварии выбрасывается на поверхность земли, в водостоки или непосредственно в реки, озера или моря, где возможность распространения не ограничена. Именно так представляется ситуация при горении нефти на поверхности моря.
Вспышечным пожаром называется такой режим сгорания парового облака, при котором скорость перемещения фронта пламени значительно меньше звуковой. Он характеризуется пренебрежимо малым значением возникающего при этом избыточного давления.
Струйным пожаром является пожар такого типа, который возникает в результате горения газа и/или жидкости, вытекающих из замкнутого пространства под давлением.
Огневым шаром называют пожар, при котором масса сгорающего топлива или парового облака поднимается вверх над поверхностью земли. Подобный пожар заметно отличается от обычных пожаров. Горящий паро-газовый поток вытягивается вверх, образуя восходящее конвективное течение (вследствие чего этот тип пожара также называют конвективной колонкой). Часто в верхней части выброса возникает грибовидное облако. Конвективная колонка способна втягивать и поднимать отдельные предметы, зажигать их и разбрасывать на большие расстояния.
Помимо указанных выше типов техногенных пожаров встречаются и другие типы:
Огневой шторм образуется в результате слияния больших пожаров, возникающих в насыщенной топливом среде, в один громадный пожар. Он может сопровождаться появлением ветра ураганной силы и образованием смерчевых структур.
Анаэробный пожар — это пожар, при котором горение происходит без доступа воздуха. Он возникает в том случае, когда некоторые вещества при повышении температуры выше определенного критического уровня начинают интенсивно разлагаться с образованием окислителя. К таким веществам относятся, как правило, конденсированные взрывчатые вещества, в которых горючее и окислитель перемешаны на мольном или молекулярном уровнях.2.4. Расчеты физических характеристик пожара
а) Пожары пролива или разлития Модель пожара пролива формируется с учетом следующих факторов:
— скорость горения;
— размеры разлития;
— высота пламени;
— наклон и увеличение пламени по направлению ветра;
— мощность излучающей поверхности;
— геометрический фактор;
— атмосферная проводимость;
— тепловой поток, воспринимаемый объектом. Тепловое воздействие на окружающую природную среду при горении различных жидкостей на поверхности разлития рассматривается в работах [106, 115].
В методике МЧС [115] предложен порядок оценки последствий пожара разлития, вызванного аварийными ситуациями на объектах по хранению, переработке и транспортировке горючих жидкостей. Приведем его основные положения.
При разрушении трубопровода объем вытекшей жидкости определяется по формуле:V = 0,79 D2L , (2.33)
где D — диаметр трубопровода, м; L — длина отрезка между соседними отсека-телями, м.
При свободном растекании диаметр разлития определяется из соотношения:
где d — диаметр разлития, м; V — объем жидкости, м3. Величина теплового потока q на заданном расстоянии х от горящего разлития определяется по формуле:
q = 0,8Q0 e−0,33x , (2.35)
где Q0 — тепловой поток на поверхности факела, кВт/м2, значения которого для некоторых веществ приведены в Таблице 2.3,
х — расстояние до фронта пламени, м.
Расстояние х, на котором будет наблюдаться тепловой поток с заданной величиной q, определяется по формуле:x 33 ln(0,8 Q 0/ q) = . (2.36)
Величина индекса дозы теплового излучения I определяется из соотношения:
I = 60 q4/3 , (2.37)
Возможность воспламенения различных материалов представлена в Таблице 2.4 При величине теплового потока более 85 кВт/м2 воспламенение происходит через 3-5 с.
Таблица № 2.3. Тепловой поток на поверхности факела от горящих разлитий.
Таблица № 2.4. Тепловые потоки, вызывающие воспламенения некоторых материалов.
Методика расчета характеристик горения, предложенная в работе [106], включает следующие основные предположения и эмпирические соотношения.
1. Горение рассматривается как диффузионное (т.е. непосредственно зависящее от режима эжекции воздуха в зону горения) и происходит с открытой поверхности (в самом резервуаре при срыве перекрытия или при разлитии в пределах защитного ограждения).
2. Высота (длина — L) видимой части пламени (излучающей определенную долю тепла) определяется гидродинамическими факторами и наиболее достоверно может быть рассчитана по эмпирической формуле Томаса [116] с учетом влияния ветра на скорость сгорания, а следовательно, и на длину пламенигде m — массовая скорость выгорания с поверхности, кг · м -2 · с-1;
ра — плотность воздуха, кгкм-3;
D — эквивалентный диаметр очага горения, м;
W0 — скорость ветра, мкс-1;
рπ — плотность паров топлива при температуре поверхности раздела фаз (для кипящих сжиженных газов — температура кипения при атмосферном давлении), кг/м3.
Эмпирические коэффициенты в формулах Томаса (а1 = 55; = 0,67; с1 = -0,21) получены по результатам экспериментов, выполненных для широкого диапазона параметровприменительно к самым различным горючим жидкостям и сжиженным газам.
3. Пламя рассматривается как оптически «серый» монохроматический поверхностный излучатель.
4. При расчете внешнего излучения сложная, изменяющаяся во времени геометрическая форма пламени рассматривается как цилиндрическая поверхность с сохранением реальных значений высоты и (эквивалентного) диаметра основания пламени.
Количество теплоты q, излучаемое факелом в направлении смежного объекта или сооружения [114], рассчитывается по формуле
q = I0 ехр(-βг)ΦFΦ /(πг2), (2.40)
где I0 — интенсивность излучения факела, Вт/м2;
Р — коэффициент ослабления среды, м1;
г — расстояние от излучающей поверхности до облучаемого объекта, м;
FΦ— площадь излучающей поверхности в направлении смежного объекта, м2;
Φ — коэффициент облученности.
Интенсивность излучающей поверхности факела определяют по закону Стефана — Больцмана. Эта величина сильно зависит от температуры пламени, т.к. теплоизлучение пропорционально температуре в четвертой степени.
Для определения критических расстояний между очагом пожара и окружающими объектами необходимо знать площадь поверхности факела, обращенного в сторону облучаемой поверхности, степень черноты факела, коэффициент облученности, температуру факела, среднюю скорость сгорания материалов, а также критические тепловые потоки.
В Таблице № 2.5 с учетом различных режимов горения приведены значения критических тепловых потоков для некоторых горючих материалов.
