Давид Гильберт
О Бесконечном
Вейерштрасс своей критикой, которую он проводил с мастерской остротой, положил твёрдые основания математического анализа. Выяснив, среди остальных понятий, понятия минимума, функции, производной, он тем самым устранил недочёты, имевшие место в исчислении бесконечно малых, очистил его от всех расплывчатых представлений о бесконечно малом и окончательно преодолел при этом трудности, вытекающие из понятия «бесконечно малое». Если теперь в последовательности умозаключений, которые основаны на понятии иррационального числа и вообще предела, царит в анализе полное единодушие и уверенность — даже в самых запутанных вопросах, касающихся теории дифференциальных и интегральных уравнений, — если, несмотря на самые смелые и многообразные результаты, несмотря на нагромождение и перекрещивание пределов, всё же имеется совпадение всех результатов, то это — существенная заслуга научной деятельности Вейерштрасса.
Однако обоснованием, данным анализу бесконечно малых Вейерштрассом, дискуссия об основах анализа не закончилась.
Причина этого лежит в том, что значение
Формы логических умозаключений, в которых выражается эта трактовка, — когда, например, идёт речь о
Благодаря этому
В этом и заключается замысел моей теории. Эта теория ставит своей целью установить определённую надёжность математического метода, которой критический период исчисления бесконечно малых ещё не достиг; она должна, таким образом, завершить то, к чему стремился Вейерштрасс в своём обосновании анализа и к достижению чего им был сделан необходимый и существенный шаг.
Однако, затрагивая вопрос о выяснении понятия бесконечности, приходится принимать во внимание ещё более общую точку зрения. Если обратить на это внимание, то оказывается, что математическая литература наводнена нелепостями и бессмыслицами, в которых большей частью повинна бесконечность. Так например, иногда в качестве ограничительного требования подчёркивают, что в строгой математике в доказательстве допускается только
Также и старые возражения, которые долгое время считались похороненными, выступают опять в новом одеянии. Недавно, например, было высказано следующее: если даже введение какого-либо понятия может быть произведено без опасений, т.е. без получения противоречий, и это может быть доказано, то всё же это понятие не является в достаточной мере оправданным. Не является ли это в точности тем возражением, которое в своё время выдвигали против комплексных (мнимых) чисел, говоря: правда, из-за них не получается никаких противоречий, но их введение всё же незаконно, так как мнимые величины всё-таки не существуют. Нет, если помимо доказательства непротиворечивости может иметь смысл ещё вопрос о законности некоторого мероприятия, то таким вопросом может быть только вопрос о том, сопровождается ли это мероприятие соответствующим успехом или нет. Действительно, успех здесь необходим; он является высшей инстанцией, перед которой преклоняется каждый.
Другой автор, по-видимому, усматривает противоречия, подобно привидениям, даже и там, где никто вообще никаких утверждений не делал, именно в самом конкретном, чувственном мире, «непротиворечивое функционирование» которого усматривается как особая гипотеза. Я, по крайней мере, думал, что противоречить друг другу могут только высказывания и предположения, поскольку они через умозаключения ведут к новым высказываниям, и мне кажется, что мнение, будто сами факты и события могут оказаться в противоречии друг с другом, является классическим примером бессмыслицы.
Этими замечаниями я хочу только показать, что окончательное выяснение
С давних пор никакой другой вопрос так глубоко не волновал человеческую мысль, как вопрос о бесконечном; бесконечное действовало на разум столь же побуждающе и плодотворно, как едва ли действовала какая-либо другая идея; однако ни одно другое понятие не нуждается так сильно в разъяснении, как бесконечность.
Обращаясь к задаче о выяснении сущности бесконечного, мы должны по возможности кратко представить себе, какое содержательное значение соответствует бесконечному в действительности; мы посмотрим сначала, что нам даёт в этом отношении физика.
Первым наивным впечатлением, производимым явлениями природы и материей, является впечатление чего-то непрерывного, континуального. Если мы имеем перед собою кусок металла или некоторый объём жидкости, то нам навязывается представление о том, что они неограниченно делимы, что сколь угодно малый кусок их опять-таки обладает теми же свойствами. Но повсюду, где методы исследования в физике материи достаточно усовершенствованы, мы наталкиваемся на границы этой делимости, которые лежат не в несовершенстве нашего опыта, а в природе самой вещи, так что можно было бы прямо-таки воспринимать тенденцию современной науки, как освобождение от бесконечно малого; теперь можно было бы старому тезису «natura non facit saltus» (природа не делает скачков) противопоставить антитезу: «природа делает скачки».
