Точно так же выстраиваются в необходимом порядке и клетки эмбриона. Клетки получают соответствующую информацию и, согласно ей, занимают позицию в ряду других клеток, ориентируясь на границы этого ряда. После обретения клетками своих мест в них включаются генетические программы: клетки из левой трети становятся синими, из центральной трети — белыми, а из правой трети — красными. Смысл этого механизма в том, что на основе использования одного и того же позиционного значения могут развиться различные формы клеток — это происходит благодаря тому, что, в соответствии с заложенной в них генетической программой, клетки способны интерпретировать свое позиционное значение различным образом. Этот же механизм с успехом действует и в двухмерной системе координат, в которой интерпретирование позиционного значения происходит по двум осям. Далее мы рассмотрим подобные примеры.
Как клетки определяют свою позицию по отношению к начальной и конечной границам группы клеток, к которой они принадлежат? Это непростая проблема. Поскольку все схемы последующего развития клеток изначально формируются внутри небольших клеточных групп, протяженность линии клеток по прямой в любом направлении составляет меньше тридцати клеток. Это заставило Френсиса Крика предположить, что клетки определяют свою позицию благодаря считыванию информации о концентрации того или иного химического соединения. Однако как бы привлекательно ни выглядела эта теория, в настоящее время считается, что распространение сигнала в виде определенной концентрации химического вещества слишком ненадежный способ для получения столь важной информации. Ученые продолжают спорить о том, каким именно образом клетки обретают свои позиционные значения. Возможно, это происходит за счет непосредственного обмена сигналами между клетками в местах их соединения друг с другом.
Как бы то ни было, исследования регенерации тканей дают убедительные доказательства того, что клетки действительно обладают позиционными значениями. Несколько видов лягушек способны регенерировать свои конечности, что требует, чтобы клетки обладали позиционными значениями относительно утраченной конечности, то есть чтобы процесс регенерации начинался с того места, в котором конечность подверглась ампутации, и далее по направлению к кончикам утраченных пальцев.
Ученые выявили специфический белок на оболочках клеток конечности лягушки, концентрация которого уменьшается от плеча к конечностям лягушки. И при этом установили, что возможно изменить позиционные значения клеток, обрабатывая регенерируемую конечность ретиноевой кислотой, которая приводит к появлению у клеток в районе пальцев более высокой концентрации этого белка и уподобляет их клеткам в районе плеча. Если ампутировать лягушке кисть, то при обычных условиях у нее будет регенерирована именно кисть. Но если в процессе регенерации ввести в ткани ретиноевую кислоту, то регенерируемые клетки решат, что они являются клетками плечевой области, и тогда на месте отрезанной кисти вырастет целая лапка.
Другой пример того, что клетки обладают позиционными значениями, дало изучение тканей дрозофилы. В ходе экспериментов ученые установили, что позиционные значения клеток ног и усиков дрозофилы одинаковы, но по-разному интерпретируются из-за воздействия особых контролирующих генов. И ноги, и усики дрозофилы являются довольно длинными образованиями, но при этом ноги вырастают из тела мушки, а усики — из ее головы и весьма сильно отличаются друг от друга по форме. Однако мутация одного-единственного гена может привести к тому, что у дрозофилы вместо усика вырастет нога.
Ученым еще предстоит понять, как действуют контрольные гены, которые следят за интерпретацией клетками своих позиционных значений. Но как бы то ни было, поразительно, что один-единственный ген может иметь столь мощное значение для формирования эмбриона.
Важность контрольных зон генов в деле образования структур тела подтверждается другим примером, почерпнутым из изучения особенностей развития дрозофилы. На ранней стадии развития некоторые гены проявляются в спинной области мушки семью полосками — их можно увидеть, если промаркировать белок, который они кодируют. Изначально исследователи думали, что эти полоски наделяет особыми свойствами и точно устанавливает их очертания и границы лежащая под ними волнообразная структура — что полоски развиваются в районе гребней каждой из волн. Но на самом деле механизм установления очертания и границ полосок основан на других принципах, в число которых, однако, не входит принцип позиционной информации. Дело в том, что каждая полоска отличается от всех остальных. Это происходит из-за того, что имеется семь различных контрольных зон, в результате чего образуется семь разных полосок. Каждая из контрольных зон активируется разными белками, которые играют роль транскрипционных факторов, присутствующих в области каждой полоски.
Формирование структур тела во время развития эмбриона хорошо наблюдать на примере образования конечностей. Особенно полезными в этом плане оказались исследования эмбриона цыпленка, поскольку за развитием его конечностей очень легко вести наблюдение — для этого достаточно вскрыть скорлупу яйца и увидеть эмбрион во всех деталях.
Конечности начинают расти, когда само тело уже достаточно хорошо сформировано. Их зачаток на раннем этапе развития похож на сплюснутый воздушный шарик. При этом одни клетки создают его «оболочку», внутри которой делятся другие клетки; это деление и ведет к росту «шара». Впоследствии внутренние клетки образуют зародышевые элементы костной системы — предтечи костей. На верхушке оболочки «шара» находится утолщенный гребень; он и придает лапке цыпленка ее окончательную форму.
То же самое происходит с конечностями человека. На краю зоны развития в том месте, где будет сформирован мизинец, находится особая сигнальная зона, в которой образуется белок «Акустический еж». Он передает информацию по линии, которая пролегает от большого пальца к мизинцу. Концентрация «Акустического ежа» наивысшая в районе формирования мизинца, она снижается ближе к зоне, где образуется большой палец. Ученые полагают, что степень концентрации «Акустического ежа» определяет позицию клеток, а значит, и то, какой именно палец здесь сформируется.
Присвоим трем пальцам цифры 4, 3, 2 по направлению от мизинца к большому пальцу. Они обычно располагаются согласно формуле «4-3-2», и палец «4» характеризуется высоким содержанием «Акустического ежа», а палец «2» — низким. Если взять у одного эмбриона участок тканей с присутствием «Акустического ежа» и пересадить в область зачатка конечностей другого эмбриона, где должен будет вырасти большой палец, то конечность расширится и на ней появится шесть пальцев по формуле «4-3-2-2-3-4».
«Акустический еж» помогает контролировать развитие пальцев как на руках, так и на ногах. Ответная реакция на него клеток, располагающихся на руках и на ногах, не одинакова — дело в том, что на верхних и нижних конечностях активируются разные гены. Иногда — к счастью, довольно редко — дети рождаются с лишними пальцами; это происходит из-за того, что в районе формирования большого пальца образуется дополнительная сигнальная область с «Акустическим ежом».
В развитии конечностей большую роль играет программируемая смерть клеток — апоптоз, которая заставляет умирать те клетки, которые располагаются между пальцами. Если бы этого не происходило, на руках были бы перепонки и они походили бы на утиные лапки. Апоптоз является частью механизма образования структур тела; он контролируется генами.
По мнению ряда ученых, позиции клеток на основной оси руки, от плеча до кисти, определяются временем, которое клетки проводят в зоне развития. Те клетки, которые находятся в зоне развития дольше всего, становятся пальцами. Те же клетки, которые покидают ее раньше других, образуют кости — лучевые и локтевые. Такая модель, в которой за позиции клеток отвечает механизм, регулирующий время, объясняет эффект препарата талидомида — его прием беременными женщинами приводил к деформациям конечностей у новорожденных младенцев. Талидомид, вероятно, убивает клетки в зоне развития и ломает график их распределения вдоль оси конечности. Это приводит к тому, что из всех тканей руки развиваются только ткани в районе кисти. Есть данные, что талидомид блокирует развитие кровеносных сосудов, и это вызывает незапланированный природой апоптоз в зоне развития, из-за чего дети рождаются с кистью, которая начинается прямо от плеча.