Отметим, что площадь поверхности факела, обращенного в сторону облучаемого объекта, приближенно определяют как произведение основания факела на его высоту, делая поправку на форму (очертание) поверхности.
б) Расчет параметров пожара при возникновении огневого шара [106].
Возникновение огневого шара характеризуется совокупностью таких физических процессов, как:Таблица № 2.5.
Критические тепловые потоки, вызывающие воспламенение и самовоспламенение некоторых материалов.
— взрывное вскипание углеводородных жидкостей в резервуарах высокого давления;
— выброс содержимого резервуара в окружающее пространство с образованием быстро сгорающего аэрозольного облака (огневого шара) и ударной волны;
— разрушение сосуда и разлет его осколков.
Для возникновения огневого шара необходимы следующие предпосылки:
1. жидкость, хранящаяся в герметичном сосуде под давлением, к моменту вскипания (за счет сброса давления) должна быть «термодинамически перегретой» выше некоторого характерного предела относительно состояния насыщения при атмосферном давлении;
2. в результате аварийной разгерметизации несущего корпуса (либо неправильной работы предохранительных клапанов или разрывных мембран) должно произойти резкое падение давления над поверхностью раздела жидкой и паровой фаз.
Тепловая мощность Р сгорания огневого шара [117] массой М может быть найдена из уравнения:где QH — теплота сгорания, МДж/кг;
τ — время существования объекта, с.
Вещества, часто приводящие при авариях к образованию огневого шара, имеют теплоту сгорания QH порядка 45 — 48 МДж/кг.
Для оценки опасности огневых шаров необходимо уметь предсказывать их размер и время существования. В частности, радиус огневого шара R (м) и время его существования т (с) могут быть найдены по эмпирическим формулам работы [115].
При оценке последствий воздействия огневых шаров было принято, что в диапазоне между нижним и верхним пределами воспламенения в период существования огневого шара находится около 60% массы газа (пара) в облаке и что эта масса более 1000 кг.
Вероятность поражения людей тепловым потоком зависит от индекса дозы теплового излучения I, который определяется из соотношения:I = t(Q0R2 /Х2)4/3 (2.42)
где X — расстояние от центра огневого шара (X > R), м;
Qa — тепловой поток на поверхности огневого шара, кВт/м2, значения которого для наиболее распространенных веществ приведены в Таблице № 2.6.
Воздействия огневых шаров на здания и сооружения, не попадающие в пределы самого огневого шара, определяются наличием возгораемых веществ и величиной теплового потока q, которая определяется по формуле:q = Q0R2/X2, (2.43)
при этом время жизни огневого шара принято равным 15 с.
Таблица № 2.6. Значения теплового потока на поверхности огневых шаров различных газов диаметром более 10 м.
2.5. Методика расчета температурного режима пожара в помещении.
Пожар в помещении представляет собой сочетание специфических процессов, сопровождающихся изменением состава и параметров газовой среды, заполняющей помещение.
Основными среднеобъемными термодинамическими параметрами, характеризующими состояние газовой среды при пожаре [118, 119] являются:
среднеобъемная температура Тm, К;
среднеобъемная плотность рm, кг/м3;
среднеобъемное давление рm, Па;
средние концентрации компонентов газовой смеси xi (например, 02, СO2, СО и др.).
Газовую среду при пожаре с достаточной точностью можно рассматривать как смесь идеальных газов. Среднеобъемные термодинамические параметры состояния газа в каждой точке пространства связаны между собой уравнением Клапейрона.
Уравнения математического описания пожара, отражающие изменения среднеобъемных параметров состояния газовой среды в процессе развития пожара, выводятся с учетом основных законов физики:
— закона сохранения массы;
— закона сохранения энергии (первого закона термодинамики).
Математическое описание пожара в помещении [118, 119] включает:
усредненное уравнение состояния газовой среды (уравнение Клапейрона)где Rm — усредненная газовая постоянная;
V — объем помещения, м3;
τ — время, с;
GB — расход воздуха поступившего в помещение, кг • с1;
ψ — скорость выгорания (количество сгораемого материала, перешедшего в газообразное состояние), кг • с1;
Gg — расход газов, покинувших помещение, кг* с"1;
k — показатель адиабаты (к = Ср /Су);
QHP — теплота сгорания, кДж • кг1;
Qw —количество теплоты, ушедшее в ограждающие конструкции, кДж • с1;
iB, in, iG — энтальпия соответственно наружного воздуха, продуктов сгорания и уходящих газов, кДж • кг1;
х1У х2, х3 — среднеобъемные концентрации кислорода, рассматриваемого продукта горения и инертного газа в помещении, соответственно;
х1В, х2В, хав — концентрации кислорода (х1В ≈ 0,23), продукта горения и инертного газа в окружающей среде соответственно;
n1 = х1G / Х1 ≤ 1,
где
х1G — концентрация кислорода в уходящих газах, которая может незначительно отличаться от среднеобъемной;
η — коэффициент полноты сгорания;
L1 — масса кислорода, необходимая для сгорания единицы массы горючего материала;
n2 = х2G / Х2 ≥ 1,
где
х2G — концентрация продукта в уходящих газах;
L2 — количество продукта, образующееся в результате сгорания единичной массы вещества;
n3 = х3G/х3 — коэффициент, учитывающий различие концентраций инертного газа в уходящих газах и в помещении.
Начальными условиями для приведенных выше дифференциальных уравнений являются параметры состояния газовой среды (отмеченные индексом «0») в помещении перед пожаром. Они записываются следующим образом:
при τ = 0
Тm = Тm0
Pm = Рm0
pm = рm0
xt = xt0
Приведенные выше уравнения содержат переменные: Тm; Рm; рm; х1, х2; х3. Число неизвестных равно числу уравнений, следовательно математическое описание пожара в помещении имеет замкнутый характер.
При решении практических задач система уравнений может быть упрощена. Допускается также использование различных эмпирических зависимостей, описывающих теплообмен очага пожара со строительными конструкциями.
Расширить область применения способа моделирования позволяют зональные методы. Исследуемый объем разбивается на зоны, для которых можно использовать интегральные модели. Зоны выбираются таким образом, чтобы в пределах каждой из них газовую среду в очаге пожара можно было достаточно точно описать усредненными параметрами.
