Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей - Александр Станиславович Дмитриев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Можно быстро наделать таких монеток, вырезать их ножницами и использовать в играх как «деньги для игр».

Кстати, таким же образом можно делать копии и с других барельефов, то есть выпуклых изображений. Положил сверху фольгу, поводил ногтем, прижимая поплотнее, – и вот, готово изображение, формочка. Другое дело, что она очень непрочная. Но можно снимать такие модельки, заливать с обратной стороны клеем и собирать коллекцию копий монет. Не всегда же удается приобрести монету, а копию – запросто!

59

Как растут барханы в пустыне, или Про зыбучие пески

Для опыта нам потребуются: немного разных сухих сыпучих продуктов – манка, соль, сахар, гречка, растворимый кофе.

Не у всех есть возможность побывать в настоящей пустыне. Но все знают, что в песчаной пустыне ветер гонит горы из песка – барханы. Эти барханы могут вырастать довольно большими – сотня метров в высоту. Такая «горка» может завалить целую деревню!

Мы все играли в детстве в песочнице и строили куличики. И все знают, что из сухого песка куличик сделать сложно. Для этого песок надо намочить. А какие законы физики лежат в основе этого и как это можно использовать?

Оказывается, тут работает все та же сила трения, с которой мы уже встречались в наших опытах. Песчинки трутся друг об друга и поэтому не рассыпаются ровным слоем, а могут насыпаться в горку. Оказывается, что сила трения между песчинками определяет, каким будет угол подъема такой горки. Чем больше сила трения, тем «круче» горка. Если песчинки намочить, сила трения очень сильно возрастает, и горка может стать почти отвесной. Именно поэтому куличики легче делать из сырого песка.

Но если песок намочить слишком сильно, сила трения опять падает, потому что между песчинками образуется слой воды. И песок «расплывается». Но даже у сухого песка, в зависимости от того, из какого вещества в основном «сделаны» песчинки, угол для горки будет разным. Понятно, что кварцевый песок имеет одну силу трения, а, скажем, кремниевый – другую. Поэтому по углу подъема бархана можно судить о влажности и составе песка! Мы можем провести несложный опыт. Возьмем различные сухие сыпучие вещества, которые есть под рукой: манную крупу, гречку, соль, сахар, растворимый кофе. На чистом листе бумаги попробуем аккуратно насыпать небольшие горки из этих веществ. И увидим, что у всех у них угол подъема отличается. Это потому, что различается сила трения между частицами этих веществ. В принципе, можно составить таблицу для этих углов и определять, что за вещество, с закрытыми глазами – только померив угол возвышения! Теперь становится понятно, почему существуют зыбучие пески. Это пески, которые обычно состоят из слюды, очень легких и скользких частиц. Они почти не образуют барханов, потому что сила трения между частицами очень слабая. Зато если на такой песок наступает человек или животное – он начинает тонуть, как в воде… Но об этом – в следующем опыте.

60

Зыбучие пески: почему в них тонут

(продолжение)

Для опыта нам потребуются: банка растворимого кофе, металлический шарик.

Мы можем провести дома опыт – создать зыбучие пески и пронаблюдать, как в них тонут попавшие предметы.

Вместо песка у нас будет выступать растворимый кофе в банке. Сила трения между частицами кофе небольшая, как раз то, что нам нужно.

Найдите камушек или (лучше) металлический шарик и положите в банку с растворимым кофе на поверхность. Шарик будет лежать на поверхности и не будет тонуть.

Дело в том, что сила трения покоя (когда предмет не движется) больше, чем сила трения, когда тот же предмет скользит и движется. Поэтому спокойно лежащий шарик не тонет в наших «зыбучих песках».

Но если мы начнем потряхивать банку, постукивать по ней, то шарик постепенно начнет погружаться! Частицы кофе, двигаясь при встряхивании банки, скользят по шарику, и шарик постепенно опускается под действием силы притяжения Земли.