Все клетки мускулов в наших конечностях мигрируют туда из сомитов, о которых мы уже упоминали. В отличие от клеток конечностей, клеткам, которым предстоит развиться в клетки мускулов, не присвоено на ранней стадии никаких позиционных значений; они совершенно одинаковы — в этом смысле между ними царит подлинная демократия. Когда будущие мускульные клетки проникают в ткань конечностей, клетки конечностей, обладающие позиционными значениями, направляют их в нужные места, где эти клетки превращаются в мускульные и прикрепляются к костям и сухожилиям. Они и на этой стадии развития ведут себя абсолютно демократично, без каких-либо претензий, и готовы соединиться с любой костью и сухожилием, с какими войдут в непосредственный контакт. Это показали многочисленные эксперименты на эмбрионах цыплят.
Существует и пока еще до конца не понятый механизм, который определяет позиции клеток, располагающихся вдоль основной оси тела, то есть от него зависит, где разовьются шея, ребра, конечности и нижняя часть спины. Этот механизм активирует специальный набор генов, известных как гены Хокса, которые также были открыты во время исследований на дрозофилах. У дрозофилы набор этих генов отображается вдоль ее тела в той последовательности, в которой они отражены в хромосоме. Это — единственный известный пример пространственной взаимосвязи между порядком генов в хромосоме и их расположением в эмбрионе. У нас имеется четыре набора, в которые входят до тринадцати таких генов, называемых гомеотическими, — расположенные на четырех различных хромосомах, что объясняется удвоением первоначального набора в ходе эволюции, они тесно связаны между собой.
Наборы гомеотических генов отображаются на различных позициях вдоль оси нашего тела, идущей от головы к копчику, и определяют развитие тканей в различных локальных секторах — например, то, где вырастут ребра или где разовьются зачатки будущих конечностей. Так, например, ген Хокса А1 отображается в той части тела, которая относится к голове, а ген Хокса А13 — в нижней части нашего позвоночника.
Спинной мозг — это хороший пример морфогенезиса (изменения формы), в основе которого лежат механические процессы, способные восхитить любого инженера. Ткань, из которой в будущем разовьется головной и спинной мозг, выделяется на весьма ранней стадии нашего развития и представляет собой узкую полоску. Формирование трубки, из которой затем разовьется спинной мозг, похоже на складывание листка бумаги. Первой ступенью является образование борозды вдоль срединной линии, в результате чего области ткани, располагающиеся по обеим сторонам от борозды, поднимаются вверх, двигаются в направлении срединной линии, встречаются и соединяются. В результате образуется трубка, состоящая из всего лишь одного слоя клеток и пустая внутри.
За все изменения формы отвечает программа, заложенная в клетках, образующих полоску. Формирование первоначальной борозды вызывается клетками, располагающимися на срединной линии. Они приобретают клинообразную форму — возможно, из-за сжатия клеток, находящихся под оболочкой трубки.
После соединения краев полоски и образования трубки трубка отделяется от окружающей ее ткани. Это становится возможным в результате изменения молекул, располагающихся на клеточных оболочках, которые ранее способствовали соединению и сцеплению клеток, а теперь не препятствуют их разъединению. Обретя самостоятельность, трубка превращается в сплошной стержень, но затем клетки в сердцевине стержня начинают отмирать, в результате чего он вновь превращается в трубку. О развитии спинного мозга мы поговорим далее — в контексте развития всей нервной системы.
Наше лицо в основном образуется группой клеток, принадлежащих к нервному гребешку. Первоначально они обладают способностью превращаться в различные типы клеток и, таким образом, являются мультипотентными клетками. Но позже, начав миграцию, они дифференцируются на клетки различных типов (мой большой нос также обязан своим происхождением нервному гребешку). Путь, проделываемый этими клетками в ходе миграции, определяется клетками, поверх которых они движутся, — движение зависит от выделений, испускаемых нижним слоем клеток. Эти выделения могут как увеличить, так и уменьшить сцепление между клетками и, следовательно, затруднить или ускорить их перемещение. Кроме того, на скорость и направление движения влияет выпячивание клеточной оболочки в нижнем слое.
По мере миграции способность клеток к мультипотенции уменьшается. Причина этого в сигналах, получаемых ими от слоя, над которым они движутся. Эти сигналы направляют их в совершенно определенные места, и то, в какой тип клеток они разовьются, зависит от места, в котором они в конце концов окажутся. Когда клетки прибывают в пункт назначения, они получают сигналы, благодаря которым начинается активация одних и подавление других генов, отвечающих за превращение этих клеток. Что же до числа сигналов, которыми обмениваются клетки, то оно очень велико, и все эти сигналы так или иначе связаны между собой — как правило, каждый следующий сигнал клетки модифицируется на основе информации, пришедшей с предыдущим сигналом. Все это вместе составляет весьма сложную, постоянно меняющуюся картину. Правда, надо иметь в виду, что изменения происходят в заданных рамках.
Наша сосудистая система — это первое, что развивается в эмбрионе. Сердце, вены, артерии и другие сосуды формируются из одних и тех же клеток. Эти клетки, соединяясь, образуют трубки, и один из концов каждой трубки становится центром роста, где клетки размножаются. Клетки, находящиеся на кончике сосуда, имеют длинные сокращающиеся отростки, которые вытягиваются вперед и направляют рост сосуда. При этом они чутко реагируют на сигналы от клеток той ткани, через которую сосуд прорастает.
Трубки, из которых образуются сосуды, уже на самой ранней стадии, еще до того, как они начинают расти, имеют характерные признаки либо артерий, либо вен, однако в процессе развития эти особенности могут исчезнуть. Во время развития сосудов у них появляются многочисленные отростки, на возникновение и направление движения которых опять-таки влияют сигналы, получаемые от локальных групп клеток. Поскольку функция сосудов заключается в том, чтобы доставлять кровь в различные части тела, сигналы им посылают именно те клетки, которые строят органы, нуждающиеся в притоке крови.
Процесс дифференциации, в результате которого образуется множество разных типов клеток, определяется изменениями в поведении генов и процессами синтеза различных белков. Транскрипция гена определяется белковыми транскрипционными факторами, которые связываются с контрольными зонами. В клетках человека существует около 3000 различных транскрипционных факторов, но не все они вовлечены в деятельность по контролю за развитием тканей — некоторые отвечают лишь за контроль над генами, которые необходимы для поддержания обычной жизнедеятельности клетки. При этом многие гены активируются любыми из множества транскрипционных факторов, однако есть и такие, для активации которых нужны совершенно определенные факторы.
Красные кровяные тельца не обладают ни ядром, ни митохондриями. Они наполнены белком гемоглобином, который окрашивает их в красный цвет. Именно гемоглобин, с одной стороны, захватывает кислород в наших легких и снабжает им клетки, а с другой — забирает из клеток двуокись углерода и переносит ее в легкие.
