Генеральный секретарь в недоумении покачал головой. Иногда он задумывался, какой же станет цивилизация через миллион лет. Но не ожидал ничего подобного. Предельная простота. Супермен, считающий ниже собственного достоинства разбираться в громоздком механизме межзвездного государства, свободный от всех ограничений, думающий свои великие думы среди мириад звезд.
Хардго взглянул в окно, на небоскребы Нью-Йорка.
— Никогда не видел такого большого города, — отметил он, — а я бывал на многих планетах. Не представляю, как вы им управляете. Должно быть, это ужасно трудно.
— Да, сэр, — сухо улыбнулся Ларсон.
Разумеется, галакты давно прошли ту ступень, когда цивилизация не могла обойтись без таких вот человеческих муравейников. Они разучились поддерживать жизнь мегаполисов, точно так же как современники Ларсона разучились высекать искру из камня.
ПАТЕНТНОЕ БЮРО
В этом выпуске Патентного бюро рассказываем о необычном аэропорте, радиоактивной свече зажигания, кормушке для аквариумных рыб и о комплексе мер для очистки территории и сливных вод автопредприятий и нефтебаз.
Экспертный совет ПБ отметил Почетными дипломами предложения Анатолия ЛЕБЕДЕВА из Пермской области, Александра ШАДРИНА из Иванова, Эдуарда КУЗНЕЦОВА из Новокузнецка и Анастасии ТРЕФИЛОВОЙ из Кирова.
АЭРОПОРТ АНАТОЛИЯ ЛЕБЕДЕВА
Аэропорт действительно необычный. Юный изобретатель из Пермской области придумал такую его схему, где все службы размещаются под взлетно-посадочной полосой (ВПП). Чтобы попасть в здание аэровокзала, пассажиры спускаются на эскалаторе в подземные сооружения, где находятся кассы, бюро регистрации, рестораны, гостиницы, залы ожидания и другие службы. А сама ВПП выполнена в виде огромной чаши. Для загрузки же, осмотра и ремонта самолеты спускаются вниз, в особые подземные боксы и ангары.
Чем же интересна идея Анатолия Лебедева? Попробуем разобраться. Уже сегодня в развитых странах проблема свободных территорий стоит очень остро, международный аэропорт занимает площадь от 50 до 75 квадратных километров. Вот почему их выносят на десятки, а то и сотни километров от центров и густо заселенных районов. Удаленность аэропортов сводит на нет весь выигрыш времени, который дает авиация.
Но дело даже не только в стремительном росте городов, а в рациональном использовании земли. И здесь расточительность огромных ВПП скоро станет очевидной. Возникает необходимость располагать под ними какие-то сооружения — склады, ангары, ремонтные мастерские и многое другое. Такое размещение целесообразно и с точки зрения экономии строительных материалов, и сокращения коммуникаций. Сколь труден поиск площадей для ВПП, можно судить хотя бы по тому, что уже сейчас создаются проекты сооружения ВПП в морях и на озерах.
Будет ли аэропорт в виде гигантской чаши наиболее рациональным решением? Однозначный ответ дать невозможно.
Если под проектируемые сейчас аэропорты отводится почти идеально ровная местность, то для чашеобразного вполне сгодятся достаточных размеров овраг или старое, пересохшее русло реки — земли, которые не используются ни в сельском хозяйстве, ни под застройку.
Каковы должны быть исходные размеры чашеобразного аэродрома? Если принять длину разбега самолета в 4 км, то диаметр чаши составит около двух километров, а площадь аэропорта составит примерно двенадцать с половиной квадратных километров, что значительно меньше существующих. Но ведь кроме ВПП, нужно еще множество подземных сооружений, различных служб, коммуникаций. Все эти рассуждения верны, если в авиации не произойдет качественный скачок и не появятся пассажирские лайнеры с вертикальным взлетом. Тогда потребуется коренной пересмотр существующей практики строительства аэропортов. Однако не исключено, что, во-первых, чашеобразные ВПП окажутся как раз самыми подходящими для самолетов вертикального взлета и, во-вторых, такие самолеты не закроют путь обычной авиации, обладающей своими преимуществами. Но как бы ни сложились пути прогресса авиационной техники, у чашеобразного аэропорта есть и еще одна сильная сторона. Сферическая поверхность «чаши» отражает звуковые волны либо вверх, либо под углом к горизонту. Поэтому окрестные жители будут в значительной степени избавлены от круглосуточного рева лайнеров.
