Забейте в стену гвоздь, откусите ему шляпку и согните под прямым углом. На этот гвоздь повесьте обод таким образом, чтоб он висел параллельно стене. Отметьте место, где гвоздь коснулся обода, и через эту точку прочертите линию для сверления отверстий. Их количество определяется размерами втулки (см. рис. 3).
Втулку желательно изготовить на токарном станке, но не у всех он есть. Сделайте деревянную бобышку с отверстием вдоль оси. На нее наклейте клеем «Краб» жестяную крышечку от кофе. Когда клей засохнет, прочертите на ней окружность (рис. 4).
В зависимости от размеров крышечки просверлите на ней 8 — 12 отверстий диаметром 3–6 мм и сделайте в них пазы для установки спиц из авиамодельной резины. После этого такое же число отверстий просверлите на ободе. Каждая спица — это колечко, склеенное из резины. При сборке колеса резиновое кольцо (будущая спица) вставляется в паз на втулке и протягивается через отверстие на ободе, где закрепляется куском спички.
Для достаточно эффективной работы спицы нужно устанавливать с 2 — 3-кратным растяжением. Поэтому сборку колеса нужно производить на простейшем стапеле. Это доска, в центре которой на гвозде установлена втулка, а вокруг него на расстоянии, равном радиусу обода, забито еще 3–4 гвоздя. В качестве оси двигателя можно применить вязальную спицу, установленную горизонтально между деревянными подставками.
Поскольку солнце светит не всегда, наладку двигателя лучше производить при помощи электрического рефлектора с открытой спиралью. Половину колеса двигателя заслоните листом жести, а на другую наведите тепловое излучение нагревателя.
Двигатель практически сразу же должен начать медленно вращаться. Но, если при сборке были использованы спицы неодинаковой длины, он не сможет сделать полного оборота. Тогда придется вновь ставить обод на стапель и заменять неудачные спицы.
Отлаженный двигатель попробуйте запустить в ясный день от солнца. При качественной сборке он будет вращаться при простом попадании солнечных лучей на одну из его половин. Оплошности при сборке придется компенсировать, концентрируя свет при помощи большой линзы или вогнутого зеркала от рефлектора.
КОЛЛЕКЦИЯ ЭРУДИТА
Молот из эпохи динозавров
Головоломную загадку для науки представляет собой… обыкновенный с виду молоток, который хранится в музее города Глен Роуз (США). Дело в том, что он буквально врос в кусок песчаника. А возраст камня около 140 миллионов лет…
Обломок скалы с выступающим из него молотком обнаружила в июне 1934 года миссис Хан, прогуливавшаяся со своим семейством в окрестностях американского городка Лондон (штат Техас). Первые эксперты, осматривавшие находку, пришли к единодушному выводу: мистификация. В самом деле, откуда молотки в меловом периоде, когда на Земле еще хозяйничали динозавры?! Видимо, потрудился какой-то современный обманщик, замуровавший инструмент в камень.
Однако позднейшие исследования находки, проведенные различными научными учреждениями, поставили первоначальный вывод под сомнение.
Во-первых, деревянная рукоятка молотка тоже окаменела, а внутри частично даже превратилась в уголь. Это значит, что ее возраст исчисляется, как минимум, сотней миллионов лет. Во-вторых, удивителен химический состав самого молотка: 96,6 % железа, 2,6 % хлора и 0,74 % серы.
Никаких других примесей не выявлено. Столь чистое железо не получали за всю историю земной металлургии. В конце концов, доктор Ханс-Иоахим Цильмер из Германии, занимавшийся загадочной находкой, был вынужден заключить: «Этот молоток изготовлен по неизвестной нам технологии»…
ХИМИЯ И ЖИЗНЬ
Война и… призраки
Это случилось 2500 лет назад, когда Вавилон вторгся в Иудею и разграбил еврейскую святыню — Иерусалимский храм. На победном пиршестве владыка Вавилона Валтасар, внук Навуходоносора и соправитель вавилонского царя Набонида (сына Навуходоносора), пил вино из священных чаш, захваченных в Иерусалимском храме. Это уже само по себе считалось святотатством, но Валтасар, в довершение ко всему, принялся поносить бога евреев — Иегову. И тут, как гласит легенда, произошло нечто удивительное.
Огненная рука начертала на белой стене странные слова, которые чаще всего цитируются: «Мене, текел, иерее!»
Никто не знал их перевода. Тогда еврейский мудрец Даниил объяснил, что они предвещают конец царствования Валтасара и его скорую гибель. Дальнейшее прекрасно описал великий поэт Г.Гейне: «И страх сковал гостей и слуг, оцепенело все вокруг… Но прежде, чем взошла заря, рабы зарезали царя».
Итогом этих событий стала победа еврейского народа и возвращение сокровищ, похищенных из Иерусалимского храма.
Вообще-то перед нами типичный эпизод борьбы за национальное освобождение, коих в истории много. Вот только огненные буквы, внезапно появившиеся на стене, придают ему, согласитесь, особую окраску. Этот случай потряс не только современников. На протяжении веков гибель Валтасара, как пример кары высших сил за святотатство, неоднократно описывали величайшие художники, писатели и поэты. Но что реально стоит за этим фактом?