В зависимости от характера решаемой задачи для каждой из зон составляют систему уравнений математической модели. В условиях локальных пожаров используется разбиение на зоны горизонтальными плоскостями, при котором разделяются области, занимаемые продуктами горения и воздушной средой.
В условиях развитой стадии пожара и при объемных пожарах объем разбивается на зоны вертикальными плоскостями. Количество зон определяется задачами исследования и размещением пожарной нагрузки в помещении.
Моделирование температурного режима при пожаре в помещении в общем случае включает следующие основные этапы :
анализ конструктивно-планировочных характеристик помещений;
определение вида, количества и размещения пожарной нагрузки;
определение вида возможного пожара; выбор определяющих характеристик пожара; выбор метода расчета и проведение расчета; решение практических задач пожарной профилактики.
В общем случае в результате решения системы дифференциальных уравнений определяются изменения по времени развития пожара: среднеобъемной температуры; средней температуры поверхностей перекрытия, стен и пола;
теплового потока, выделяющегося при горении пожарной нагрузки;
теплового потока, поглощаемого строительными конструкциями;
теплового потока, уходящего из очага пожара с продуктами горения;
теплового потока, уходящего из очага пожара с излучением через проемы.
Эти данные являются исходными для решения практических задач по оценке пожарной опасности.2.6. Факторы рисков опасных воздействий пожаров
Тепловое излучение может вызывать у человека негативные реакции кратковременного и долгосрочного характера. Физиологическими обратимыми реакциями являются увеличение сердечного ритма, потение, повышение температуры тела. Патологические эффекты связаны с появлением ожогов вследствие воздействия теплового излучения на кожу. Термическое воздействие на человека связано с прогревом и последующими биохимическими изменениями верхних слоев кожного покрова. Человек ощущает сильную («едва переносимую») боль, когда температура верхнего слоя кожного покрова ( ~0,1 мм) повышается до 45° С. Время достижения порога боли (в сек) связанно с интенсивностью теплового воздействия (кВт/м2) зависимостью [106]:
t = (35/g)1’33, (2.50)
Степень повреждения кожи при воздействии более высоких температур зависит от величины и длительности теплового излучения. При относительно слабом тепловом излучении будет повреждаться только верхний слой (эпидермис) на глубину ~1мм. Более интенсивный тепловой поток может привести к поражению не только эпидермиса, но и дермы (нижний слой), а излучение еще большей интенсивности будет воздействовать и на подкожный слой.
Эти три уровня в целом качественно соответствуют установленным категориям ожогов 1-й, II -й и III -й степеней.
При достижении поверхностным покровом кожи температуры 55° С появляются волдыри.
Вероятность получения ожогов [106, 110] первой степени можно оценить по соотношению
Pr1 = -39,83 + 3,0186 ln(Δt q4/3). (2.51)
Вероятность достижения ожогов второй степени устанавливается по формуле
Рг2 = -43,14 + 3,0188 ln(Δt q4/3). (2.52)
Смертельный исход для людей, незащищенных специальной одеждой, наступит с вероятностью
Pr3 = -36,38 + 2,56 ln(Δt q4/3). (2.53)
Для персонала в защитной одежде вероятность летального исхода будет
Рг4 = -37,23 + 2,56 ln(Δt q4/3). (2.54)
В соотношениях (2.51 — 2.54) время действия светового импульса Δt выражается в секундах, а интенсивность теплового потока q в Вт/м2
При вспышках в форме огненного шара с учетом конечности времени действия радиусы зон ожогов первой, второй и третьей степени можно соответственно оценить как
R1t = (5,2+0,2) М5/12,
R2t = (3,7+0,2) М5/12,
R3t = (2,6+0,2) М5/12.
Кроме прямой опасности воздействия теплового излучения на кожу человека существует и опасность возгорания легковоспламеняющихся веществ, находящихся в зоне пожара, что в принципе может привести к дальнейшему разрастанию аварии и переходу ее в стадию каскадного развития. К тому же воздействие, оказываемое термическим излучением на строительные конструкции при повышении температуры выше предельных значений, приводит к значительному снижению их прочностных характеристик.2.7. Токсичные выбросы
В отличие от пожаров и взрывов разных типов, имеющих много общего в возникающих источниках загрязнения атмосферы, выбросы токсичных веществ сильно различаются как по характеру поступления рабочего тела в окружающее пространство, так и по возникающим в атмосфере источникам загрязнений, физической картине их развития, интенсивности и продолжительности.
Токсичные выбросы, в соответствии с [1], можно определить как неконтролируемое системами обеспечения безопасности объекта поступление в окружающую среду токсичного (ядовитого) вещества.
Токсичное вещество — химическое соединение, при попадании которого в организм с водой, пищей, через кожу или органы дыхания, происходит его повреждение или наступает смерть.
Рассматриваемые в данном разделе токсичные выбросы, ограниченные временем поступления веществ в атмосферу не более часа [1], связаны с типичными аварийными ситуациями и не могут вызвать профессиональных заболеваний у персонала промышленного объекта. Они могут быть подразделены на залповые и продолжительные. Залповые выбросы возникают, когда в результате аварии (как правило, взрывного характера) в атмосферу «мгновенно» или краткосрочно поступает компактная порция токсичного вещества. В зависимости от того, в какое (ограниченное или безграничное) пространство оно поступает, формируется либо гомогенный токсичный объем, либо паровой клуб или облако.
В общем случае токсичный выброс может поступать в окружающую среду в виде парогазового объема и пролива (разлития), при испарении которого возникает вторичный источник загрязнения атмосферы. Продолжительные токсичные выбросы, кроме того, могут служить источниками струй (для жидкостей и тяжелых газов), токсичных туманов, задымлений и запылений.
Рассмотрим особенности формирования и развития этих выбросов.
Паровой клуб или облако возникают при краткосрочном выходе в атмосферу легкоиспаряющегося токсиканта, плотность которого в газообразном состоянии ниже плотности атмосферного воздуха. При этом в зависимости от интенсивности высвобождения внутренней энергии рабочего тела в атмосфере формируется газообразный объем в виде клуба или термина. В случае продолжительного напорного выхода токсиканта в атмосфере возникает выброс струйного типа. Математические модели и алгоритмы нахождения физических характеристик этих объектов описаны в Главе 4 этой книги.