РАДИОАКТИВНАЯ СВЕЧА
Чтобы воспламенить горючую смесь в цилиндрах двигателя внутреннего сгорания, используется искровой разряд. Так было на заре двигателестроения, все так же сегодня. Да, свеча зажигания остается почти неизменной в конструктивном отношении. Как и прежде, все двигатели снабжаются сложными электротехническими устройствами, способными преобразовывать бортовое напряжение в 12 В в высоковольтный разряд.
Но школьник из Иванова Александр Шадрин свежим взглядом оценил, казалось бы, давно решенную проблему. И предлагает отказаться от этих самых электротехнических устройств, заменив их… несколькими радиоактивными источниками — по числу цилиндров в двигателе.
Как считает Александр, ионизируя пары бензина, радиоактивные лучи существенно снизят пробивное напряжение с тысяч до десятков вольт!
Нужно, конечно, помнить, что речь идет о радиоактивных, а значит, опасных приборах. Но не будем с ходу отвергать предложение Александра. Он прав, предлагая применять вещества, которые испускают альфа- и бета-лучи — длина свободного пробега бета-, а особенно альфа-частиц в плотных веществах бывает незначительна. Такое радиоактивное излучение не «пробьет» стенки чугунного корпуса блока цилиндров, не причинит вреда ни водителю, ни пассажирам и уж тем более пешеходам.
Однако было бы правильно оценить не тепловое действие радиоактивного излучения, а его ионизационную способность — именно то, что необходимо для снижения пробивного напряжения. Источник излучения, установленный в непосредственной близости от электродов свечи зажигания, действительно способен снизить пробивное напряжение до 100…200 В. А сколько потребуется этого самого радиоактивного вещества? Ответить однозначно трудно, ведь экспериментальных данных нет, так как никто не изучал ионизацию горючей смеси с помощью радиоактивных препаратов. По косвенным данным можно все же предположить, что объем его не превысит нескольких кубических миллиметров. А такое количество препарата вполне возможно разместить внутри свечи зажигания, внеся в нее небольшие конструктивные изменения.
КУШАТЬ ПОДАНО
Патентное бюро журнала вот уже без малого сорок лет рассматривает предложения юных изобретателей. Удивительно, но, пожалуй, самой актуальной темой для ребят все эти годы остается тема кормления аквариумных рыб в отсутствие хозяев. Десятки механических и электромеханических устройств рассмотрели эксперты, но проблема остается не решенной потому, что большинство идей и предложений хотя и работоспособны, но сложны. А как доверить своих питомцев автомату, который может отказать?
У Эдуарда Кузнецова из Новокузнецка дома большой аквариум. Три вида морских рыб заселяют его на разных уровнях. Увлекательно наблюдать за их жизнью. Но, когда вся семья летом переезжает на дачу, взрослые вынуждены периодически возвращаться в город, чтобы покормить рыб. Проблема!
Сначала Эдуард попытался в специальной литературе подыскать что-нибудь толковое. Просматривал он и идеи, опубликованные в «Юном технике». Ни одно из решений его не устроило. Нужно было такое устройство, в котором привод раздатчика кормов в кормушке не работал бы от электродвигателя, соленоида или пружинного механизма будильника.
Удачную мысль Эдуарду подсказала стеклянная банка с водой. Она стояла на окне несколько недель, и уровень воды в ней понижался и понижался. Ну, чем не привод?
Осталось только придумать устройство, которое увязало бы естественное падение уровня воды с работой кормушки. И вот теперь оно есть. Работает автоматическая кормушка так (см. рис.).