Вспомним историю.
Еще в 1950 году одному из авторов этих строк довелось побывать в числе зрителей на новогоднем празднике для учащихся младших классов. К классной доске был приколот лист белой бумаги. К нему подошел старшеклассник, одетый, как настоящий маг, в чалму, длинный цветастый халат и сверкающие галоши. Он коснулся бумаги тонкой палочкой, на конце которой тлел уголек, и по листу бумаги пробежал огненный зигзаг, превратившийся в контур веселого зайчика.
Секрет фокуса был прост. Зайчика заранее нарисовали на листе бумаги насыщенным раствором селитры (нитрат калия) и подсушили. Сухая селитра на белом фоне не видна. При нагревании тлеющим угольком она разлагается с выделением кислорода, и по контуру бежит огненный зигзаг. Обычно, если взять бумагу достаточно плотную, сам лист не загорается, остается лишь темный обугленный след. Но лучше не рисковать, а всю не пропитанную селитрой часть бумаги покрыть поваренной солью.
Селитра была известна в глубокой древности. (Ее добывали из птичьего помета.) А потому можно предположить, что огненные буквы могли сделать собственными руками еврейские мудрецы. Известны и более совершенные самовоспламеняющиеся составы.
В любом случае Валтасар был морально повержен. От него отреклось окружение, и убийство царя стало лишь делом времени.
Ясно, что среди наших читателей нет царей, которым грозит смерть от рук их рабов. Но и всем прочим полезно знать, что есть множество способов вызывания таинственных знаков и призраков. Например, сегодня для этого достаточно написать нужный символ крахмалом, дать ему высохнуть, а потом осветить ультрафиолетовыми лучами.
Знаки засияют светло-голубым светом. Говорят, что такие эффекты применяют на своих сеансах «колдуны», провидцы и прочие жулики.
ИГРАЕМ В ФИЗИКУ
Загадочный волчок
Изобретатель Ю.Г.Ивченко вытащил из кармана волчок и, слегка закрутив, бросил его в пепельницу. Волчок завертелся. Мы подождали, пока он остановится. Но прошла минута, другая, третья, а он все вращался. Лишь когда Юрий Григорьевич, перевернув пепельницу, показал установленные на дне ее батареи, стало ясно, что дело тут нечисто. Но как и на что они действуют, разобраться мы не успели.
Изобретатель уже запустил прямо на столе второй волчок, и тот завертелся…
Принцип действия волчков нетрудно понять, если вам приходилось работать электродрелью. Вспомните: сверло вращается в одну сторону, а корпус дрели стремится повернуться в другую.
Проще всего устроен второй волчок (см. рис. 1).
Это крохотный электромотор, на оси которого насажена маленькая пуговица-шарик, а на корпусе укреплена большая плоская шайба, а под ней миниатюрная батарейка и выключатель. Все это замаскировано от любопытных глаз. Пуговичка с осью вращается в одну сторону, сам корпус двигателя — в противоположную.
Несколько сложнее первый волчок. Здесь важная роль отводится пепельнице (рис. 2).
Она имеет две токоподводящие поверхности. Одна — снаружи, другая — в глубине. В корпусе пепельницы установлена батарея из двух 1,5 В элементов. На оси двигателя укреплена полусферическая металлическая насадка. К корпусу через изоляционную прокладку приклеена металлическая шайба.
Вот как работает вся система.
Электрический ток от батареи проходит через донышко пепельницы, через вал и подшипник на корпус. Через провод, припаянный к нему, ток попадает на один из выводов обмотки двигателя. Второй ее вывод соединен с шайбой, которая катится по верхней токопроводящей поверхности пепельницы, соединенной с другим полюсом батареи. Важно, чтобы шайба и корпус двигателя были надежно изолированы друг от друга.
В заключение несколько советов по изготовлению. В качестве двигателя для волчков можно применить почти любой моторчик от старой игрушки или плейера, лишь бы его корпус имел симметричную форму.
В качестве шайбы используйте жестяную крышечку от банки растворимого кофе или консервов. Провода и батареи тщательно замаскируйте, например, наклеив на них яркую голограмму.
Подумайте, нельзя ли добавить к шайбе какие-то лопасти и превратить забавную игрушку в вентилятор? В этом случае пепельницу лучше питать током от сети через стандартный адаптер для зарядки плейеров.
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
«Обратный» пистолет
Обычно в электронном тире стрельбу ведут световыми импульсами, которые в случае попадания в «яблочко» улавливаются фотоприемником, и на мишени вспыхивает лампочка. Однако неподвижная мишень скоро приедается.
А сделать ее подвижной технически затруднительно — нужно усложнять схему. Другое дело, если источник света поместить на подвижной цели, а фотоприемник на «оружии».
Правильно навел оружие на цель — и в пистолете вспышка или хлопок. Кроме того, в «охоте» могут одновременно принимать участие несколько стрелков, ведь фотоприемник с индикатором попадания можно установить на каждом пистолете. Другими словами, здесь «стреляет» светом сама мишень, и в случае удачи свет попадает в «обратный» пистолет.