Если паровой клуб или облако, струя, а также гомогенный токсичный объем состоят из взрыво- или пожароопасного вещества, то их поведение в атмосфере и характеристики аварийного развития не отличаются от соответствующих характеристик выбросов горения или взрыва. Для их определения можно воспользоваться формулами предыдущих разделов.
В соответствии с [1] разлитие (пролив) — это выброс жидкости, возникающий при ее истечении из технологических установок в случаях нарушения их целостности. Причем формирование атмосферного выброса из разлития существенным образом зависит от их летучести, особенностей фазового перехода и теплофизических свойств.
Различают [1] четыре категории жидкостей. К первой относят «криогенные жидкости». Они имеют критическую* температуру ниже температуры окружающей среды и могут быть сжижены только после охлаждения с последующим сжатием.
Напомним, что при температурах больших, чем критическая, вещество не может находиться в жидком состоянии. При соответствующем этой температуре давлении имеется возможность сжижения газообразной фазы.
Примерами таких жидкостей служат сжиженный природный газ (смесь метана с другими углеводородами), атмосферные газы (азот, кислород).
Ко второй категории относятся жидкости, у которых критическая температура выше, а точка кипения ниже температуры окружающей среды. Они легко сжижаются простым сжатием и при разгерметизации сосудов частично «мгновенно» испаряются, а оставшаяся часть охлаждается до точки кипения при атмосферном давлении. При этом возникают паровые клубы или облака. Так ведут себя сжиженные нефтяные газы, пропан, бутан, аммиак, хлор и др. Эти жидкости являются газами при температуре окружающей среды и хранятся в сосудах под давлением.
К третьей категории отнесены вещества, являющиеся жидкостями при атмосферном давлении и испаряющиеся значительно медленнее, чем жидкости первых двух категорий. Их испарение определяется главным образом состоянием атмосферы (в основном ветром). Примером служит бутан, этиленоксид и другие вещества.
К четвертой категории относятся те же вещества, что и к третьей, но содержащиеся при подводе тепла и при давлениях, превышающих критическое. При разгерметизации сосудов они ведут себя как сжиженные газы (перегретый водяной пар и циклогексан).
Токсичные выбросы, возникающие из проливов жидкостей первой категории в атмосфере, представляют собой паровые клубы или облака и рассчитываются по известным [8,46,39,73] методикам.
При проливах жидкостей второй категории в случае мгновенного испарения можно получить некоторые характеристики атмосферного выброса, если предположить, что возникший парообразный объем состоит только из вещества пролива, а воздух в него не вовлекся [1]. Считается, что испаряющийся пар движется со звуковой скоростью от мгновенно испаряющейся жидкости пролива.
На практике возникший выброс будет состоять из смеси токсиканта и воздуха, кроме того, звуковая скорость не будет достигнута, и жидкость превратится в смесь пара, газа, пены и воздуха, а выбрасываемые капли при бурном процессе распада могут выходить далеко за пределы теоретически рассчитанной паровой оболочки. Корректной оценки возникающего атмосферного выброса из известных нам литературных данных не существует.
Если выброс разлития состоит из невзрывоопасного и непожароопасного вещества (жидкости третьей категории), то на месте пролива возникает локальный ареал загрязнений («лужа»). Ее конфигурация и площадь определяются теплофизическими свойствами вещества (вязкость, температура, теплота испарения), а также рельефом местности и метеоусловиями (наличие ветра, температура атмосферы, влажность и т.п.).
Токсичное воздействие такого выброса локализовано в пределах площади пролива и при условии своевременного сбора и нейтрализации загрязнений приводит к минимальному ущербу для природных сред. При большой площади разлития и определенных атмосферных условиях вещество пролива интенсивно испаряется, что может привести к токсичным туманам и выпадениям токсичных дождей.
Испарение определяется [127] как процесс перехода вещества из твердого или жидкого состояния в пар. В случае перехода из твердого состояния непосредственно в парообразное этот процесс чаще называют сублимацией. Термин испарение обычно означает все процессы парообразования, за исключением особо оговоренных случаев (например, испарение воды через ткани живых растений называют транспирацией).
Интенсивность испарения Е, по результатам исследований Дальтона [123], а затем Солднера [124], может быть описана формулами:Здесь
Еb — интенсивность испарения при точке кипения в сухом воздухе при атмосферном давлении Р (т.е. при давлении насыщенного пара при температуре точки кипения);
I*s — давление насыщенного водяного пара при температуре водной поверхности;
Iа — давление пара в воздухе.
Связь давления насыщенного водяного пара с температурой описывается формулой:I* = Р- ехр[-(250+ Тb - Т)- (Тb - Т)/ 6976],
где Тb — температура кипения при атмосферном давлении Р Дальнейшим развитием и углублением проблемы были работы Вайленмана [125]. Он выразил интенсивность испарения в виде линейной функции от средней скорости ветра и и дефицита насыщенного воздуха:
В этой формуле:
Aw и Bw — постоянные, /*а — давление насыщенного пара при температуре воздуха.
Соотношения (2.56) и (2.55а) эквивалентны лишь при равенстве температуры воздуха и воды.
Наконец, Штеллинг [126], объединяя уравнение Дальтона (2.55) и уравнение Вайленмана (2.56), получил уравнение, корректно решающее проблемуЗдесь
As и Bs — эмпирические постоянные.
Отмечается [127], что уравнение (2.57) получено эмпирическим путем, и в литературе опубликовано бесчисленное множество значений As и Bs, пригодных для разных условий. Однако эта формула не решала проблему в целом.
Дальнейшее развитие теории испарения произошло при изучении явлений переноса в газах и жидкостях. Фик [128] опытным путем обнаружил, что локальный удельный поток субстанции примеси в невозмущенной сплошной среде, являющийся результатом только молекулярного переноса, пропорционален градиенту ее концентрации. Современное развитие теория испарения получила в работах Брат-серта [121], Берлянда М.Е. [129], Будыко М.И. [130].
Для горючих и взрывающихся веществ проливов ситуация может усложниться потенциальной опасностью развития аварийной ситуации. При загорании разлития, испаряющегося с поверхности жидкости, возникает пожар разлития, характеризующийся параметрами, описываемыми в предыдущем разделе. Это относится и к нахождению физических характеристик загоревшегося парового клуба, возникшего от испарившегося пролива.