Теперь мы понимаем, как происходит затягивание в зыбучие пески. Например, какое-нибудь животное забредает на участок песка с низкой силой трения. Его начинает затягивать. Возникает паника – зверь начинает дергаться, пытаясь вырваться из ловушки. Чем сильнее рывки и движения, тем быстрее погружается тело в песок, пока не наступает гибель.

Как же вести себя в зыбучих песках? Во-первых, надо увеличить площадь соприкосновения с песком. Для этого надо спокойно лечь плашмя. Ведь чем больше площадь опоры, тем меньше давление, тем меньше затягивает в ловушку. Во-вторых, нельзя делать резких движений – нужно очень медленно, потихонечку «выгребать» к краю ловушки. Обычно это всего несколько метров. Надо вести себя так, словно в бассейне с водой, «плыть» к краю бассейна, только очень медленно, стараясь лежать плашмя. Ползти, грести – пока не выберешься на участок обычного песка.

А еще одним из признаков зыбучих песков является то, что они «поют» или «скрипят», издают разные звуки. Я был в таких песках, это очень интересно. Хотя, конечно, немного страшно.

61

Звук под водой

Скорость распространения звука в воздухе мы уже знаем – примерно триста тридцать метров в секунду. А вот интересно, в воде звук распространяется быстрее или медленнее?

Помните, я рассказывал про прохождение звука через стену? Так вот, чем более плотным является вещество, тем быстрее распространяется звук. Поскольку вода примерно в семьсот раз плотнее воздуха, то и звук должен бежать в воде гораздо быстрее.

Можно проделать очень занятный опыт летом в пруду или в бассейне – да хоть в домашней ванне! Надо на несколько секунд нырнуть под воду и постучать под водой двумя предметами друг об друга: камушками, ложками – чем угодно.

Вы услышите, что звук какой-то странный. Это потому, что ухо не так воспринимает звук под водой. Кроме того, в воздухе и в воде от одинаковых предметов звуковая волна будет различной формы и восприниматься будет по-разному.

Самое интересное, что, например, дельфины спокойно общаются на огромных расстояниях под водой, издавая звуки очень высокой частоты. То есть звуковые волны, колебания которых очень высоки, до двадцати тысяч раз в секунду и даже больше!

Мы же под водой говорить не можем, нам для создания звуков нужен воздух. Остается только изучить азбуку Морзе и перестукиваться камушками!

62

Фотоаппарат в глазу

Для опыта нам потребуются: обычное зеркало и настольная лампа.

Те, кто не знает устройства фотоаппарата, может заглянуть в объектив. Почти у каждого фотоаппарата есть специальный механизм, называемый «диафрагма». Это несколько «лепестков», которые сдвигаются или раздвигаются, делая входное отверстие для света то шире, то уже.

Понятно, зачем это нужно. Если освещение очень яркое, то дырочку надо сделать поуже, потому что света и так достаточно. А если темно – то дырочку надо сделать пошире, потому что света не хватает.

А вот наш глаз тоже имеет такой же механизм. Правда, он устроен немножко по-другому, но выполняет ту же задачу.

Чтобы посмотреть, как работает этот механизм, нам понадобятся обычное зеркало и лампочка рядом с зеркалом.

Подойдите к зеркалу, закройте глаза (для надежности прикройте ладошками) и досчитайте до трехсот. За это время ваши глаза привыкнут к темноте, и зрачки расширятся.

Мозг сам определяет, что в глаз попадает мало света и настраивает зрачки (диафрагму!) так, чтобы вход в глаз был пошире.

Теперь откройте глаза, включите лампочку и смотрите внимательно на зрачки. Вы увидите, как они резко сужаются, превращаясь в маленькие точечки! Это глаз реагирует на большое количество света, на высокую освещенность.

Значит, мы в своих глазах имеем очень интересный и сложный прибор, который позволяет глазу приспосабливаться к освещенности. И в пасмурный и в светлый день мы одинаково хорошо можем ориентироваться в обстановке и воспринимать окружающий нас мир, все благодаря такому интересному механизму.