Наш гемоглобин состоит из белковой части — глобина и небелковой — железосодержащего гема, причем молекула гема встроена в каждую цепь глобина. Содержащийся в геме атом железа и связывает кислород. Каждая молекула гемоглобина содержит две цепи альфа-глобина и две бета-глобина, которые кодируются генами, находящимися на различных хромосомах. Цепи альфа-глобина и бета-глобина создаются на разных этапах развития эмбриона, поскольку они с разной степенью силы связывают кислород. Связано это с тем, что потребность в кислороде на разных этапах развития не одинакова.
7. Как мы воспроизводим себя
Как работает механизм мейоза
Яйцеклетки и сперматозоиды — это настоящие короли и королевы клеточного сообщества. Лишь их потомство остается жить тогда, когда все остальные миллиарды клеток погибают. По сути, единственная роль всех этих миллиардов клеток заключается в том, чтобы обеспечить встречу яйцеклетки и сперматозоида.
То, как эволюция пришла к воспроизводству на сексуальной основе, а не на самооплодотворении самой яйцеклетки, — весьма сложная история. Но почему так случилось — понятно. Сексуальный механизм воспроизводства обеспечивает, во-первых, возможность большего генетического разнообразия, а во-вторых, возможность избавления от нежелательных генов. Самый простой способ избавиться от никчемных генов — поступать так, как это делают самки многих позвоночных, которые отказывают самцам с какими-либо изъянами. В известном смысле так же поступают женщины, выбирая одного мужчину и отвергая другого.
Яйцеклетки — это единственные клетки животных, из которых способна развиться целая взрослая особь. Развитие человеческой яйцеклетки инициируется за счет оплодотворения ее сперматозоидом, в результате чего она получает второй набор генов. Схема развития и форма сперматозоида и яйцеклетки весьма различны, однако для оплодотворения нужны они оба, ибо самостоятельно яйцеклетка развиваться не будет. Вместе они передадут по наследству следующему поколению особенности человеческой внешности и строения тела — от цвета глаз до длины носа. Я, признаться, испытываю благоговение перед тем фактом, что мы происходим от одной крохотной яйцеклетки. В этой связи важно знать и понимать, где и как она развивается. Так как же появляются яйцеклетки и сперматозоиды?
Область тела, в которой зарождаются яйцеклетки и сперматозоиды, можно выявить на стадии гаструляции. Образовавшись, эти клетки мигрируют в будущие области человеческих гениталий — в область яичника и яичек. По мере продвижения будущие яйцеклетки делятся и понемногу увеличивают свою численность; более того, они продолжают делать это еще некоторое время после того, как достигают яичника. Затем они перестают делиться, и с этого момента никакого увеличения числа яйцеклеток больше не происходит. Число их равняется примерно шести миллионам. В этих клетках содержится по 23 материнских и по 23 отцовских хромосом.
После этого начинается мейоз, в ходе которого происходит не только сокращение ровно наполовину числа хромосом в яйцеклетках, но и тесное взаимодействие и перемешивание хромосом. Мужские и женские хромосомы перемешивают отцовские и материнские гены, рекомбинируют их по-новому — так образуются новые и отличные от прежних хромосомы.
Во время мейоза будущая яйцеклетка делится дважды, однако при этом хромосомы удваиваются всего один раз и число их сокращается наполовину. Первоначальное число хромосом восстанавливается впоследствии при оплодотворении яйцеклетки за счет проникновения в нее сперматозоида.
Первым шагом на пути к сокращению числа хромосом в ходе мейоза является их удвоение — хромосомы дублируются так, как это происходит во время нормального процесса митоза при обычном делении клетки. При этом удвоенные хромосомы сохраняют связь друг с другом. А затем каждая пара отцовских хромосом находит точно такую же пару материнских хромосом, и эти пары хромосом также связываются. После этого происходит обмен сходными областями между отцовскими и материнскими хромосомами, в результате чего некоторые наборы генов матери оказываются на хромосомах отца, и наоборот. Затем следуют еще два деления клеток без дальнейшего увеличения числа хромосом, в результате чего образуется 4 яйцеклетки с генетическим набором из всего лишь 23 хромосом, которые при этом перемешаны так, что каждая из четырех яйцеклеток имеет различные наборы генов. Это обеспечивает практически безграничное генетическое разнообразие.
Яйцеклетки в яичнике проходят первую стадию мейоза, но больше уже никогда не размножаются, так что общее число возможных яйцеклеток — около шести миллионов — предопределено при рождении девочки. Однако к тому времени, когда девочка достигает половой зрелости, из них остаются в сохранности, избегнув разрушения и деградации, лишь около 40 тысяч. Каждая яйцеклетка способна после оплодотворения развиться в новорожденного ребенка. По достижении половой зрелости яйцеклетки вырастают в размерах в тысячу раз, и мейоз при этом продолжается.
Развитие сперматозоидов не включает мейоза на эмбриональной стадии. Он начинается позже в яичках половозрелого мужчины. Но перемешивание и замещение генов в хромосомах сперматозоидов происходит. В отличие от яйцеклеток, сперматозоиды образуются на протяжении всей жизни мужчины.
В ходе развития как яйцеклеток, так и сперматозоидов конечный набор и состояние их генов должны стать такими, чтобы они могли породить все клетки нашего тела. Отдельные гены, как яйцеклеток, так и сперматозоидов, в дальнейшем, однако, могут и не понадобиться. Они специально деактивируются в ходе процесса, известного под названием «импринтинг». Осуществляется импринтинг за счет добавления особой метиловой группы к необходимым областям ДНК, в результате чего блокируется транскрипция соответствующего гена. У млекопитающих удалось идентифицировать около 70 генов, заблокированных в результате импринтинга, однако ученые установили функции лишь некоторых из них.
Самый ясный пример относится к росту эмбриона: ген, кодирующий фактор роста, блокируется в хромосоме яйцеклетки, но сохраняется в сперматозоиде. С эволюционной точки зрения это объясняется тем, что существует противоречие интересов отца и матери относительно стратегии воспроизводства. Отец стремится к максимальному росту своего потомства, в то время как мать заинтересована в более-менее равномерном распределении своих ресурсов между всеми рожденными ею особями и поэтому хочет, чтобы рост каждого ее эмбриона был разумным, но не чрезмерным; поэтому в яйцеклетке деактивируется ген, кодирующий фактор роста.
С эффектом геномного импринтинга связаны различные генетические болезни и нарушения у человека. В их число входят синдром Прадера-Уилли, который характеризуется чрезмерным вниманием к приему пищи и трудностями в обучении, и синдром Ангельмана, который приводит к задержкам умственного развития, ненормальной походке, дефектам речи, припадкам и неоправданно приподнятому состоянию с частыми приступами беспричинного смеха. Гены, вызывающие эти болезни, располагаются на 15-й хромосоме. Они подвергнуты импринтингу в материнской хромосоме и соответственно должны иметься на отцовской хромосоме, чтобы у ребенка было нормальное развитие. Однако если эти гены отсутствуют и в отцовской хромосоме, то у ребенка неизбежно разовьется синдром Прадера-Уилли. Если же повреждена материнская 15-я хромосома, то это вызовет синдром Ангельмана.