Известно, что вся материя составлена из маленьких кирпичиков — из
Помимо материи и электричества, в физике имеется ещё и другая реальность, для которой также имеет место закон сохранения, именно — энергия. Но, как установлено теперь, и энергия не допускает простого и неограниченного деления на части: Планк открыл
И каждый раз получается тот итог, что однородный континуум, который должен был бы допускать неограниченное деление и тем самым реализовать бесконечное в малом, в действительности нигде не встречается. Бесконечная делимость континуума — это операция, существующая только в человеческом представлении, это только идея, которая опровергается нашими наблюдениями над природой и опытами физики и химии.
Второй раз мы наталкиваемся в природе на вопрос о бесконечности при рассмотрении вселенной в целом. Мы должны теперь исследовать протяжённость вселенной, чтобы узнать, нет ли здесь бесконечно большой величины.
Мнение, что вселенная бесконечна, долгое время господствовало; до Канта и даже после него вопрос о бесконечности вселенной не вызывал никаких сомнений.
Но опять-таки современная наука, и в частности астрономия, подняла этот вопрос сызнова и попыталась решить его не с помощью недостаточных методов метафизического умозрения, а на основах, опирающихся на опыт и покоящихся на применении законов природы. При этом выявились веские возражения против бесконечности. Предполагать, что пространство бесконечно, вынуждает нас геометрия
Итак, мы установили конечность действительного в двух направлениях: в отношении бесконечно малого и бесконечно большого. Всё же может случиться, что бесконечное
Так как мы можем подставить в неё вместо
могут быть проверены с помощью вычислений и потому в отдельности не представляют, по существу, никакого интереса.
С абсолютно другим, совершенно своеобразным толкованием и принципиальным пониманием идеи бесконечного мы знакомимся благодаря чрезвычайно важному и плодотворному методу
Идеальные «бесконечно удалённые» элементы приносят ту пользу, что они делают систему законов соединения возможно более простой и обозримой. Вследствие симметрии между точкой и прямой, отсюда, как известно, получается оказавшийся столь плодотворным принцип двойственности в геометрии.
Обычные
Подобно тому как в геометрии бесконечное множество прямых, именно параллельные друг другу прямые, используется для определения идеальной прямой, так и в высшей арифметике определённые бесконечные системы чисел объединяются в один
Мы подошли теперь к анализу, этой искуснейшей и тончайшим образом разветвлённой отрасли математических наук. Вы сами знаете, какую ведущую роль играет там бесконечное; математический анализ можно в известном смысле назвать единой симфонией бесконечного.
Громадные успехи, достигнутые в исчислении бесконечно малых, основываются большей частью на действиях с математическими системами, состоящими из бесконечного числа элементов. Так как очень легко напрашивалось отождествление бесконечного с «очень большим», то вскоре возникли несогласованности, так называемые парадоксы исчисления бесконечно малых, часть которых была уже в древности известна софистам. Основным шагом вперёд явилось обнаружение того факта, что многие положения, справедливые для конечного, — часть меньше целого, существование минимума и максимума, перемена мест слагаемых или сомножителей — не могут быть непосредственно перенесены на бесконечное. В начале своего доклада я уже упоминал, что эти вопросы были выяснены благодаря проницательности Вейерштрасса, и теперь анализ в своей области стал безошибочным наставлением и практическим инструментом для пользования бесконечным.
Однако сам анализ ещё не ведёт нас к глубочайшему проникновению в сущность бесконечного. Такому проникновению гораздо больше способствует дисциплина, которая стоит ближе к общефилософским приёмам мышления и которая была призвана опять, уже в новом свете, поставить весь комплекс вопросов, касающихся бесконечного. Этой дисциплиной является теория множеств, создателем которой был Георг Кантор. Здесь мы рассмотрим только то, поистине единственное в своём роде и оригинальное, что составляет собственно ядро канторовского учения, — его
Если хотят кратко характеризовать новое понимание бесконечного, которому положил начало Кантор, можно, пожалуй, сказать следующее: в анализе мы имеем дело с бесконечно малым и бесконечно большим только как с предельным понятием, как с чем-то становящимся, образующимся, производящимся, т.е., как говорят, с
Уже Фреге и Дедекинд, сделавшие очень многое для обоснования математики, оба, независимо друг от друга, применили актуальную бесконечность для того, чтобы обосновать арифметику независимо от всякого наглядного представления и опыта, на чистой логике и развивать её дедуктивным путём только посредством логики. Их стремление состояло в том, чтобы конечное число не брать из наглядного представления, а вывести чисто логически, существенно используя при этом понятие бесконечных множеств. Кантор же разработал понятие бесконечного систематически. Рассмотрим оба упомянутых примера бесконечного:
1) 1, 2, 3, 4, ...