63

Как превращается энергия

Для опыта нам потребуются: обычный насос, велосипед со спущенной шиной или футбольный мяч.

Мы не задумываемся о том, что очень много явлений вокруг связаны с постоянными превращениями энергии. Электрическая энергия превращается в тепловую, механическая в потенциальную и так далее. Пусть вас не пугают эти названия. Сейчас мы попробуем сделать очень простой опыт, который покажет, как механическая энергия превращается в тепловую. А если сказать по-простому, как движение (работа) превращается в тепло. Для этого нужны обычный насос и велосипед со спущенной шиной или футбольный мяч. Возьмите насос и начните как можно быстрее накачивать шину или мяч. Через некоторое время пощупайте резиновый шланг насоса – вы почувствуете, что он стал более теплым. Если клапан на шине старого образца, ниппельный, то нагревание может быть очень ощутимым! Что же произошло в этом простом опыте?

Наша энергия, наши движения, работа, которую мы проделали, превратилась частично в полезную работу (шина накачивается), а частично превратилась в тепло. Это тепло постепенно будет утекать в окружающую атмосферу, и через некоторое время шланг опять станет такой же температуры, как и окружающий воздух.

Значит, просто механическими движениями можно получать тепловую энергию? Да, это действительно так! И тут мы опять вспомним про добывание огня трением. Ведь там используется как раз это явление: механическая энергия превращается в тепло, причем с такой скоростью и силой, что материал (дерево, сухая трава) загорается!

Вот почему при спуске по веревке, канату надо обязательно надевать плотные перчатки или рукавицы. При быстром скольжении руки трутся о поверхность каната, и механическая энергия превращается в тепловую. При этом может резко возрастать температура – и на руке появляется самый настоящий ожог, как от пламени костра!

Точно так же в мороз, если быстро-быстро потереть ладошки друг об друга, они немного согреваются. Правда, здесь еще играет роль то, что при таком трении внутри ладошек разгоняется кровь, которая передает тепло изнутри организма, так что дело не только в трении, но тем не менее часть тепловой энергии при этом все-таки образуется!

64

Пневмопочта на дому

Для опыта нам потребуется: кусок любого шланга.

Во многих солидных учреждениях, например в Сберегательном Банке России, на службе стоит так называемая пневмопочта. Что это такое и какие законы физики помогают ей работать?

Когда человек приходит в Сбербанк и оформляет, например, денежный кредит или перевод, часто ему нужно проделать несколько операций в разных окошках. Чтобы быстро передать документы из одного места в другое, работник банка сворачивает документы в трубочку, закладывает в легкую, прозрачную пластиковую капсулу и закладывает в специальную трубку. Этими трубками соединены все нужные места в Сберегательном Банке. Дальше в трубку подается сжатый воздух, который гонит капсулу в нужном направлении – и вот она уже через несколько секунд попадает к другому работнику! Осталось только достать документы и подождать, пока от окошка к окошку перейдет наш клиент.

Между прочим, этот принцип, использование сжатого воздуха для перемещения предметов, использовали наши предки. Например, обычным развлечением ребят в деревнях было следующее занятие. Срезалась любая трубка от растения с достаточно плотным стволом, пустая внутри. Туда закладывалась рябина, косточка вишни, мелкий камушек. Затем в трубку с одного конца сильно дули – и из другого вылетал маленький «снаряд». Настоящее духовое ружье!

Мы же можем дома создать небольшую пневмопочту прямо как в Сбербанке. Для этого нужен кусок любого шланга, например кусок старого шланга для полива огорода. Его надо промыть и высушить.

Возьмем кусочек обычной столовой фольги, в которую хозяйки заворачивают продукты. Она продается в хозяйственных магазинах и почти всегда есть на кухне. Свернем из нее шарик. Если нет фольги – свернем шарик из бумаги. Размер шарика должен быть таким, чтобы он свободно входил в шланг и был почти такого же размера, как и отверстие.