Развитие яйцеклетки начинается с ее оплодотворения, когда с ней соединяется сперматозоид. В ходе полового сношения в женское влагалище выбрасывается около 300 миллионов сперматозоидов, однако до яйцеклетки, которая ждет оплодотворения, добирается в конечном итоге меньше тысячи из них. Правда, эти сперматозоиды способны сохранять свою жизнеспособность на протяжении еще трех суток.
Сперматозоид направляется к яйцеклетке, совершая колебательные движения своим хвостом, однако лишь один из тысячи сперматозоидов, стремящихся к яйцеклетке, в действительности имеет шанс соединиться с ней, пробившись сквозь ее защитную оболочку. Как только один сперматозоид сливается с яйцеклеткой и происходит ее оплодотворение, доступ для всех других сперматозоидов к этой яйцеклетке блокируется. Оплодотворение вызывает выброс кальция, что активирует энзим, который добавляет к белкам фосфатные группы и инициирует развитие яйцеклетки. Она начинает делиться и завершает процесс мейоза, произведя крошечную дочернюю клетку, которая затем распадается.
Для родителей, у которых возникают проблемы с оплодотворением и зачатием, сейчас существует возможность оплодотворить яйцеклетку искусственно, вне организма матери, и затем поместить ее в материнский организм — то есть совершить то, что называется экстракорполярным оплодотворением. Для совершения этой процедуры в организме матери с помощью гормонов инициируется созревание яйцеклеток. Затем они извлекаются из яичника и помещаются в искусственную питательную среду в пробирке. Туда добавляются сперматозоиды, и происходит оплодотворение, после чего оплодотворенная яйцеклетка помещается в матку матери. Если существует проблема с наличием сперматозоидов и для искусственного оплодотворения их недостаточно, то возможно оплодотворить яйцеклетку, введя непосредственно в нее один-единственный здоровый сперматозоид.
При оплодотворении в яйцеклетку обычно проникает лишь один сперматозоид, и примерно 12 часов спустя 23 материнские хромосомы соединяются с 23 отцовскими хромосомами. В результате мы получаем оплодотворенную яйцеклетку с полным набором хромосом, которая, если все и далее пойдет хорошо, способна развиться в целого человека. С этого момента начинается процесс деления клеток.
Наш пол определяется тем, какие половые хромосомы предоставляет при оплодотворении сперматозоид. Существуют две хромосомы, связанные с половой принадлежностью человека, — хромосомы X и Y. У мужчин имеются они обе, их сочетание обозначается как XY; у женщин есть две хромосомы X, обозначаемые обычно как XX. В ходе развития сперматозоидов происходит процесс мейоза, в результате которого число хромосом уменьшается наполовину, и поэтому одна половина сперматозоидов несет хромосому X, а другая — хромосому Y. У каждой яйцеклетки есть хромосома X. Если в яйцеклетку во время оплодотворения проникает сперматозоид с хромосомой X, то эмбрион получает хромосомный набор эмбриона XX и обретает женский пол. Если же в яйцеклетку проникает сперматозоид с хромосомой Y, то рождается ребенок мужского пола. В случае, если хромосомный набор оплодотворенной яйцеклетки представляет собой XXY или одну лишь X, то происходит ненормальное половое развитие. Таким образом, кто родится — мальчик или девочка, — зависит от того, какой сперматозоид оплодотворит яйцеклетку.
Хромосома Y приводит к развитию эмбриона мужского пола, поскольку она содержит ген, который кодирует белок, приводящий к развитию у эмбриона яичек и производству мужского гормона тестостерона, в силу чего возникают половые различия, характерные для мужчин и женщин. На ранней стадии развития разница между мужскими и женскими эмбрионами неразличима. Изначально все эмбрионы имеют женские признаки. Но когда в дело вступает производимый яичками гормон тестостерон, начинается развитие мужских признаков и ряду органов тела придается мужская форма. Воздействие тестостерона ведет к развитию пениса, а не клитора в области гениталий, хотя на самой ранней стадии нет никакого различия в структуре и строении ткани, из которой в будущем разовьются либо пенис, либо клитор. Тестостерон также предотвращает заметный рост груди у мужчин и оказывает воздействие на развитие головного мозга. Если мужчина невосприимчив к воздействию тестостерона, он, хотя и имея яички, будет выглядеть, как женщина.
Эмбрион, имеющий хромосомный набор XX и запрограммированный к тому, чтобы превратиться в женщину, изначально имеет двойное количество генов X по сравнению с мужским эмбрионом, обладающим хромосомным набором XY. Это необходимо скорректировать, поскольку на хромосоме X должно проявляться одинаковое число генов как у женщин, так и у мужчин. У человека, подобно другим млекопитающим, эта диспропорция корректируется путем случайной деактивации одной из хромосом X в каждой клетке женского эмбриона на ранней стадии развития. Этот процесс приводит к тому, что в клетках по всему телу содержится одинаковое число хромосом X, заимствованных у отца и у матери. В тех же случаях, когда число либо поведение половых хромосом не соответствуют норме, происходят отклонения от нормального развития.
Изучение развития яйцеклеток и сперматозоидов показывает, почему невозможно унаследовать приобретаемые людьми во время их жизни качества — такие, как знания, воспоминания или способности. В самом деле, как могут способности, которые в основном развиваются в нашем мозгу, быть переданными яйцеклетке или сперматозоиду? Это опрокидывает теорию, выдвинутую в начале девятнадцатого столетия Жаном-Батистом Ламарком, который утверждал обратное. Впрочем, передача по наследству характерных особенностей поведения возможна, но эти особенности должны быть обусловлены физиологией, связанной с генетической информацией.
Насколько обратимы и пластичны изменения в поведении клеток и генов в процессе развития? Прежде считалось, что гены, которые функционируют на ранних стадиях развития, позже «теряются». Эксперимент, который был призван подтвердить потерю генов и дать ответ на вопрос, можно ли изменить модель активности генов во взрослой клетке, поставили на клонированных объектах. Он включал в себя введение ядра клетки, подвергнувшейся дифференциации, в яйцеклетку, собственное ядро которой было удалено. Это делалось для того, чтобы увидеть, сможет ли яйцеклетка после этого нормально развиваться. Для эксперимента использовались лягушки, поскольку ядра их яйцеклеток находятся сразу под оболочкой и могут быть легко уничтожены при помощи радиоактивного облучения. После этого в яйцеклетку, лишившуюся ядра, вводили ядро клетки лягушачьего кишечника. Получившаяся в результате этого яйцеклетка проходила все ранние стадии развития, вплоть до фазы превращения в головастика. В клетке после дифференциации не терялись никакие гены. Введение ядер от других клеток, подвергшихся дифференциации, таких, как клетки кожи, приводило к аналогичному развитию, и это ясно показывало, что модель активности генов в клетках, подвергшихся дифференциации, может быть изменена и возвращена к той, которая существовала в ядре яйцеклетки. Более того, по своей генетической конституции образовавшийся головастик был идентичен тому экземпляру лягушки, от которой была взята клетка, подвергшаяся дифференциации. Эта клетка породила сообщество генетически идентичных клеток — это и есть то, что подразумевается под термином «клонирование».
Большая часть клонов, которые произошли от яйцеклетки лягушки, не смогли развиться далее стадии головастика — по причинам, которые исследователи понять не сумели. Однако если ядро бралось из клетки эмбриона лягушки на ранней стадии развития, то из такой клетки вырастали нормальные взрослые особи лягушек.