2) Точки отрезка [0, 1] или, что то же, совокупность действительных чисел, заключённую между 0 и 1 [включая их].
Во-первых, их надо исследовать с точки зрения многочисленности; при этом мы приходим к поразительным фактам, которые теперь хорошо известны каждому математику. Именно, если рассматривать множество всех рациональных чисел, т. е. все дроби 1/2, 1/3, 2/3, 1/4, ... , 3/7, ... , то оказывается, что это множество, взятое только с точки зрения многочисленности, не больше множества целых чисел; мы говорим, что рациональные числа могут быть обычным способом пересчитаны, или что их множество счётно.
То же справедливо и относительно множества всех чисел, выражающихся с помощью радикалов и, даже более того, — для множества всех алгебраических чисел. Аналогично обстоит дело и с нашим вторым примером: неожиданным образом оказывается, что множество точек квадрата или куба, взятое только с точки зрения многочисленности, не больше множества точек отрезка [0, 1]; даже для множества всех непрерывных функций справедливо ещё такое же утверждение. Кто узнаёт это впервые, может подумать, что с точки зрения многочисленности существует вообще одна только бесконечность. Но это неверно: множества наших двух примеров, — 1-го и 2-го — как говорят, не «равномощны»; напротив того, множество 2-го примера не может быть пересчитано, — оно больше множества 1-го примера. Здесь наступает характерная перемена в образовании идей Кантора. Точки отрезка нельзя пересчитать обычным способом с помощью чисел 1, 2, 3, ... Но, допуская существование актуальной бесконечности, мы отнюдь не ограничиваем себя этим обычным способом счёта, и ничто нас не принуждает прекратить счёт. Когда мы пересчитали 1, 2, 3, ..., то мы можем пересчитанные предметы рассматривать как некое в этом определённом порядке законченное бесконечное множество. Обозначим, как это делает Кантор, этот порядок по его типу через ω; тогда счёт естественно продолжается с помощью ω + 1 ,ω + 2 ,... до ω + ω или ω*2, а затем он продолжается дальше с помощью ω*2 + 1, ω*2 + 2, ω*2 + 3, ..., ω*2 + ω = ω*3 и далее с помощью ω*2, ω*3, ω*4, ..., ω*ω = ω2, ω2 + 1, ...
Таким образом, мы получаем следующую таблицу:
1, 2, 3 ...
ω, ω + 1, ω + 2 ...
ω*2, ω*2 + 1, ω*2 + 2 ...
ω*3, ω*3 + 1, ω*3 + 2 ...
ω2, ω2 + 1, ...
ω2 + ω, ω2 + ω*2, ω2 + ω*3 ...
ω2*2, ...
ω2*2 + ω, ...
ω3, ...
ω4, ...
ωω, ...
Это — первые трансфинитные числа, числа второго класса, как их называет Кантор. К ним мы подходим просто посредством продолжения счёта за пределы обыкновенной счётной бесконечности, т.е. с помощью вполне естественного, однозначно определённого последовательного продолжения обычного счёта в конечном. Подобно тому как мы до сих пор считали лишь 1-ю, 2-ю, 3-ю, ... вещь множества, так теперь мы считаем ω-ю,
Кантор в соответствии с этим ходом мыслей успешно построил теорию трансфинитных чисел и создал для них полное исчисление. Итак, в конце концов, благодаря гигантской совместной работе Фреге, Дедекинда и Кантора, бесконечное было возведено на трон и наслаждалось временем своего высшего триумфа. Бесконечное в своём дерзком полёте достигло головокружительной высоты успеха.