На узком краю аквариума крепится кормушка — обычная круглая или четырехгранная коробочка, открытая снизу. Внутри нее установлены наклонные перегородки, на которых помещаются порции сухого корма. Количество перегородок определяет количество кормлений. Исходя из этого, можно изготовить кормушку, способную 10, 20 или даже 100 раз покормить рыбок.
Все происходит автоматически. Наклонные перегородки общим штоком связаны с поплавком. Упал уровень воды в аквариуме — опустился и поплавок. Очередная перегородка своим нижним концом вышла за край коробочки, и новая порция падает на поверхность воды.
НА ЧТО ГОДЯТСЯ ОПИЛКИ
В начале этого года целую неделю Анастасия Трефилова, старшеклассница химико-биологического лицея, обходила крупные автопредприятия и автозаправочные станции своего родного Кирова, чтобы взять пробы грунта и набрать воды из сливных канализаций. Зачем?
В сообщениях местной прессы и телевидения почти каждый день проскальзывали сообщения об ухудшении экологического состояния города. По его территории с катастрофической скоростью расползаются зоны, загрязненные нефтепродуктами и тяжелыми металлами. И виновниками назывались многочисленные АЗС, автопредприятия и нефтебазы.
Нужно было что-то делать. Из городской мэрии последовало предложение в профильный лицей, где учится Анастасия. Попросили не только собрать полную информацию, но и предложить пути выхода из создавшегося положения.
И вот что обнаружила Настя Трефилова в своих походах по городу. Вредные примеси в ливневых стоках и в пробах грунта превышали предельно допустимые значения порой в тысячи раз. Это и понятно, ведь десятки лет работают многие перечисленные предприятия, и ничего не делалось ни раньше, ни теперь.
Что же делать? Построить очистные сооружения для сливной воды и удаления загрязненного грунта не в силах ни одно городское предприятие. Рассчитывать на помощь богатых спонсоров тоже не приходится. Вот и решила Анастасия опереться на ресурсы, как говорится, местного значения. Прежде всего, она обратила внимание на ряд крупных деревообрабатывающих предприятий.
Горы опилок — вот что заинтересовало ее больше всего. Частично их сжигают в топках местных котельных, но значительная часть переполняет местные овраги. А ведь опилки — ценнейшее сырье. Грязная вода, пропущенная через несколько их слоев, очищается настолько, что ее можно использовать на технологические нужды, ведь загрязненность по всем параметрам снижается в сотни раз.
По расчетам Анастасии, один кубометр опилок способен очистить до 50 кубометров грязной воды. Но технологическую воду еще надо доочистить, чтобы без ущерба для рыбы сбрасывать в реку Вятку.
Дополнительно чистить стоки можно активированным углем, веществом, которое можно получить из тех же опилок при неполном их сгорании. Опыты с опилками и углем подтвердили, что сырья в городе и области вполне достаточно, чтобы вести непрерывную очистку стоков всех крупных предприятий.
Но это — для очистки воды. А как быть с загрязненными территориями? И тут Анастасия нашла изящное решение. Ежегодно в теплое время можно обрабатывать грязные земли особыми штаммами бактерий, колонии которых в больших количествах легко вырастить в лабораторных условиях на отходах все той же нефтепромышленности. И хотя процесс микробиологической очистки идет медленно, примерно 2,5 месяца, простое двукратное орошение в течение одного сезона способствует восстановлению почвы, и на ней уже на следующий год начинает расти трава, кустарник и деревья.
Куда девать опилки и уголь, впитавшие в себя нефтепродукты? При правильно налаженном хозяйстве, их можно сжигать в котельных города зимой, ведь масла и нефть, да и сами опилки, прекрасно горят с выделением огромного количества тепла.