Дунем в шланг – шарик побежит по нему и выскочит с другой стороны! Можно протянуть шланг из комнаты в комнату и передавать сообщения родителям! Написал на бумажке короткое послание, заложил в нашу пневмопочту, дунул – и с другой стороны уже его читают!

65

Может ли монета гореть в воде?

Для опыта нам потребуются: разные монетки, крышечка от банки.

Для того чтобы определить состав монеты или другого предмета, ученые применяют различные виды анализов. Например, спектральный. Или химический… Но в далекой древности не было возможности проводить такой анализ, потому что еще не были разработаны сложные научные методы. Давайте представим, что мы живем в древнем мире и нам надо определить – есть ли в монете примесь меди? Железа? Благородных металлов? Что для этого надо сделать?

Да ничего особенного. Возьмем пластмассовую крышечку от любой банки, нальем немного воды и кинем монетки разного достоинства. Я бросил 10, 50 копеек, рубль и пять рублей. Если есть старые советские монеты, их тоже можно бросить.

Оставим все это на денек-другой стоять в таком месте, где никто не смахнет на пол. Оказывается, разные металлы окисляются (ржавеют) по-разному. Так, вокруг одной монеты (50 копеек) расходится рыжая ржавчина. А вот советские монеты дают зеленый оттенок!

Это означает, что там, где рыжая ржавчина, в состав монеты входит железо. Ученые записывают вместо слова «железо» специальный знак – Fe, от латинского слова «Ferrum», или «феррум», что означает как раз железо. А вот там, где мы увидим зеленый цвет, – в состав входит медь. Медь ученые обозначают как Cu (Cuprum). Читается как «купрум» – «медь». Если же монета не ржавеет, не окисляется, не дает осадка и не окрашивает воду – значит, в ее составе более благородные металлы. Например, никель.

Что же такое окисление (ржавение)? Очень просто – это медленное горение! Если мы разжигаем костер, то кислород из воздуха, подлетая к поверхности дерева, «выхватывает» из дерева куски углерода. Так из толпы полицейские хватают хулигана. Два кислородных полицейских (атомы кислорода) хватают один атом углерода и сразу превращаются в бесцветный и легкий газ, углекислый газ. При горении это происходит быстро, а вот при ржавении происходит то же самое, только очень медленно. Так что можно сказать про наш опыт, что монеты очень медленно «горят» в воде!

66

Звучащий шарик

Для опыта нам потребуется: воздушный шарик.

А вот простой и забавный опыт с воздушным шариком. Надуйте обычный воздушный шарик. Намочите в воде палец и начинайте им тереть шарик, держа его за «хвостик» другой рукой или просто прижав к себе.

Вы услышите, что шарик издает очень громкие звуки – скрип, дребезжание. Довольно противный скрип, если честно. Таким скрипом очень хорошо действовать на нервы или будить кого-нибудь. Лучше всякого будильника. Что происходит?

Мокрый палец, скользя по шарику, то останавливается на мгновение, как бы «прилипает», то вдруг срывается и совершает быстрое перемещение. Эти рывки очень быстрые, они возбуждают колебания поверхности шарика. Резина «дрожит» с высокой частотой и толкает воздух внутри шара, создает такие же звуковые волны, как издает барабан или наши голосовые связки, когда мы говорим.

Сам внутренний объем шарика, даже скорее сам шарик вместе с воздухом внутри, работает как огромный резонатор. Звуковые волны внутри усиливаются, и вся поверхность шара издает довольно громкие звуки.

Теперь мы уже можем посмотреть на знакомые нам предметы и увидеть тот же принцип. Например, обычная гитара или скрипка. Это, по сути, просто струна, жила, натянутая на деревянную палку. Если бы не было деревянного резонатора, приделанной к палке специальной деревянной коробки, звук от струны был бы очень тихим и слабым. Но в гитарной деке, коробке, происходят те же процессы, что и в нашем звучащем шарике, и звук усиливается! Попробуйте во время того, как водите мокрым пальцем по шару, приложить одновременно к его поверхности ухо. Звук будет просто громоподобным.