Но реакция не заставила себя ждать; она разыгралась очень драматически. Произошло нечто, аналогичное тому, что случилось при развитии исчисления бесконечно малых. На радостях по поводу новых богатых результатов стали явным образом недостаточно критически относиться к законности умозаключений; поэтому уже при простом образовании понятий и применении умозаключений, постепенно ставших обычными, выявились противоречия, сначала единичные, а затем всё более резкие и всё более серьёзные: так называемые парадоксы теории множеств. В особенности это относится к противоречию, найденному Цермело и Расселом, опубликование которого оказало на математический мир прямо-таки катастрофическое действие. Перед лицом этих парадоксов Дедекинд и Фреге фактически отказались от своей точки зрения и очистили поле битвы.
Дедекинд долго сомневался перед тем, как выпустить новое издание своей работы «Что такое числа, и чем они должны быть» («Was sind und was sollen die Zahlen»), которая в своё время открыла новую эпоху; у Фреге так же была тенденция считать свою книгу «Основные законы арифметики» («Grundgesetze der Arithmetik») ошибочной, в чём он признаётся в одном из своих послесловий. И на учение Кантора с различных сторон были произведены бурные нападки. Контрдвижение было столь стремительно, что общеупотребительнейшие и плодотворнейшие понятия математики, простейшие и важнейшие её умозаключения оказались под угрозой, и применение их должно было быть запрещено. Правда, не было недостатка и в защитниках старого; но мероприятия защиты были очень слабы, и они не были направлены единым фронтом в нужную сторону. Лекарств против парадоксов рекомендовали слишком много, методы объяснений были слишком разнообразны.
Надо согласиться, что состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в математике — этом образце достоверности и истинности, — образование понятий и ход умозаключений, как их всякий изучает, преподаёт и применяет, приводят к нелепостям. Где же искать надёжность и истинность, если даже само математическое мышление даёт осечку?
Но существует вполне удовлетворительный путь, по которому можно избежать парадоксов, не изменяя при этом нашей науке. Те точки зрения, которые служат для открытия этого пути и те пожелания, которые указывают нам направление, суть следующие:
1. Мы будем заботливо следить за плодотворными способами образования понятий и методами умозаключений везде, где является хотя бы малейшая надежда, будем ухаживать за ними, поддерживать их, делать их годными к использованию. Никто не может изгнать нас из рая, который создал нам Кантор.
2. Надо повсюду установить ту же надёжность заключений, которая имеется в обыкновенной, низшей теории чисел, в которой никто не сомневается и где возникают противоречия и парадоксы только вследствие нашей невнимательности.
Достижение этой цели возможно, очевидно, лишь после того, как мы полностью выясним
Раньше мы уже выяснили, что какие бы опыты и наблюдения и какую бы отрасль науки мы ни рассматривали, нигде в действительности мы не находим бесконечности. Должны ли мысли о вещах быть столь непохожими на то, что происходит с вещами, должны ли они сами по себе идти другим путём, совершенно в стороне от действительности? Разве не ясно, что когда мы, как нам кажется, в каком-то смысле познаём реальность бесконечного, на самом деле мы лишь позволяем себе соблазниться чудовищно большими и чудовищно малыми размерами, которые так часто встречаются в действительности. А содержательные логические выводы, когда мы их применяли к действительным вещам или событиям, — разве они нас где-либо обманывали и где-либо нам изменяли? Нет — содержательное логическое мышление необходимо. Оно нас обманывало только тогда, когда мы принимали произвольные абстрактные способы образования понятий; мы в этом случае как раз недозволенно применяли содержательные выводы, т.е. мы, очевидно, не обратили внимания на предпосылки, необходимые для применения содержательного вывода. В признании того, что такие предпосылки имеются и должны приниматься во внимание, мы согласны с философами, особенно с Кантом. Уже Кант учил — и это составляет существенную часть его учения, — что математика обладает не зависящим от всякой логики устойчивым содержанием, и потому она никогда не может быть обоснована только с помощью логики, вследствие чего, между прочим, стремления Дедекинда и Фреге должны были потерпеть крушение. Наоборот, кое-что уже дано в нашем представлении в качестве предварительного условия для применения логических выводов и для выполнения логических операций: определённые, внелогические, конкретные объекты, которые имеются в созерцании до всякого мышления в качестве непосредственных переживаний. Для того чтобы логические выводы были надёжны, эти объекты должны быть обозримы полностью во всех частях; их показания, их отличие, их следование, расположение одного из них наряду с другим даётся непосредственно наглядно, одновременно с самими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении. Это — та основная философская установка, которую я считаю обязательной как для математики, так и вообще для всякого научного мышления, понимания и общения и без которой совершенно невозможна умственная деятельность. В частности, в математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых, согласно нашей установке, непосредственно ясен и может быть впоследствии узнаваем.