Дымления и пыления являются важными источниками поступления токсичных веществ в атмосферу в виде частиц в широком диапазоне размеров: от нескольких миллиметров до долей микрона. Аэрозольные частицы пыли и дыма в концентрациях выше предельно допустимых (ПДК) являются сильными токсикантами; кроме того, они служат центрами конденсации атмосферной влаги, приводя к образованию токсичных туманов и смогов. Естественные и антропогенные туманы, а также фотохимические смоги состоят из конденсирующихся аэрозолей, токсичность которых повышена по сравнению с сухими аналогами. Они под действием метеорологических факторов могут перемещаться на значительные расстояния.
Дымлением называется процесс образования разбавляемого воздухом объема мельчайших аэрозольных частиц в результате химических реакций неполного сгорания вещества выброса. Происходит дымление, как правило, при недостатке окислителя.
Процесс дымления на практике либо предшествует горению, либо следует после него. Выброс дымления, как и испарительный выброс, имеет нулевую начальную скорость выхода вещества и отличный от нуля начальный расход вещества.
При дымлении наряду с аэрозольными частицами, как правило, присутствуют жидкости в парообразном состоянии. Недоокисление топлива при дымлении дает химические соединения, обладающие высокой токсичностью (например, диоксин). Поэтому дымление, несмотря на его сравнительно малый вклад по времени в общий процесс горения, может дать высокие значения концентраций и доз загрязняющих и токсичных веществ в окрестности места возникновения этого выброса. Размер дымовых частиц — от 0,005 мкм до 0,5 мкм.
Пылевые частицы, определяемые как дисперсные аэрозоли [63,64], в основной своей массе имеют большие размеры. Многие процессы в промышленности, например, размол, дробление, просеивание, измельчение, шлифовка сопровождаются выделением в воздух пылевых частиц. Они также часто образуются при химических или термических процессах плавления твердых веществ, возгонке, обжиге.
Частицы пыли, находясь в воздухе рабочих помещений во взвешенном состоянии, могут попасть в организм через органы дыхания, желудочно-кишечный тракт. Они, попадая на слизистые оболочки глаз, могут вызвать конъюктивиты, заболевания кожи — различные дерматиты.
Вредное действие пыли на организм определяется ее химическим составом, размером частиц и их формой. Наибольшую опасность представляют мелкие частицы пыли размером до 5 микрон [63]. Такие частицы могут долго находиться во взвешенном состоянии и проникать глубоко в легкие. Вредное действие пыли зависит также от формы ее частиц. Наиболее вредными являются микродисперсные частицы пыли волокнистого или иглообразного строения, способные длительное время находиться в воздухе во взвешенном состоянии. Такие пылевые частицы, выделяющиеся в текстильной, асбестовой промышленности и в производствах стеклянного и минерального волокна, могут проникать глубоко в ткани легкого даже при размерах пылинок в 20-30 мкм.
Установлено, что наиболее вредными для здоровья людей являются пыли с размером пылинок от 2 до 8 микрон. Одной из особенностей пыли является чрезвычайно развитая поверхность, зависящая от величины частиц, что делает пыль значительно химически активнее, чем было твердое вещество до измельчения. Если пыль состоит из веществ, способных к окислению, то по своим свойствам воздушнопылевая смесь часто становится похожей на смесь воздуха с горючими парами, и в ряде случаев такие пылевоздушные смеси оказываются взрывоопасными. Известны случаи взрывов пыли алюминия, магния, цинка, сажи, угля, дерева, хлопка, смол и других легко окисляемых веществ. В пыли обитают плесневые грибки, микробы и пылевые клещи, являющиеся аллергенами. Остатки бытовых химикатов и металлы (в том числе такие токсичные, как свинец, кадмий, мышьяк) легко вступают в контакт с частицами и сохраняются в пыли годами.
Крупномасштабные запыления и задымления приземных слоев атмосферы могут возникать либо от местных антропогенных источников, либо доставляться воздушными потоками.Недостаточно изученной проблемой является жизненный цикл дыма в атмосфере, особенно при все возрастающих масштабах его выбросов. В начале XXI века суммарный по земному шару ввод дыма за год оценивается -200 Мт, что близко к оценкам дыма от пожаров ядерной войны. Основными источниками «мирного» дыма являются сжигания ископаемого топлива (нефть, уголь, газ), природные и антропогенные пожары. Эти дымы и условия их поступления в атмосферу отличаются от «военных» дымов рядом факторов, главным из которых является низкая интенсивность горения. В результате таких процессов большая часть дыма собирается в приземном и пограничном слоях атмосферы, т.е. в нижнем слое высотой - 1 км. Отсюда частицы дыма сравнительно быстро удаляются осадками — дождем и снегом. Благодаря тому, что ввод дыма осуществляется в разных местах и более или менее равномерно в течение года, он нигде не накапливается в количествах, которые могут заметно повлиять на термический режим атмосферы и на ее загрязненность. К тому же содержание токсичных соединений углерода в частицах дыма невелико, так как большая часть дыма образуется при сжигании древесины и других видов топлива в контролируемых условиях. Среднее по всей атмосфере время жизни частиц дыма около 10 дней. Одновременно в атмосфере находится всего примерно 5 Мт дыма, поэтому он слабо влияет на поглощение солнечного излучения и климат как отдельных регионов, так и глобально всей планеты. Однако есть все основания считать, что время жизни частиц дыма может заметно возрасти после введения больших количеств «военного» дыма. При ведении крупномасштабных боевых действий в военном конфликте с использованием современного оружия война продолжалась бы лишь несколько дней. На основе исторического опыта предполагается, что пожары в городах будут продолжаться примерно сутки и будут наиболее интенсивны в течение нескольких первых часов, а лесные пожары — в течение одной или нескольких недель. Такая скорость ввода в атмосферу дает возможность дыму накапливаться в значительных количествах даже при нормальных скоростях его выведения из атмосферы. К тому же дым от интенсивных пожаров и взрывов поднимется на значительные высоты за пределы пограничного слоя Земли. Как выше отмечалось, основным механизмом выведения аэрозоля из атмосферы является его вымывание осадками. В нормальных условиях большая часть осадков формируется в нижней половине тропосферы. Поэтому ввод больших дополнительных количеств дыма (~ 50% от его массы или более) в верхнюю половину тропосферы (выше 5 км) или даже в нижнюю стратосферу существенно увеличит среднее время жизни дыма против обычных 5 — 10 дней. Кроме того, в условиях войны следует ожидать значительного уменьшения интенсивности влагооборота, что затруднит выведение дыма осадками просто потому, что их будет меньше, и они могут формироваться в более низких слоях тропосферы. Эти простые предположения нашли свое подтверждение в численных экспериментах на моделях общей циркуляции атмосферы.