А возьмем, к примеру, лягушек. Чтобы весной их голоса были лучше слышны, они надувают на горле огромные кожаные шары (из собственной кожи, конечно)! И используя эти шары как резонаторы, квакают так – что любой концертный исполнитель позавидует.

Можно сделать немного по-другому. Взять шарик, надуть его, а потом растянуть его узкое горлышко двумя пальцами в разные стороны, оставив узкую щель. Воздух, выходя из шарика, будет заставлять шар колебаться и издавать очень громкий и противный писк. Сильнее или слабее растягивая горловину, можно делать звук выше или ниже. Несмотря на то что колебания шара (резонатора) мы вызываем другим способом, принцип работы этого нехитрого инструмента остается все тем же!

Если несколько человек надуют каждый по шару и начнут издавать звуки одновременно, получится настоящий «кошачий концерт». Очень забавно!

67

Пляшущая иголка

Для опыта нам потребуются: магнит, иголка, любая железная поверхность.

Этот опыт очень прост. Для него нужны магнит, иголка и любая железная пластинка или поверхность. Я взял железный диск из компьютера, все равно уже разобрал – так надо использовать.

Если положить иголку на стол и поднести к ней сверху магнит, иголка подскочит и притянется к магниту. Но мы попробуем сделать по-другому. Поставим иголку кончиком на кусок железа и будем придерживать легонько пальцами, чтобы она не падала. Затем начнем медленно подносить сверху магнит к иголке. Наступит момент, когда мы почувствуем, что иголка не нуждается в поддержке.


На фото иголка стоит вертикально, но не подскакивает к магниту, удерживаемая магнитным полем. При этом она дрожит и колеблется, «приплясывает».

Надо быть аккуратным: чуть сильнее приблизишь магнит к иголке, как она все-таки отлепляется от железа и прилипает к магниту. Тем не менее если быть аккуратным, опыт удается легко.

Почему же иголка не прыгает вверх, а остается стоять?

Дело в том, что магнитное поле, пронизывающее пространство, намагничивает и иголку, и кусок железа, лежащий под ней. Таким образом, кусок железа тоже становится магнитным и начинает притягивать нижний конец иголки. Конечно, верхний магнит обладает более сильным полем, но он и расположен дальше от конца иглы. Поэтому можно найти такое положение, в котором эти силы уравниваются и иголка начинает «плясать» вдоль магнитных линий. В старинном варианте этого опыта на иголку надевали вырезанный из бумаги силуэт балерины и показывали этот опыт детям.

68

Криминалисты, или Как обнаружить отпечатки пальцев

Для опыта нам потребуются: свечка, зеленка, палочка с ваткой, стеклянный бокал, мука или крахмал.

Давайте отвлечемся от физики и просто сделаем забавный опыт.

Все мы уникальны, то есть единственные в своем роде – и вторых таких на свете нет. Даже близнецы немного отличаются. Люди вообще хотят отличаться друг от друга хоть чем-нибудь. Красят волосы, делают прически, носят украшения, шьют или покупают одежду…

Но у каждого при себе есть узор, какого нет больше ни у кого. Это – отпечаток пальца.

Есть несколько теорий, почему у человека есть на подушечках пальцев и ладошках особые линии, узоры, которые ученые называют папиллярными линиями. Может быть, эти узоры достались нам от далеких предков, которые жили на деревьях? Ведь «шероховатыми» пальцами можно лучше ухватиться за ветку, гребешки и выступы этих линий повышали силу трения и давали возможность не соскользнуть вниз, не разбиться при падении и не попасть в пасть кровожадным хищникам.

Как бы то ни было, а интересно посмотреть на собственные отпечатки и изучить их. Вот как мы это проделаем.