С млекопитающими — такими, как мыши и овцы, — ситуация сложнее. Овечка Долли прославилась, став первым млекопитающим, которое было клонировано из взрослой клетки, взятой из овечьего вымени, однако Долли умерла молодой, и ее короткая жизнь была полна проблем со здоровьем. Сотням эмбрионов, на которых проводились другие эксперименты по клонированию, так и не удалось превратиться в полноценных особей. У многих клонированных таким образом животных наблюдаются различные аномалии развития, например деформация конечностей; их часто подстерегает преждевременная смерть. В клонированных мышах не менее 5 процентов генов проявляются неправильно.
С другой стороны, нельзя сказать, что клонирование связано исключительно с неудачами. Уже то, что исследователи смогли не только клонировать мышей, коров и овец и вырастить из клонированных экземпляров взрослых животных, следует признать несомненным успехом. Удалось даже клонировать мышей, используя ядра, взятые из нервных клеток мозга. Впрочем, в большинстве случаев использование ядер, взятых из нервных клеток, приводило к прекращению развития эмбриона на ранней стадии.
Не существует достоверных данных об успешном клонировании приматов, однако их клонированные эмбрионы в лабораториях создавались. Все это указывает на то, что мы близки к клонированию человека, а это крайне опасное предприятие, поскольку получившийся в результате ребенок наверняка будет страдать различными отклонениями от нормы. Поэтому вполне правильной кажется идея запретить клонирование человека, причем сделать это не только по этическим соображениям, но прежде всего исходя из задачи сохранения здоровья людей.
Но почему все-таки возникает стремление получить человеческие клоны? Дело в том, что у кого-то появляется желание создать точную копию самих себя, или своего ребенка, или какой-то известной личности. При этом почему-то не учитывается, что клонированный человек, даже если он и является точной генетической копией донора ДНК, все равно будет отличаться характером, который определяется воспитанием, полученным в процессе взросления, тут, однако, следует оговориться, что клонирование, которое ограничивается созданием эмбрионов, скорее всего, окажется полезным для целей восстановительной медицины, поскольку получившиеся клетки пригодятся для лечения пациента с поврежденными тканями — они не вызовут у него реакции отторжения.
С самого начала идея клонирования человека сталкивалась с сильнейшими возражениями этического порядка. Раздаются требования ввести универсальный международный запрет на клонирование и более того — наказывать тех, кто его нарушит, как за тяжкое уголовное преступление. С осуждением идеи клонирования выступили многие деятели науки и культуры, а также руководители ряда государств.
Опасения ими высказываются самые разные, в том числе и весьма экзотические. Одно из них предостерегает от клонирования на том основании, что оно неминуемо приведет к созданию клонов профессиональных преступников. Другое сводится к тому, что клонированный ребенок будет морально страдать от своей генетической идентичности донору ядра клетки, на основе которой произведено его клонирование; дескать, его постоянно будут сравнивать с донором, а это создаст нагрузку на психику.
Против клонирования выступают и религиозные деятели, поскольку ставят знак равенства между эмбрионом и человеческой личностью. Однако в свете знаний о том, какой гигантской активности множества клеток требует наше развитие, разумно ли заявлять, что оплодотворенная яйцеклетка уже является человеком и что к ней надо относиться, как к человеку? Признаться, довольно трудно заставить себя относиться к одной-единственной клетке, как к человеческому существу, особенно если знать, какой путь ей предстоит пройти, чтобы примерно через девять месяцев из нее получился человек.
Я готов спорить с каждым, кто попытается доказать мне, что клонирование человека приведет к проблемам этического порядка. То, что какой-то индивид будет похож на человека-донора, не может являться основанием для серьезного беспокойства, поскольку многие дети и так похожи на своих родителей. А кроме того, мы знаем немало родителей, предъявляющих неоправданно высокие ожидания к своим детям. Стоит также отметить, что многие дети сейчас рождаются благодаря оплодотворению спермой доноров, которые не являются членами семьи. В общем, я считаю, что запрет на клонирование людей может быть продиктован только вероятностью появления детей с отклонениями в развитии, но никак не этическими соображениями.
В будущем, может быть, научатся изменять генетическую составляющую яйцеклетки таким образом, что у появившегося в результате этого на свет ребенка разовьются особые способности — скажем, высокий интеллект или склонность к спортивным достижениям. С подобным развитием событий действительно могут быть связаны этические проблемы, а также опасность, что вмешательство окажет непредвиденное негативное воздействие на ребенка. Яйцеклетки и эмбрионы — это чрезвычайно сложные образования, и мы еще не понимаем их сущность в достаточной степени, чтобы брать на себя ответственность за будущие жизни.
Пользующийся большим авторитетом врач Льюис Томас в своей книге «Медуза и улитка» назвал чудом момент, когда одна клетка сперматозоида соединяется с одной яйцеклеткой для того, чтобы появилась одна новая клетка под названием зигота, которая девять месяцев спустя превратится в новорожденного человека. Описание этого процесса Льюис Томас заключил такими словами: «Само существование этой клетки — одно из величайших чудес на Земле».
8. Как мы двигаемся, думаем и чувствуем
Как сообщаются друг с другом нервные клетки
Серая, мягкая, комковатая масса, которую представляет собой человеческий мозг, совершенно справедливо считается самым сложным образованием во Вселенной. В нашем мозгу содержится около 100 миллиардов нервных клеток, которые также называют нейронами, и еще большее число клеток, которые обеспечивают их деятельность. То, что вся эта масса клеток позволяет нам мыслить и чувствовать, представляется почти невероятным. Все, что мы делаем, определяется этим невообразимо сложным сообществом нервных клеток. Однако для нас по-прежнему во многом загадка то, как именно они сообщаются друг с другом, чтобы мы могли думать и испытывать ощущения, сознавать, что мы делаем, или хотя бы идти и одновременно думать о чем-то.
Любые наши действия осуществляются благодаря сигналам, которыми обмениваются друг с другом нервные клетки. Длинные отростки нервных клеток часто собираются вместе в общие пучки. Каждый такой пучок в просторечии называется нервом — он может достигать относительно большого размера. В дополнение к собственно нервным клеткам в нашем мозгу есть немало клеток, известных под названием глиальных. Их функция заключается не в передаче сигналов, а в обеспечении изоляции нервных волокон, в питании нервных клеток и удалении отходов их жизнедеятельности.
Нервные клетки сообщаются друг с другом, а также посылают сигналы через длинные нервные окончания, которые заставляют наши мускулы сокращаться. Одной из основных функций нашего мозга и причиной его возникновения с эволюционной точки зрения является контроль за сокращением наших мускулов. Благодаря этому мозговому контролю мы и способны двигаться.
С учетом неимоверной сложности всех нервных соединений в мозгу неизбежно встает вопрос: каким образом создаются все эти связи и соединения в период формирования мозга? Хорошим вопросом является и то, насколько глубоко определяются уникальные отличия одних нервов от других в ходе развития эмбриона. На самом деле различные комбинации из всего 37 генов могли бы в принципе определить уникальный характер каждого из миллиардов нервов в мозгу. Однако каким именно образом это гигантское сообщество нервных клеток, сообщаясь друг с другом, способно породить наши мысли, эмоции, движения и само сознание, до сих пор остается загадкой.