Местными источниками пыли и дыма, как правило, служат площади оголенных грунтов, карьеры горных выработок, заводы, выпускающие некоторые строительные материалы (например, цементные), металлургические производства. При авариях на них в атмосферу поступает неконтролируемое количество таких загрязнений.
Наибольшую опасность представляют задымления и запыления, привнесенные в данное место извне, так как подобное вторжение является часто совершенно неожиданным. В литературных источниках имеются сообщения о таких случаях.
Например, 19 декабря 1985 г. в Ашхабаде наблюдалась [25] пыльная мгла при нулевой видимости. В это же время такое же явление наблюдалось во многих других районах Средней Азии, удаленных друг от друга на многие сотни километров (в Чарджоуской области, городах Кушка, Сарахс и ряде других). Мгла охватила территорию размерами 250 на 600 км в направлении с юго-запада на северо-восток. Используя данные спутников и аэросиноптические карты Северного полушария, удалось установить, что в указанные районы Средней Азии были воздушными массами перенесены огромные количества пыли с Аравийского полуострова.
Предполагается, что пыль поднялась в воздух ветром, затем струйными тропосферными потоками была перенесена на тысячи км, и благодаря нисходящим воздушным потокам на северо-восточных склонах среднеазиатских гор опустилась в приземные слои атмосферы.
Аналогичная ситуация наблюдалась 8 мая 1987 г. в Якутии. Там отмечалось помутнение воздуха типа дымки и выпадение снега со специфическим запахом. Измерения показали наличие небольших концентраций фосфорорганических отравляющих веществ, которые могли быть доставлены из Ирака и восточной Турции [25]. Этот источник загрязнений был установлен после анализа спутниковой информации и данных аэросиноптических материалов.
Подобные явления задымления с последующим выпадением «грязного» снега отмечались в некоторых пунктах Магаданской области. Территория, захваченная загрязнением, имела протяженность с запада на восток на 600 км и на 150 км с севера на юг. Местные источники подобных загрязнений отсутствуют. Анализ погодных условий показал, что наиболее вероятной причиной такого задымления явился перенос продуктов сгорания древесины при лесных пожарах из Читинской области, а также погодные условия, обусловившие подъем и транспортировку загрязняющих частиц на огромные расстояния.
Подобный региональный, а иногда и глобальный перенос токсичных пылевых и дымовых частиц возможен при авариях промышленных объектов.Глава III. Турбулентные выбросы в атмосфере
Расчет турбулентных струйных течений, к которым можно отнести собственно струи, следы, термики и клубы, базируется на некоторых схемах процессов турбулентного обмена и на связях между касательными напряжениями и поперечным градиентом осредненной скорости. В простейших случаях полуэмпирические теории турбулентности Прандтля, Тейлора и др. позволяют свести задачу интегрирования системы дифференциальных уравнений движения - уравнений в частных производных — к интегрированию обыкновенного дифференциального уравнения; причем его решение получается с точностью до экспериментально определяемого множителя. Такие решения, называемые автомодельными, были впервые получены Толлмином, и они явились отправным моментом многочисленных полуэмпирических схем теории турбулентных струйных течений.
Отечественными разработчиками подобных теорий являются Абрамович Г.Н., Гиневский А.С., Вулис Л.А., Лойцанский Л.Г., Голубев В.А. и их сотрудники [91 — 95]. Ими поставлены и решены важные теоретические и экспериментальные исследования, имеющие принципиальны результаты. Использование этих теорий в расчетах струйных течений, как и в расчетах турбулентных пограничных слоев, оправдывается потребностью решения важных инженерных задач в условиях неполного знания начальных и граничных условий течений, а также тем, что их применение в большинстве случаев удовлетворительно соответствуют экспериментальным данным.
Другим инженерным подходом к решению широкого класса струйных задач является использование понятия вовлечения как некоторой диффузионной функции, интегрально учитывающей процесс взаимного проникновения вещества струи во внешнюю среду и внешней среды в поток. Такой подход развит для изотермических и нагретых газообразных объемов типа термиков или клубов.
В настоящее время существует несколько подходов к решению проблемы создания приближенной аналитической модели турбулентного газообразного объема, движущегося в атмосфере из-за разности плотности его вещества и вещества окружающей среды. Для объемов, имеющих наряду с поступательным движением, как целого, вращение относительно направления движения (термики, вихревые слои) развитие турбулентных движений описывается трехмерными уравнениями Навье-Стокса при задании коэффициентов турбулентного обмена. Решение в этом случае ищется при разложении искомых функций в ряд по малому параметру [86].
Иным решением подобных задач в приближении осесимметричного течения вещества термика или вихревого слоя является решение осредненной по объему системы уравнений Рейнольдса в приближении Буссинеска для автомодельного участка траектории выброса. Такой подход, например, развит в работах Гостинцева Ю.А.и др. [5,17, 88,89]. Изучению всплытия термика в атмосфере в приближении Буссинеска посвящена работа [6], клуба и струи работы [8,13, 29, 33,100].
Газообразные объемы при взрывных авариях, как правило, не имеют единого центра кругового движения газа. Данные о рассматриваемом объекте и окружающей среде при решении задачи движения взрывного клуба в атмосфере носят приближенный оценочный характер и не могут использоваться для детализации картины трехмерного турбулентного движения среды. Поэтому наиболее целесообразным является использование условий и допущений, упрощающих задачу и не искажающих ее физическое содержание. Такими допущениями при решении задачи формирования и движения в атмосфере техногенных выбросов являются следующие:
— выброс представляется в виде правильного геометрического тела ( сфера, эллипсоид и т.п.),
— вещество выброса и газодинамические характеристики равномерно распределены по его объему,
— центр приложения массовых сил совпадает с геометрическим центром,
— отсутствует вращательное движение вещества выброса, привязанное к единому его центру.
Для струйных потоков используется допущение о равномерных по сечению значениях макроскопических величин — таких как скорость, температура, концентрация примеси, энтальпия и т.п.