Возьмем обычную свечку и любой плоский предмет – блюдечко, кусочек кафельной плитки, наконец, просто деревяшку. Зажжем свечку и капнем несколько капель стеарина на поверхность. Расплавленный воск почти сразу начнет застывать, мутнеть. Когда он уже немножко помутнеет, но еще не окончательно остынет, надо просто прижать палец к его поверхности и подождать полминуты-минуту, не двигая палец.

Когда мы поднимем палец, в воске останется четкий отпечаток. Но чтобы его было лучше видно, я взял и накапал немного зеленки прямо на отпечаток. Потом палочкой с кусочком ваты аккуратно размазал зеленку, чтобы не попортить отпечаток, – и получился очень красивый узор!

Между прочим, отпечаток пальца использовался (и используется) во многих странах и культурах как официальная печать на документе. Если человек не умеет писать и не может подписаться, тем не менее он может удостоверить, что согласен с документом, приложив руку, намазанную чернилами.

Через множество веков современная цивилизация возвращается к той же идее, только на новом техническом уровне. Уже существует много приборов и охранных систем, которые определяют отпечаток пальца и по нему могут пропустить только этого и никакого другого человека!

Говорят, по таким узорам можно многое сказать о человеке. Недаром гадалки пытаются предсказывать судьбу по линиям на руке. Но нам просто интересно получить личный отпечаток пальца – четкий и красивый. Мы-то знаем, кто мы такие на самом деле. Зачем нам гадалки!

* * *

Есть еще один очень интересный способ обнаружить отпечатки пальцев, еще более близкий к тому, что используют сыщики. Дело в том, что уже довольно давно сыщики ловят преступников с помощью исследования отпечатков пальцев. Ведь если у каждого человека отпечатки пальцев уникальны, то есть единственные – больше таких нет ни у кого, можно использовать их как своеобразный «паспорт», метку. Подумайте только, на нашей планете уже более шести миллиардов (6 000 000 000) человек – и у каждого свои, отличающиеся от всех других, отпечатки пальцев! Представьте себе, что если сравнивать один отпечаток пальца в секунду с имеющимся образцом, то шесть миллиардов секунд – это сто девяносто лет! Облегчает дело то, что, конечно, не все люди «сдают» свои отпечатки, – обычно в картотеки попадают те, кто уже нарушил закон. Однако в последнее десятилетие все активнее разрабатываются системы автоматического распознавания отпечатков – они применяются в аэропортах, при получении паспорта, визы для поездки в другую страну и так далее. Мощные компьютеры успевают сравнить отпечаток с огромным количеством известных и выдать результат за сравнительно короткое время – секунды. Но чтобы получить отпечатки пальцев, нужно было разработать специальные методы. На самом деле эти методы не такие уж сложные, и мы можем прямо на кухне их освоить. Возьмем чистый, сухой, прозрачный стакан или бокал. Пальцами потыкаем в масло (обычное сливочное масло из холодильника) и потрем пальцами друг об друга, чтобы масло было не толстым слоем на коже, а почти незаметно. В общем, размажем его по ладошкам.

Теперь аккуратно и плотно отпечатаем свой палец на поверхности бокала. Мы увидим, что на стекле появился полупрозрачный отпечаток пальца. Возьмем теперь ватку и обычную муку или крахмал. Нам важно, что это очень тонкий порошок. Аккуратно ватку обмакнем в муку или крахмал, затем очень осторожно пошлепаем по поверхности стакана, стараясь не нажимать. Порошок прилипнет к жировым отпечаткам. Обмахнем очень нежно поверхность стекла ваткой, чтобы снять излишки порошка, – получится очень заметный отпечаток! Особенно если смотреть на свет. Такой отпечаток уже можно фотографировать – и потом использовать в работе настоящего следователя!


Это мои отпечатки указательного пальца – я прижимал его три раза.


На фото увеличенные отпечатки пальцев, которые я получил в этом опыте. Стрелками отмечены характерные места – порезы, раздвоения папиллярных линий.

69

Крахмал и йод – галактика

Для опыта нам потребуются: высокий стакан или банка, йод, крахмал.



Поделиться книгой:

На главную
Назад