Главная обязанность нервных клеток — быстро передавать сигналы другим клеткам, в первую очередь — соседним нервным клеткам и клеткам мускулов. Весьма важны нервы, которые переносят информацию из различных частей тела в мозг, благодаря чему мы чувствуем то, что происходит вокруг нас. Другие нервы позволяют нам осязать, ощущать боль (и, значит, помогают устранить болезнь — причину боли), видеть, различать запахи и температуру окружающей среды, — словом, они поставляют нам самую разнообразную информацию.
Каждая нервная клетка имеет область, в которой находится ее ядро с генами и митохондриями. В этой области происходит синтез белков, и от нее отходят длинные тонкие ответвления. Одно из таких ответвлений, особенно длинное, — так называемый аксон, который передает сигналы другим нервным клеткам и расположенным на значительном удалении мускулам. Аксоны, отходящие от нервных клеток, часто связаны в пучки — нервы. Аксон, будучи лишь одну сотую миллиметра в диаметре, может достигать одного метра в длину. Таковы аксоны, идущие от спинного мозга к мускулам рук и ног. На конце аксон может разветвляться, и таким образом сигнал от него поступает одновременно сразу нескольким нервам и мускулам. Волокна аксонов окружены оболочкой из особых изолирующих клеток, которые позволяют сигналу быстрее проходить через нерв. Утрата изолирующих клеток приводит к рассеянному склерозу.
Из области нервной клетки, где расположено ее ядро, исходит также множество более мелких отростков, называемых дендритами; именно они принимают сигналы от других нервов. В человеческом мозгу одна нервная клетка может иметь до 100 тысяч дендритов. Зона контакта двух нервных клеток называется синапсом — и таких зон у каждой клетки от 5 до 299 тысяч. Многочисленные связи и соединения огромного количества различных нервных клеток делают наш мозг чрезвычайно сложной структурой. Чтобы окончательно понять, каким именно образом он функционирует, ученым еще потребуется провести гигантское число исследований и, наверное, огромное время.
Все нервные клетки передают сигналы по своим аксонам и дендритам одним и тем же способом — с помощью ионов натрия, генерирующих электрический заряд. Из нервной клетки, находящейся в спокойном состоянии, ионы выводятся постоянно. Если же на оболочку клетки воздействует импульс, приходящий от другой клетки, то ионы, наоборот, возвращаются в нее через открывшиеся поры. Однако нервная клетка никогда не бывает в восторге от поступления в нее дополнительных ионов натрия, и поэтому поры в оболочке быстро закрываются, а ионы начинают откачиваться обратно во внешнюю среду. Все это раз за разом вызывает изменения электрического потенциала внутри нервной клетки и оказывает ключевое воздействие на ее функционирование.
В прохождении электрического заряда, который называют потенциалом действия, по аксону и заключается механизм передачи сигнала нервной клеткой. Сам сигнал обычно именуют нервным импульсом. И прямо в эту секунду по миллиардам ваших нервных клеток передаются миллиарды нервных импульсов.
Когда нервный импульс достигает конца аксона, то он — в том случае, если здесь, в районе конца аксона, расположена другая нервная клетка, — доходит до синапса. Здесь, между концом аксона и оболочкой принимающей сигнал клетки, есть разрыв, через который электрический сигнал не может пройти. Чтобы преодолеть это препятствие, выбрасывается небольшое количества химических веществ — нейротрансмиттеров, которые создают «мост» между синапсом и оболочкой принимающей сигнал клетки и связываются с расположенными на этой оболочке рецепторами.
Такие нейротрансмиттеры, как адреналин, допамин и серотонин, изменяют электрический потенциал клетки, принявшей сигнал, и тем самым побуждают ее передать его дальше. Таким образом электрический импульс преобразуется в химический сигнал, который затем вновь преобразуется в электрический импульс.
Подобные события в области синапсов — это основа взаимодействия нервных клеток в нашем мозгу. Одна нервная клетка, как уже говорилось, может иметь тысячи синапсов, благодаря которым она связана с другими нервными клетками, и все вместе они определяют, станет ли эта нервная клетка источником нервного импульса и будет ли она передавать его дальше.
Сходным образом передаются сигналы мускульным клеткам, что вызывает сокращения скелетных мускулов и приводит к движениям наших тел. Мускульные клетки могут быть чрезвычайно большими, если сравнивать их размеры с размерами других клеток; они имеют волокнистую структуру и достигают в длину нескольких сантиметров. Это не совсем обычные клетки — они представляют собой соединение множества клеток, слившихся вместе, и поэтому имеют много ядер. Впрочем, есть и другие мускульные клетки — например, мышечные клетки сердца — одноядерные и небольшие по своим размерам. Однако все мускульные клетки, какими бы они ни были, сокращаются благодаря тому, что содержащиеся в них белки актин и миозин скользят относительно друг друга. Инициирует сокращение особое химическое вещество, которое выбрасывается в расположенном на конце мускульного нерва особом месте, подобном синапсу. Выброс этого химического вещества вызывает, по цепочке, изменение электрического заряда в оболочке мускульной клетки, высвобождение в клетке ионов кальция, изменение состояния миозина, вследствие чего он взаимодействует с актином, — и, наконец, происходит сокращение мышц.
Мой коллега Джеффри Бернсток поставил перед собой задачу узнать, как нервы вызывают непроизвольные сокращения гладкой мускулатуры — например, мускулатуры стенок кишечника. Считалось, что этот процесс сходен с процессом произвольных сокращений обычной мускулатуры, тех же мышц рук и ног, — нерв проводит электрический импульс, который вызывает выброс нейротрансмиттера, а тот связывается с оболочкой мускульной клетки и активирует ее. Бернсток разработал метод, с помощью которого он мог регистрировать электрическую активность гладкой мускулатуры, и обнаружил, что блокирование всех известных нейротрансмиттеров не мешало нервам активировать мускулатуру стенок кишечника. Значит, активировало ее что-то доселе неизвестное.
Чтобы определить это вещество, Бернсток проводил эксперимент за экспериментом и наконец сделал в 1970 году фундаментальное открытие: в роли нейротрансмиттера в данном случае выступает молекула АТФ, которую используют все клетки в качестве основного источника энергии. Лишь немногие ученые признали его открытие, большинство же исследователей подняло его на смех, однако время показало, что Бернсток прав. Ни много ни мало, но сделанное им открытие имеет важное значение для лечения целого ряда заболеваний, включая рак, цистит, мигрень.
Основная функция нервных клеток заключается в том, чтобы обработать информацию, поступающую как извне, так и изнутри нашего тела, и затем передать необходимые сигналы мускулам, с тем чтобы вызвать соответствующие моторные реакции. Все это осуществляется благодаря особым группам взаимосвязанных нервов, которые расположены в головном и спинном мозге. Ярким примером действия этих нервов является коленный рефлекс — когда доктор ударяет молоточком по сухожилию под коленной чашечкой, нога непроизвольно подпрыгивает вверх. Воздействие молоточка вызывает кратковременное напряжение разгибающих мышц ноги, что приводит к передаче соответствующего сигнала нервам, контролирующим сокращение этих мышц. Но одновременно поступают сигналы мышцам, которые должны противодействовать проявлению коленного рефлекса, — так что все не столь просто, как может показаться.