Припомним сущность и методику теорий обыкновенных конечных чисел. Её, разумеется, можно построить отдельно, конструируя числа с помощью содержательных, наглядных соображений. Однако математическая наука отнюдь не исчерпывается числовыми равенствами и не сводится к одним только этим равенствам. Можно утверждать, тем не менее, что она является аппаратом, который при применении его к целым числам всегда должен давать верные числовые равенства. В таком случае ставится требование настолько исследовать строение этого аппарата, чтобы в этом убедиться. Вспомогательным средством при этом служит нам только тот же конкретно содержательный способ рассмотрения и конечная установка мышления, как они применялись для получения числовых равенств при построении теории чисел. Это познавательное требование в действительности выполнимо, т.е. можно получить чисто наглядным, конечным способом — совершенно так же, как получаются истины теории чисел — те рассмотрения, которые ручаются за достоверность математического аппарата.
Рассмотрим теперь ближе теорию чисел. В теории чисел мы имеем знаки:
1, 11, 111, 11111, ...
где каждый числовой знак можно распознать благодаря тому, что в нём за 1 всегда следует опять 1. Эти числовые символы —
При сообщениях мы будем пользоваться в качестве числовых знаков также и буквами а, b, c. Согласно этому, b > а является сообщением того, что числовой знак b выступает за числовым знаком a. Точно так же, если исходить из этой точки зрения, a + b = b + a есть сообщение, что числовой знак a + b означает то же, что и числовой знак b + a. При этом содержательная правильность этого сообщения может быть доказана с помощью содержательного вывода, и мы можем с этим наглядным содержательным способом обсуждения пойти очень далеко вперёд.
Я хотел бы показать вам только один пример, в котором переходят за этот наглядный способ обсуждения. Самым большим (39 цифр) из известных до сих пор простых чисел является
р = 170 141 183 460 469 231 731 687 303 715 884 105 727.
С помощью известного евклидовского способа мы можем доказать, рассуждая полностью в рамках нашей установки, что между p + 1 и p! + 1 безусловно существует новое простое число. Это высказывание само по себе также соответствует нашей конечной установке, так как слово
Безусловно: p + 1 или p + 2 или p + 3 ... или p! + 1 есть простое число. Но, далее, очевидно, то же я могу выразить словами: существует простое число
1. > p и в то же время
2. <= p! + 1
Отсюда мы приходим к формулировке теоремы, которая выражает только часть евклидовского утверждения; существует простое число >p. Хотя по своему содержанию это последнее утверждение гораздо уже евклидовского и хотя переход кажется совершенно безобидным, всё же это есть прыжок в трансфинитное [в смысле «законечное» —
Как это может быть? Мы имеем здесь высказывание о существовании: «существует»! Правда, мы встречаем уже это слово в теореме Евклида. Однако там, как я уже говорил, слово «существует» представляло собою другой сокращённый способ выражения того, что либо p + 1, либо p + 2, либо p + 3 ..., либо p! + 1 есть простое число, подобно тому, как длинную фразу: «либо этот кусок мела красен, либо тот кусок мела красен, либо ..., либо кусок мела, лежащий вон там, красен» заменяют короткой: «среди этих кусков мела имеется красный кусок». Такого рода утверждение, говорящее о том, что среди некоторой конечной совокупности предмет, обладающий определённым свойством, «существует», полностью соответствует нашей конечной установке. Напротив того, альтернатива «либо: р + 1, либо p
Вообще, если исходить из конечной точки зрения, то высказывание вида «существует число, имеющее такое-то и такое-то свойство» имеет смысл только как
Таким образом, мы натолкнулись здесь на трансфинитное при разложении высказывания о существовании на части, ни одна из которых не может быть истолкована как «или-связь». Равным образом, мы приходим к трансфинитному, когда мы отрицаем общее, т. е. распространяющееся на любые числовые знаки, утверждение. Так, например, для высказывания: если а — числовой знак, то всегда должно быть
a + 1 = 1 + a,
— с конечной точки зрения
Отсюда, в частности, следует, что в смысле конечной установки нельзя применить альтернативу, согласно которой равенство, подобное вышеприведённому, включающее в себя неопределённый числовой знак, либо выполняется для любого числового знака, либо опровергается противоречащим примером. Действительно, эта альтернатива, являющаяся применением закона Tertium non datur (закона исключённого третьего), существенно опирается на предположение, что утверждение общей действенности этого равенства может быть отрицаемо.