Источник света в этом случае может быть столь легким, что хоть ставь на бумажного голубя.
Источник света можно построить по схеме, изображенной на рисунке 1.
В качестве его использован яркий светодиод белого цвета свечения HL1 типа NSPW500BS; он потребляет ток 25 мА при напряжении 3,2 В. Достаточно легким для бумажного аэроплана источником питания послужит батарейка GB1 из трех миниатюрных гальванических элементов типа отечественных СЦ32.
Чтобы ее энергия не расходовалась зря, продолжительность свечения во время полета ограничена тремя-четырьмя секундами. Коммутацию светодиода обеспечивает составной транзистор VT1, VT2.
Для максимального упрощения и облегчения «электросистемы» устройство не имеет своего включателя питания — эту функцию выполняет контактная перемычка SB1.
Резисторы R2, R4 ограничивают бросок зарядного тока конденсатора С1, быстро заряжающегося до напряжения источника GB1. Пока во время полета происходит разряд С1 на базу транзистора VT1, ток идет к светодиоду HL1. В конце разряда благодаря резистору R3 ключ переходит в запертое состояние и прерывает разряд батарейки.
Мишенью может послужить также маятник. В этом случае массу батареи питания и габариты конденсатора С1 можно увеличить, а схему и конструкцию упростить (рис. 2).
Этот вариант устройства действует аналогично рассмотренному; в источнике питания годятся три элемента типа СЦ-0,18 (от лазерной указки) либо три LR03 (АА).
Интересный вариант размещения световой цели — на радиоуправляемом игрушечном автомобильчике, которому можно задавать любую траекторию движения — попробуй-ка взять на мушку такого шустрика! Понятно, здесь нет необходимости ограничивать свечение несколькими вспышками, это может быть и неограниченно долгая серия, поскольку модель способна нести достаточно емкую батарею из трех элементов LR6.
Генератор электрических импульсов, зажигающих уже знакомый нам светодиод, можно собрать на цифровой микросхеме DD1, чьи логические ячейки DD1.1…DD1.3 совместно с времязадающими элементами C1, R1 образуют мультивибратор. Его частота порядка 0,5…1 Гц может задаваться выбором номинала резистора (рис. 3).
Ячейка DD1.4 работает параллельно с DD1.3, увеличивая нагрузочную способность генератора импульсов. Заметим, что в этом устройстве можно будет применить более доступную лампочку накаливания от карманного фонарика, управляя ею через транзистор КТ814А, с резистором на 180 Ом в базовой цепи. Лампочка будет мигать здесь в перекальном режиме.
Итак, у вас на выбор несколько вариантов исполнения и алгоритмов поведения светящейся цели — пора познакомиться с электронной начинкой «обратного» пистолета (рис. 4).
Узлом, восприимчивым к свету, служит фоторезистор R1. В затемненном состоянии его сопротивление велико, а «темновой» ток весьма мал. Последовательно с датчиком света соединен резистор R2, вместе они образуют делитель напряжения. Пока фоторезистор не освещен, «темновой» ток создает на резисторе R2 очень небольшое падение напряжения. Когда же датчик освещен хорошо, его сопротивление многократно снижается, и на резисторе R2 падает почти полное напряжение источника GB1.
Напряжение с делителя подается через резистор R3 на выходы 1, 2 порогового узла — логической ячейки DD1.1 микросхемы DD1. Пока не достигнут пороговый уровень входного напряжения, на выходе DD1.1 держится сигнал высокого уровня, у DD1.2 — низкого, на объединенном выходе ячеек DD1.3, DD1.4 — высокого уровня. При этом транзистор VT1 заперт, на его коллекторе нулевой потенциал общего провода.
Всплеск освещения датчика и напряжения на входах DD1.1 приводит к переключению ячеек; возникшее на выходах ячеек DD1.3, DD1.4 напряжение отпирает транзистор VT1, и на резисторе R5 создается скачок напряжения, отпирающий тринистор VS1. Получив питание, начинает светиться красным светом индикатор «попадания в цель» — светодиод НL1. Это свечение, видное и стрелку, и судье соревнований, будет продолжаться и после отпускания курка, связанного с кнопкой SB1. Индикатор погаснет, а пистолет будет перезаряжен для последующей стрельбы после кратковременного размыкания выключателя питания SA1 в цепи батарейки типа 6F22, аналогичной нашей «Кроне».
Конструируя фотопистолет (фоторужье), расположите фотодатчики внутри канала ствола на некотором удалении от дульного среза — это защитит датчик от случайной боковой засветки.
Для большей чувствительности поставьте перед фоторезистором собирательную линзу, которая сфокусирует свет на окошке фотодатчика. Общее освещение при стрельбе должно быть приглушенным, без ярких светильников в зоне, где происходит прицеливание. Ну, а намечая пространство, в котором должна проводиться «охота», определите сперва расстояние, на котором светящаяся неподвижная цель уверенно отмечается индикатором попаданий.
Напомним любителям экспериментировать — установка на «мишени» так называемой лазерной указки не допускается.