Взаимодействие между нервными клетками сложнее, нежели взаимодействие между нервными клетками и мышцами. С мышцами связан лишь один моторный нерв, и они получают лишь возбуждающие сигналы, которые варьируются по силе. Клетки же центральной нервной системы получают как возбуждающие, так и тормозящие сигналы. Одна нервная клетка в составе спинного мозга получает от других нервных клеток благодаря синапсам сотни и даже тысячи сигналов одновременно. И то, выдаст ли получающая эти сигналы нервная клетка необходимый нервный импульс, зависит от соотношения возбуждающих и тормозящих сигналов. Порой нервной клетке необходимо получить до пятидесяти возбуждающих сигналов для того, чтобы преодолеть тормозящий сигнал и выдать соответствующий импульс.
В нашей коже имеются сенсорные нервные окончания реагирующие на воздействие со стороны окружающей среды. Они воспринимают боль или, скажем, высокую температуру окружающей среды и передают соответствующие сигналы в наш мозг. Наиболее чувствительны подушечки наших пальцев. На прикосновения также реагируют клетки волос. Действие сенсорных нервных окончаний приводит к формированию в мозге человека своеобразной карты, точно отражающей, на какие именно участки кожи приходится воздействие, — ведь прикосновение к гениталиям возбуждает одну часть мозга, а прикосновение к языку — другую. Проводились эксперименты, когда при стимуляции различных зон мозга, отвечающих за формирование осязательных ощущений, испытуемые ощущали прикосновения к различным участкам тела. Тем самым удалось выявить области мозга, от которых зависит реакция на прикосновения к тем или иным частям тела.
Последующие исследования, в ходе которых регистрировалась активность отдельных клеток, выявили области мозга, отвечающие за температурные ощущения в различных частях тела. Благодаря нервным импульсам, которые передаются с поверхности кожи в мозг, мы можем ощутить нежный бриз и избегнуть ожога от контакта с раскаленным предметом. Мы способны ощущать температуры в диапазоне от минус десяти до плюс шестидесяти градусов. Различные клетки-сенсоры, находящиеся в коже, отвечают за передачу данных на нервные окончания. Механизм, позволяющий нам различать тепло и холод, работает благодаря тому, что в зависимости от температуры изменяются каналы прохождения ионов в этих клетках. При этом каждая группа клеток реагирует лишь на узкий диапазон температур. Они с постоянной частотой испускают нервные импульсы в том случае, если температура окружающей среды для них комфортна. Если же температура меняется, скорость передачи нервных импульсов замедляется или ускоряется.
Боль мы ощущаем благодаря рецепторам, которые реагируют на раздражители, потенциально способные нанести вред организму. Одни рецепторы реагируют на химические вещества, которые испускают поврежденные клетки, другие — непосредственно на неблагоприятное механическое воздействие или экстремальные температуры. Необходимость в болевых ощущениях очевидна — боль предупреждает нас о повреждениях, угрожающих телу. Чувство боли передается в мозг с помощью электрических импульсов, проходящих по специальным нервам, в оболочках которых имеются специальные каналы для ионов натрия; эти ионы, собственно, и сигнализируют мозгу о боли. Утрата или повреждение такого канала приводят к неспособности нервов посылать болевые сигналы в мозг, и это может стать фатальным для организма.
Известен случай, когда все члены одной семьи не ощущали боли. Исследования привели ученых к выводу о том, что у них у всех присутствовала мутация одного гена. Она препятствовала поступлению ионов натрия в нервные клетки, которые должны были реагировать на боль и передавать в мозг соответствующий нервный импульс.
Механизм, позволяющий нам видеть, основан на свойствах нашей сетчатки и состоит из двух фаз. Свет, поступающий в глаз, преобразуется в электрические импульсы клетками сетчатки, и эти импульсы передаются через глазные нервы в мозг. В нашей сетчатке представлены клетки-рецепторы двух видов — палочки и колбочки; они действуют соответственно либо ночью, либо днем. Один фотон света может вызвать электрический импульс в палочке, но не в колбочке, которая требует поступления большего количества света для того, чтобы этот импульс сгенерировать. Внешние области палочек и колбочек наполнены светопоглощающими пигментами (фотопигментами), прикрепленными к их оболочкам. Эти пигменты вызывают изменения электрического потенциала по разным сторонам клеточных оболочек, что порождает сигналы, идущие к нервам, связанным с оптическим нервом, в состав которого входят несколько миллионов аксонов. Эти аксоны особым образом связаны с той областью мозга, которая ведает зрением.
В основе цветного зрения лежат три типа колбочек, которые реагируют на свет с разной длиной волны, то есть на цвета. С каждым из этих трех типов связаны особые виды фотопигментов. Отсутствие либо неправильное функционирование колбочек приводит к цветовой слепоте.
Наша способность слышать и воспринимать как сложный музыкальный фрагмент, так и слова из обычного повседневного разговора зависит от слуховых рецепторов в ушах. Звуковые волны заставляют колебаться три мельчайшие косточки в среднем ухе, что, в свою очередь, приводит к колебаниям жидкости, заполняющей внутреннее ухо, и эта жидкость воздействует на тысячи находящихся там волосковых клеток, которые и превращают эти звуковые колебания в нервные импульсы. При этом каждая отдельная волосковая клетка наиболее чувствительна к звуковым колебаниям определенной частоты и реагирует лишь на них. В среднем частотные характеристики воспринимаемых звуковых колебаний двух соседних волосковых клеток отличаются на 0,2 процента. Для сравнения можно сказать, что частотные характеристики двух соседних струн фортепьяно отличаются на целых 6 процентов. Каждая волосковая клетка передает воспринимаемые ею колебания примерно десяти нервным клеткам. Затем вся поступающая информация обрабатывается мозгом. Утрата волосковых клеток либо их неправильное функционирование являются основной причиной потери слуха у человека.
Специалисты, работающие с духами, утверждают, что способны различать до 5 тысяч различных запахов. Клетки, расположенные в носу и во рту, передают эту информацию в мозг. В носу расположены особые нервные клетки с отростками, обращенными в полость носа, которые имеют на конце, как правило, около десяти ресничек. Другой конец этих нервных клеток соединен с нервными волокнами, которые посылают в мозг сигналы о запахах.
Реснички обонятельных клеток носа имеют рецепторы, способные выявлять запахи, — всего таких рецепторов около тысячи. Когда молекула запаха связывается с рецептором, это инициирует нервный импульс, который идет в мозг. Нервные клетки, которые опознают запахи, обновляются примерно на один процент в сутки. Они позволяют человеку распознавать до 10 тысяч различных запахов. А те, кто обладает особыми способностями на этот счет, различают до 50 тысяч запахов. В этой связи неудивительно, что около трех процентов наших генов обслуживают обонятельные клетки. Но все равно — собаки распознают запахи в десять раз лучше людей.
Вкус еды и питья определяется при помощи клеток, расположенных на языке и в ротовой полости. Дегустаторы способны различать более ста различных вкусов. Обычным же людям легче всего даются четыре основных вкуса: горький, соленый, кислый и сладкий. Нервные клетки, заведующие вкусом, отличаются от других нервных клеток тем, что живут очень недолго — они постоянно обновляются.