Этот подход, использующий кроме перечисленных предположений, гипотезу пропорциональности между скоростью вовлечения окружающего воздуха в клуб или струйный поток и значением вертикальной скорости его подъема, развит, например, в работах [8 — 10,38]. Он существенно упрощает процедуру расчета и при использовании экспериментальных констант вовлечения и аэродинамического сопротивления движению приводит к успешному решению задачи.3.1. Атмосферная диффузия и вовлечение окружающей среды в выброс
Диффузией называют распространение вещества в какой-либо среде в направлении убывания его концентрации, обусловленное движением его частиц: атомов, молекул, ионов, броуновских частиц или отдельных элементарных газовых объемов — молей. При ламинарной диффузии вещество распространяется механизмом теплового движения мельчайших частиц на атомно-молекулярном уровне; при турбулентной — этот процесс происходит под влиянием вихревого беспорядочного движения отдельных макроскопических частиц и образований по сложным непредсказуемым траекториям.
Для инженерных расчетов и оценок большой интерес представляют турбулентные движения газообразной и жидкой среды, так как они реализуются в абсолютном большинстве практических задач.
В отличие от ламинарного плавного движения при турбулентном движении среды происходит интенсивное ее перемешивание, и диффузия в ней многократно усиливается. В настоящее время имеются десятки теорий турбулентности и вероятно не меньше объяснений механизма диффузии, хорошо «работающих» в частных случаях, но не являющихся логически завершенными и универсальными. В работе [50] отмечается, что в окончательном виде проблема турбулентной диффузии еще не сформулирована в окончательном виде как единая физическая модель, способная объяснить все ее многообразные аспекты.
К сегодняшнему дню к проблеме диффузии имеются два основных подхода, на базе которых ответвляются более мелкие и частные: теория градиентного переноса и статистическая теория. Согласно теории градиентного переноса диффузия от источника связана с локальным градиентом концентрации его вещества; статистическая теория рассматривает движение частиц как составную часть сплошной среды. Между этими подходами существует близкая связь, так как они описывают одно и то же явление с разных сторон, но имеются и различия.
Теория градиентного переноса от непрерывного точечного источника в атмосфере является эйлеровой — рассматривающей свойства движения жидкости или газа относительно зафиксированной в пространстве системы координат. Статистическая же теория, рассматривающая движение отдельных частиц, является лагранжевой.
Особое место занимают задачи распространения антропогенных выбросов в виде различных струйных течений разной продолжительности, интенсивности и концентрации загрязнений. Диффузия таких выбросов может рассматриваться на основе теории струй, развитой, например, в работах [ 91-95]. Описание таких течений с помощью системы дифференциальных уравнений связано с трудностями вычислительного характера. Кроме того, в ряде важных конкретных задач этого рода не удается учесть сложные граничные условия и сильное влияние таких эффектов реальной атмосферы, как дальнодействие пульсаций давления, значительная перемежаемость турбулентного потока, неоднородность и не стационарность ветрового потока и т.п.
Наблюдаемые в опытах и в реальных объектах относительно крупные вихри образуются при турбулентном обмене конечными массами жидкости или газа, происходящими между соседними слоями потока с разной завихренностью и разной средней скоростью. При попадании турбулентной частицы или моля в новый слой среды они обладают избыточной завихренностью и избыточной поступательной скоростью, которые порождают пульсации этих параметров. Отмечается [ 89 ], что в период дискретного существования завихренной частицы она воздействует на поток как твердое тело с некоторой угловой скоростью, обтекаемое потоком с относительной скоростью, то есть как вихрь конечного диаметра.
Турбулентное течение сопровождается образованием, перемещением, взаимодействием и затуханием интенсивности вихревого движения различных масштабов. Размеры наиболее крупных вихрей сравнимы с характерными размерами потока ( радиусом трубы или устройства выброса, канала, погранично-го слоя и т.п.).
Возникновение вихревых структур, увеличивающихся в размерах по течению, связано с переходом от ламинарного режима к турбулентному. Оно обуславливает интенсивное перемешивание потока и однородность его физических характеристик.
Развитое турбулентное течение характеризуется наличием разномасштабных вихревых структур, способных оставаться когерентными (согласованно протекающими во времени и пространстве) на значительном расстоянии вниз по потоку.
Отметим, что несмотря на длительное изучение когерентных структур, оказывающих существенное влияние на дисперсию механической энергии, сдвиговые напряжения, аэродинамический шум, процессы горения и другие технически важные процессы, взаимодействие вихрей, механика их роста, трехмерные эффекты полей завихренности внутри структур и многие другие вопросы остаются открытыми.
Процесс перемешивания вещества струи с окружающей средой можно трактовать как его диффузию и вовлечение воздуха, происходящих посредством вихревого переноса. Экспериментально установлено, что граница, отделяющая однородную жидкость или газ струйного потока, резко выражена. Она искривляется крупными вихрями, а процесс перемешивания условно можно подразделить на два этапа: диффузия вещества струи и захват внешней среды крупными вихрями и последующее мелкомасштабное перемешивание в центральной части потока.
Струя как бы колеблется относительно своей осредненной границы из-за того, что вертикальная скорость и турбулентность, измеренные в фиксированной точке на некотором расстоянии от оси, имеют перемежающийся характер. Несмотря на это, осредненные по времени профили макроскопических величин, например, таких как скорость и температура являются гладкими и хорошо аппроксимируются дифференцируемыми функциями ( например, гауссовскими кривыми).
На Рис.3.1. схематично изображено движение струи в некоторой среде, сопровождающееся взаимным проникновением вещества потока в среду и среды в поток.Рис.3.1. Схема взаимного проникновения вещества струи и окружающей среды в турбулентном потоке: 1 — турбулентный поток; 2 — зона смешения ( заштрихована ); 3 — окружающая среда; граница струи (__________) и ее мгновенные значения (.............).
Область интенсивного перемешивания диффузии примеси и вовлекаемого вещества имеет форму конического слоя ( на рисунке заштрихован), примыкающего к цилиндрическому ядру потока. Ос-ре дне иная граница струи — прямолинейная, мгновенная граница имеет перемежающийся вид и является когерентной структурой. Гребни этой структуры по мере развития течения увеличиваются в размерах и перемещаются вниз по течению.