КОЛЛЕКЦИЯ «ЮТ»
Ракета СС-18 — самая мощная межконтинентальная ракета в мире. И в ближайшие годы она останется неуязвимой для любой противоракетной обороны. Чтобы уничтожить ее боеголовки, необходимо прямое попадание, что маловероятно, поскольку их прикрывают плотные облака ложных целей. Лазерного луча головки не боятся, так как покрыты броней с добавками урана-238. Не страшны этой ракете и электромагнитные бомбы — ее электронную систему управления дублируют пневматические автоматы, не чувствительные к электромагнитным помехам. Потому, наверное, американские эксперты и присвоили ракете СС-18 название «Сатана».
Техническая характеристика:
Стартовая масса… 210 т
Масса топлива… 185 т
Радиус действия… 16 000 км
Тяговое усилие двигателя:
На Земле… 425 т
В космосе… 461 т
Мотоцикл задумывали как рекордный. Но, хотя рекордсменом скорости он так и не стал, специалисты считают, что фирме
Техническая характеристика:
Длина… 205 см
Высота… 117 см
Ширина… 71 см
Вес без горючего… 213 кг
Объем двигателя… 1198 см3
Мощность двигателя… 190 л.с.
Количество цилиндров… 4
Максимальная скорость… 300 км/ч
Время разгона до 100 км/ч… 2 с
Объем топливного бака… 20 л
ПОЛИГОН
Вечный двигатель
Это колесо со спицами может вращаться хоть 40 миллиардов лет (пока светит Солнце). Так что в этом смысле двигатель не совсем вечный. Но срок его действия, согласитесь, вполне приличный.
Колесо в двигателе не совсем обычное — спицы у него резиновые. Резина же материал оригинальный. Все тела при нагревании расширяются, а она, наоборот, сжимается. Опыт показывает, если резиновую ленту предварительно растянуть с силой 10 Н при температуре 27 °C, а затем подогреть до 66 °C, она сожмется с силой 11 Н. Получится прирост силы в 1 Н.
На этом свойстве резины предложено множество механизмов. Проще всего приладить к резиновой ленте поршень, и, если ленту периодически нагревать и охлаждать, поршень начнет качать воду. Можно соединить резиновую ленту с кривошипно-шатунным механизмом. Получится универсальный тепловой двигатель. От его вала можно задействовать электрогенератор, станок — словом, все, что угодно.
Однако такой двигатель сложен. Имея отрезок ленты или шнур из материала, способного под действием какой-либо причины изменять свою длину, можно получить вращение гораздо более простым способом.
На рисунке 1 изображена система из двух валов со шкивами.
Два одинаковых, самых малых шкива соединены нерастяжимой лентой. Два других, большой и средний, по диаметру соединены резиновой лентой. Если капнуть на нее горячей водой, она сожмется. При этом начнутся процессы, которые еще французский физик Лаплас называл виртуальными. Это понимали так, что оси большого и среднего шкивов как бы пытаются повернуться на бесконечно малые углы. Но при этом виртуальный угол поворота у большого шкива меньше, чем у среднего, и вся система поворачивается на угол, равный разности этих виртуальных углов. Сложно, но привыкайте: в курсе теоретической механики есть много задач, решаемых методом виртуальных перемещений.
А принцип работы двигателя, показанного в начале нашей статьи, гораздо проще. Здесь луч солнца нагревает резиновые спицы, например, справа. Они сокращаются, и от этого весь диск перекашивается. Центр тяжести левой его половины оказывается чуть дальше от оси, чем правой. От этого диск поворачивается.
Если нагревание прекратить, резиновая спица остынет и диск придет в равновесие. Но число спиц и ширина луча подобраны так, чтобы одна из спиц постоянно нагревалась и, сокращаясь, перемещала центр тяжести. Поэтому диск будет непрерывно находиться в движении.
Двигатель прост по конструкции, но сделать его нелегко. Прежде всего нужно сделать обод. Для этого отпилите ножовкой верхнюю часть старого пластмассового тазика (см. рис. 2).
Далее на ней проведите черту и на равном расстоянии просверлите ряд отверстий для спиц. Важно выбрать место для проведения этой черты, чтобы обод уже готового колеса со спицами, находясь на горизонтальной оси, занял вертикальное положение, иначе плавного вращения может не получиться.