Почти все нервные клетки расположены в головном и спинном мозге. Как мы уже знаем, спинной мозг развивается из нервной трубки эмбриона; во время этого процесса часть клеток в трубке превращается в моторные нервы, которым предназначено доносить импульсы до мышц нашего тела, и сенсорные нервы, которые будут приносить информацию со всей поверхностности нашего тела. Те клетки, которым суждено сформировать нервы, возникают в результате деления стволовых клеток. Повторяющиеся циклы деления и миграция вновь образованных нервных клеток во время развития эмбриона приводят к формированию слоев нервов в спинном мозге.
В ходе дальнейшего формирования нервов определяется, куда они протянут свои аксоны и с какими клетками произойдет их соединение. Данные обстоятельства обусловливаются расположением клеток. Считается, например, что там, где высока концентрация нашего старого приятеля «Акустического ежа», развиваются моторные нервные клетки. Вероятно, расположенные вдоль оси нервной трубки клетки обмениваются информацией для того, чтобы обеспечить максимальную точность в выборе своих позиций. В результате одни моторные нервы протягивают свои аксоны к мышцам на внешней стороне конечностей, а другие — к мышцам на внутренней стороне.
Чтобы нервы смогли дотянуться до своих конечных целей во время развития эмбриона, крайне важна правильная ориентация растущего аксона. Еще на ранней стадии развития нервной клетки на кончике аксона формируется бугорок роста. Он направляет движение растущего аксона и тянет его за собой: подобно клетке, мигрирующей в пределах организма, он постоянно выбрасывает вперед тонкие, похожие на пальцы отростки; они прикрепляются к той поверхности, над которой движется бугорок роста, и затем сокращаются. Выбрасывание и последующее сокращение этих отростков тянет бугорок роста вместе с растущим аксоном вперед. Эти отростки ощупывают окружающую среду и определяют, в какую именно сторону следует направиться растущему аксону. Направление движения бугорка роста определяется молекулами, испускаемыми поверхностью тех клеток, над которыми он проходит. Одни молекулы «отталкивают» его, другие, наоборот, «притягивают».
Как иллюстрацию к сказанному можно рассмотреть то, как оптический нерв, исходящий из сетчатки глаза, устанавливает необходимые соединения с соответствующими долями головного мозга. Этот механизм изучен на примере лягушек, однако те же самые принципы задействованы и в человеческом организме. Светочувствительные клетки сетчатки активируют нервы, которые образуют оптический нерв, и нервы из правого глаза протягиваются в левое полушарие мозга, в то время как нервы из левого глаза устанавливают соединение с нервными клетками правого полушария. Существует абсолютно точное соответствие между отдельными областями сетчатки и соответствующими им зонами головного мозга. Во время экспериментов на лягушках в случае, если оптический нерв перерезали и глаз лягушки поворачивали на 180 градусов так, что он оказывался направленным вниз, аксоны вырастали вновь и устанавливали прежний контакт с соответствующими им зонами головного мозга. Однако в этом случае взгляд лягушки был «повернут» на 180 градусов: когда лягушка хотела схватить муху, она совершала движение головой в противоположном от нее направлении.
Механизм, позволяющий нервам правильно соединяться с другими нервами и с соответствующими клетками головного мозга, работает благодаря особым молекулам на поверхности оболочки бугорка роста и их взаимодействию с молекулами, находящимися на оболочках тех клеток, с которыми движущийся вперед бугорок роста вступает в контакт. В настоящее время исследователи полагают, что и аксоны оптического нерва, и клетки головного мозга имеют характерные для них позиционные значения, которые позволяют им устанавливать правильные контакты. Это позволяет бугорку роста оптического нерва при движении по поверхности клеток мозга выбирать соответствующую ему клетку, с которой устанавливается контакт через синапс. Когда же движущиеся вперед аксоны пытаются установить контакт с клеткой, которая им не предназначена, то происходит реакция отторжения и они вынуждены двигаться дальше.
В ходе развития нервной системы многие клетки погибают и отмирают. В районе формирования растущей конечности образуется до 20 тысяч моторных нервов, однако затем половина из них исчезает. Перспективы дальнейшего существования нервов зависят от того, установят они контакт с мышечными клетками или нет. И даже если им удастся установить такой контакт, то в конечном счете из всех нервов, установивших контакт с мышцей, выживет лишь один — он и станет рабочим. Нервы соревнуются друг с другом, чтобы сохранить себе жизнь, и в результате контакт с мышцей устанавливает самый сильный из них. Соответственно и передаваемый по нему нервный импульс будет самым сильным. То, что аксоны обязательно находят надлежащие мышечные клетки, наглядно иллюстрируется экспериментом, во время которого часть спинного мозга переворачивается нижней стороной вверх: хотя теперь аксоны входят в конечность совсем не там, где должны, они все равно находят соответствующие им мышцы.
Возвращаясь к головному мозгу, следует отметить одно поразительное обстоятельство: несмотря на различие тех функций, которые выполняют разные участки мозга, нервные клетки, из которых они состоят, в своей основе одинаковы. Одна зона мозга отличается от другой прежде всего количеством нервных клеток и тем, как они соединены друг с другом. Именно соединение клеток придает им особое качество и определяет чрезвычайно сложную структуру мозга. Кроме того, в любой, даже небольшой, размером с песчинку, области нашего мозга содержатся тысячи миллионов синапсов. А сколько всего таких «песчинок» содержится в нашем мозгу…
Нам вряд ли удастся когда-либо понять работу мозга, если мы не найдем какие-то новые подходы. Ведь сейчас мы даже толком не понимаем в принципе простые схемы взаимодействия нейронов. Что же тогда говорить о миллиардах синапсов, от которых зависит сама наша человеческая сущность? Этот механизм характеризуется сложностью, возведенной в высочайшую степень сложности.
Существуют две накладывающиеся друг на друга стадии, от которых зависит, как наши нервы будут взаимодействовать друг с другом — а значит, и то, как мы будем мыслить, учиться, чувствовать и запоминать. Первая стадия приходится на период эмбрионального развития и проходит в основном под контролем генов. Во время же второй стадии идет тонкая настройка системы, и основой ее служит приобретаемый человеком опыт. Наша память сохраняется в связанных друг с другом в мозгу сообществах нервных клеток, которые также отвечают за наши способности к обучению.
Как же мы запоминаем и как мы приобретаем опыт, то есть учимся? Суть этих явлений таится в нервных клетках, она все еще не до конца разгадана, однако ясно, что многие ответы коренятся в наших синапсах. Механизм обучения связан с уменьшением эффективности синаптической передачи импульсов от сенсорных нервов к моторным. Это хорошо показал эксперимент, проведенный, однако, не с участием людей, поскольку очень сложно проследить за изменениями в синаптических связях человека и других позвоночных (в них задействовано великое множество клеток). Героем этого эксперимента стал морской слизень аплизия. В ответ на касание жабр слизень смыкал их. Но с каждым разом жабры смыкались с меньшей силой. Это, как показало исследование, происходило вследствие уменьшения числа пузырьков-трансмиттеров, которые выбрасываются нервами в синапсах, что, в свою очередь, явилось следствием снижения синаптического потенциала в реагирующих нервах. Увеличение или уменьшение количества пузырьков-трансмиттеров, скорее всего, и является основой механизма действия так называемой «короткой памяти», базирующейся на взаимодействии сетей нервных клеток.