Во всяком случае констатируем: если мы остаёмся в области конечных высказываний, как нам это и приходится делать сначала, то в таком случае имеют место не поддающиеся обозрению логические соотношения, и эта необозримость доходит до нестерпимости, когда слова «все» и «существуют» комбинируются и вставляются в теоремы. Во всяком случае, те логические законы, которыми люди, с тех пор как они мыслят, всегда пользовались и о которых учил уже Аристотель, несправедливы в конечном. Мы бы могли найти выход в том, чтобы установить логические законы, справедливые в области конечных высказываний; но это не принесло бы нам никакой пользы, так как мы ведь не хотим отказаться от пользования простыми законами аристотелевой логики, и никто, говори он даже ангельским языком, не удержит людей от того, чтобы отрицать любые утверждения, образовывать частичные суждения и применять закон исключённого третьего. Как же нам теперь быть?
Вспомним,
2 и (1 + sqrt(-5)),
хотя в действительности таковой не существует; точно так же и здесь
Как же мы теперь придём к
Таким образом, уже в алгебре имеет место увеличение числа конечных объектов. До сих пор это были только числовые знаки, как, например, 1, 11, 11111. Только они служили объектами содержательного рассмотрения. Но уже в алгебре математическая практика выходит за эти пределы. Даже когда некоторое высказывание с нашей конечной точки зрения ещё допустимо в связи со ссылками на содержательное, как, например, теорема о том, что
a + b = b + a,
где а и b означают некоторые числовые знаки, — даже тогда мы пользуемся не этой формой сообщения, а формулой
которая теперь уже отнюдь не является непосредственным сообщением о чём-то содержательном, а некоторым формальным образом, отношение которого к старым конечным высказываниям
2 + 3 = 3 + 2,
5 + 7 = 7 + 5
состоит в том, что мы в эту формулу вместо
никакого значения сами по себе не имеют, точно так же, как и числовые знаки; однако из неё можно получить формулы, которым мы приписываем значение, именно тем, что мы их понимаем как сообщение конечных высказываний. Если мы этот взгляд обобщим, то математика сведётся к совокупности формул, во-первых, таких, которым соответствуют содержательные сообщения конечных высказываний, т. е. по существу числовых равенств или неравенств, и во-вторых, других формул, которые сами по себе никакого значения не имеют и которые являются
Какова же была наша цель? В математике мы нашли, с одной стороны, такие конечные высказывания, которые содержат только числовые знаки, как-то:
3 > 2, 2 + 3 = 3 + 2, 2 = 3, 1 ≠ 1;
эти высказывания, если исходить из нашей конечной точки зрения, оказываются непосредственно наглядными и без дальнейшего понятными; их можно отрицать, они верны или ложны, можно свободно, не задумываясь, распоряжаться ими согласно логике Аристотеля; закон противоречия для них имеет место, т. е. какое-либо высказывание этого рода и его отрицание не могут оба быть верны; имеет место закон исключённого третьего, т. е. одно из двух — либо данное высказывание верно, либо верно его отрицание. Когда я говорю: «некоторое высказывание ложно», то это равносильно утверждению: «отрицание этого высказывания верно». Кроме этих элементарных высказываний совершенно непроблематического характера, мы встречали также конечные высказывания проблематического характера, например, такие, которые были неразделимы. Наконец, мы ввели идеальные высказывания, которые должны способствовать тому, чтобы в совокупности опять-таки имели место обычные законы логики. Но так как идеальные высказывания, именно формулы, сами по себе не имеют значения, поскольку они не выражают конечных утверждений, то логические операции над ними не могут производиться содержательно, как над конечными высказываниями. В таком случае сами логические операции и математические доказательства необходимо формализовать; это требует перевода логических соотношений на язык формул. Поэтому мы должны будем к математическим знакам прибавить ещё и логические знаки, например:
& (и), V (или; либо), --> (если, то), ! (неверно)
и пользоваться кроме математических переменных
Как это может произойти? К счастью для нас, здесь оказывается та же предустановленная гармония, которую мы так часто встречаем в истории развития науки — которая пригодилась Эйнштейну, когда он для своей гравитационной теории нашёл вполне разработанное общее исчисление инвариантов: в качестве такой успешно разрабатывавшейся предварительной теории мы находим