В условиях знакопеременного направления относительного движения вихрей в турбулентном потоке, когда максимальные разрежения образуются попеременно на его разных сторонах, будет формироваться мгновенная граница потока в виде перемежающейся рельефной поверхности. Эта поверхность передвигается вниз по потоку вместе с некоторой охватывающей ее массой жидкости с некоторой скоростью ( Рис.3.1), зависящей от циркуляции вихря и расстояния до соседнего вихря [ 88 ].
Поперечная скорость вихревых неоднородностей Vrp определяется пульсационной скоростью v\'. Наличие сносящего ветрового потока приводит к его уширению, сглаживанию поверхностных гребней и увеличению продольной составляющей скорости Vrp. С другой стороны турбулентные движения атмосферы привносят свои пульсационные составляющие, приводящие к увеличению угла расширения потока. Детально эти процессы могут быть описаны только чрезвычайно сложной и громоздкой математической моделью, для которой остается проблематичным формулировка начальных и граничных условий.
Для решения инженерных прикладных задач диффузионные эффекты примесей в атмосфере могут с успехом быть решены при использовании понятия вовлечения, которое интегрально учитывает все перечисленные выше физические явления.3.2. Параметры расширения струй и клубов
Как отмечалось выше, для описания процессов, происходящих в свободных турбулентных течениях, основным понятием является механизм диффузии или «вовлечения» окружающей жидкой или газообразной среды в выброс; граница потока деформируется крупномасштабными вихрями, а внутри — вихри мелкомасштабные широкого спектра размеров.
Процесс перемешивания внутреннего и внешнего течений происходит в два этапа: захват внешней среды большими вихрями и каскадное мелкомасштабное перемешивание в ядре потока.
Детальная теория механизма вовлечения дается в основополагающей работе Таунсенда [154], но упрощенно описанный выше механизм этого процесса дает представление о физике явления.
Для нахождения параметров расширения струйного потока будем исходить из геометрической интерпретации процесса нарастания его поперечного размера. Все работы, использующие понятие вовлечения, базируются на интегральном ( осредненном по поверхности контакта с окружающей средой по периметру контрольного элемента газа) поступлении вещества окружающей среды в турбулентный поток. Считается [5 — 14], что приток воздуха на внешней периферии контрольного элемента газа единичной длины (Рис. 3.1) равен вовлечению Е в струю, то естьЕ = ρе · L · w. (3.1)
где
L — длина внешней образующей поперечного сечения S ( для круглого сечения L = 2πR) ; w — скорость вовлечения внешнего воздуха в сечение S (среднее по длине Δl ).
Считается, что скорость вовлечения пропорциональна скорости вещества струи V, т.е.w = а V
где а — коэффициент вовлечения.
В большинстве работ коэффициент а считается постоянным, однако в действительности это не так. Только в одном частном случае осесимметричной изотермической струи при отсутствии сносящего потока, как показывает опыт [11] это соотношение постоянно.
Соотношение w/V характеризует угол раствора струйного потока. Естественно, что оно должно зависеть от плотностей вещества струи и окружающей среды и от их степеней турбулентности. Рику и Сполдинг [96] экспериментально получили зависимость коэффициента вовлечения от плотности. Ими было получено соотношение
w / V = ω,
где ω = а (ρ/ ρе ) S.
По данным [12,13] а = 0,08 для осесимметричной струи и а = 0,22 — для струи линейной [14] при экспериментах в лабораторных условиях, что соответствует случаю покоящейся среды (штиль). В такой постановке в настоящее время решаются наиболее «продвинутые» задачи теории струй.
Выражение (3.1) при этом приобретает следующий вид:где
Вовлечение Е в форме (3.2) при записанных выше постоянных значениях коэффициента а уже учитывает неоднородность плотностей окружающей среды и струи и очевидно вполне приемлемо для лабораторных практически штилевых условий, но оно не зависит от динамических и метеорологических характеристик атмосферного воздуха, которые существенно влияют на турбулентный захват струей внешней среды, и поэтому не пригодно для описания процессов в реальной атмосфере. Зависимость вовлечения при такой записи от динамической активности внешней среды отсутствует и поэтому «одна из основных задач теории турбулентности» (как отмечается в [11]) пока остается не решенной до конца. Для ее решения следует положить С, переменным — связанным интегрально с пульсационными параметрами атмосферы.
Сохраним форму записи (3.2), предполагая однако, что С, (или а) не константа, а некоторый параметр, зависящий от степени турбулентности атмосферы или иначе от ее устойчивости. По классификации Пасквилла [15,50] атмосфера по характеру устойчивости может быть подразделена на 7 градаций или классов (А, В, С, D, Е, F, G), причем каждому классу можно поставить в однозначное соответствие угол расширения турбулентной струи. Докажем, что в такой постановке С, зависит от турбулизации атмосферы, т.е. от коэффициента расширения потока к.
Не нарушая общности, рассмотрим струйный поток плотности с круглого поперечного сечения, распространяющийся со скоростью V в неподвижной среде плотности ре. Как известно, он имеет вид расширяющегося прямоугольного конуса с переменным углом расширения β = arc tg k ( в случае неизотропного потока углы его расширения
βz = [φ\'2]1/2 в направлении оси Z
и βу = [θ\'2]1/2 в направлении оси Y,
где
φ\' и θ\' — пульсации угла вектора скорости в вертикальной плоскости вдоль соответствующих направлений ).Будем вести рассмотрение элементарного газового объема струи, ограниченного нормальными к оси поперечными сечениями «1» и «2» и боковой поверхностью (Рис. 3.2).
Рис. 3.2. Схема вертикального осевого сечения элементарного газового объема струи ( на верхнем рисунке заштрихован ): «1» и «2» — контрольные сечения, ограничивающие элементарный газовый объем; 3 — приращение газового объема при движении потока от сечения «1» к сечению «2»; 4 — неизотермическая струя.
Так как длина контрольного объема Δl — мала, то внешнюю его поверхность, контактирующую с воздухом окружающей среды, можно считать прямолинейной конической. Ее образующая на этом рисунке — линия cd. Вычислим увеличение объема струи Av при ее развитии от сечения «1» к сечению «2». Из рисунка видно, что
Введем среднее или текущее значение радиуса усеченного конуса R и приращение радиуса AR по формулам:
Из решения системы алгебраических уравнений относительно переменных R и AR получаем:
R2=R + ΔR/2 ; R1 = R - ΔR/2. (3.8)
Вычислим выражение в квадратных скобках (3.6) при учете соотношений (3.8). Получаем: