Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей - Александр Станиславович Дмитриев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Современные люди знают, что огонь можно зажечь спичкой или зажигалкой. Если спросить, как добывали огонь наши предки, большинство вспомнит про добывание трением. Но никто этого сам не пробовал. Между тем есть более простой и надежный способ, который может выручить в трудную минуту.

По нашим полям валяется большое количество кремня, это камни, от которых при ударе откалываются чешуйки, тонкие пластинки. Так получается потому, что плотность кремня внутри неодинакова и ударная волна как бы отражается от слоев и «выходит» обратно на поверхность. Но для нас это не важно.

Важно то, что при ударе железом или другим кремнем по такому камню из него вылетают самые настоящие горячие искры! И от этих искр можно разжечь костер.

Найдите кремень – он обычно серого, темно-коричневого цвета, иногда с желтыми прожилками, с гладкой и твердой блестящей поверхностью. Помойте его и высушите хорошенько. Возьмите обычный напильник. Дождитесь вечера и в темноте ударьте – чиркните – кремнем о ребристую поверхность напильника. Можно и напильником быстро, с силой, провести по кремню. Вы увидите, как из камня вылетает целый сноп искр!

Как же разжигали костер наши предки? Они брали любой сухой и пористый материал, например хорошо высушенную полынь. Полынь обладает горьковатым запахом и растет в наших полях, это синеватые метелочки. Если высушить такую метелочку, то попавшая на нее искра сразу заставляет вспыхнуть – а уже от нее можно поджечь сухие веточки, и так далее…

Если мы посмотрим на устройство современной зажигалки, то увидим, что крутящееся колесико представляет собой такой же вот «свернутый в кольцо» напильничек с ребристой поверхностью, а ударяется он (чиркает) по специальному маленькому кремню! Вылетающие искры попадают на фитиль, пропитанный бензином.

Значит, если вы идете в поход, надо взять с собой небольшой напильничек и камушек кремня. Хорошо также иметь трут или фитиль – сгодится кусочек ваты, сушеная полынь, обугленная и потушенная тряпочка. Тогда, даже если у вас кончатся спички и бензин, вы всегда, постаравшись, сможете развести костер и не пропадете! Ведь огонь поможет согреться в холод, отпугнуть зверей и приготовить, например, грибы.

И никакого трения!

50

Шарик-магнит

Для опыта нам потребуется: воздушный шарик.

Если у вас под рукой есть обычный надувной шарик, можно проделать очень занятный опыт. Для этого опыта нужен шарик и… голова. Вернее, волосы на голове. Они должны быть хорошо вымыты и хорошо высушены. Это идеальные условия для превращения шарика в магнит.

Берем шарик и трем его об волосы на голове! Старательно трем, полминуты или минуту. Затем подбрасываем шарик к потолку или приставляем к стенке – и он прилипает!

Через некоторое время шарик перестает притягиваться к стене или потолку и падает. Тогда можно еще раз потереть об волосы – и снова шарик приобретает свойства магнита, причем притягивается не к железным предметам, а к обычной стенке, шкафу, окну.

Что же происходит в шарике?

Оказывается, при трении о шерсть (а волосы и есть шерсть) шарик теряет какое-то количество электронов. Каждый электрон имеет электрический заряд, очень маленький, конечно. Обычно электроны перетекают по веществу таким образом, чтобы примерно везде была одинаковая пропорция. Если где-то электронов больше, они будут течь туда, где их меньше, пока не уравняются. Но когда мы трем о волосы шарик, часть электронов «выбивает» из шарика, и он приобретает как бы дефицит электрического заряда. А такой дефицит электронов придает шарику свойства магнита! Он начинает притягиваться к другим предметам. Например, к потолку.

Но, повисев некоторое время, шарик «набирает» электронов и теряет свои свойства. Поэтому он перестает магнититься и падает вниз. Нужно снова его потереть.

Кстати, волосы от этого опыта встают дыбом, как у ведьмы или испуганной кошки. Тоже забавно. Для тех же, у кого с волосами проблема (скажем, голова побрита налысо), шарик вполне можно потереть о чисто шерстяную тряпку или одеяло. Эффект будет тот же, поверьте.

51

Прирученная молния прямо в комнате – и безопасно!

Для опыта нам потребуются: два воздушных шарика.

Все видели молнию.

Страшный электрический разряд бьет прямо из тучи, сжигая все, во что попадает. Зрелище это и страшно, и притягивает. Молния опасна, она убивает все живое. Мы уже проделывали опыт с шариком и волосами и поэтому можем понять, почему она возникает.

Облака как бы «трутся» друг о друга и выбивают друг из друга электроны, совсем как волосы из шарика. Только сила заряда, которую они приобретают, колоссальна. Когда заряда накапливается слишком много, он «вытекает» и устремляется в ближайший предмет, в землю, в одиноко стоящее высокое дерево, в пруд, в дом.

Пользуясь этим знанием, мы можем создать маленькую и безопасную, прирученную молнию прямо в доме. Поверьте, это совершенно безопасно.

Итак, если мы хотим увидеть молнию прямо своими глазами, то надо проделать следующее. В полной темноте потереть отдельно два шарика о волосы, а потом поднести друг к другу. Между ними проскочит синяя искра с треском! Между прочим, напряжение в этой искре огромное, может быть, десятки тысяч вольт. Я не шучу. Просто ток там очень маленький, а убивает не напряжение, а ток. Синяя искра – это и есть поток электронов, перескакивающих с шарика на шарик, как бы речка, которая существует только очень краткий миг. Молния будет синей, красивой, но о-о-очень маленькой и абсолютно безопасной!

52

Как далеко от нас центр грозы?

Была такая шутка. Мальчик спрашивает папу: почему мы сначала видим молнию, а уже потом слышим звук? Папа отвечает: это потому что глаза находятся впереди ушей!

Конечно, это шутка. На самом деле так все происходит вот почему. Свет «бежит» по воздуху с невероятной скоростью, около трехсот тысяч километров в секунду. Расстояние в три километра он пролетает за одну десятитысячную секунды, то есть почти мгновенно. Молния ударяет, и мы практически сразу видим свет.

Звук же «тащится» по сравнению со светом ужасно медленно. Он ползет со скоростью каких-то триста тридцать метров в секунду. То есть расстояние в три километра он будет ползти почти девять секунд!

Таким образом, если мы увидели вспышку молнии во время грозы, надо сразу же начать отсчитывать секунды (по секундомеру или просто спокойно считая «один, два, три, четыре»). Потом – как только услышали звук грома – прекращаем считать. И вот простая формула: количество секунд делим на три и получаем примерно расстояние до молнии, или до центра грозы. Три секунды – километр; шесть секунд – два километра; девять секунд – три километра; двенадцать секунд – четыре километра… и так далее.

Каждые новые три секунды дают еще один километр расстояния. Все просто!

Кстати, от Солнца до нас свет добегает примерно за восемь минут. То есть мы видим Солнце таким, каким оно было целых восемь минут назад! Мало кто об этом задумывается. Но это так. А вот от ближайшей к нам звезды свет летит аж целых четыре года. Можно примерно посчитать, сколько это будет в километрах.

В одной минуте шестьдесят секунд. В одном часе – шестьдесят минут, то есть 60 × 60 = 3600 секунд. В сутках 24 часа, то есть 3600 × 24 = 86 400 секунд. В году 365 дней, то есть 86 400 × 365 = 31 536 000 секунд. Умножаем на четыре года, получаем 126 144 000 секунд в четырех годах. Это сто двадцать шесть миллионов сто сорок четыре тысячи секунд. За каждую секунду свет пролетает триста тысяч километров. Перемножаем 126 144 000 × 300 000 и получаем 37 843 200 000 000 или тридцать семь биллионов восемьсот сорок три миллиарда двести миллионов километров!

Понятно теперь, почему ученые для звездных расстояний измеряют время не в километрах, а в световых годах. Удобнее сказать «четыре световых года», или то расстояние, которое свет пролетает за четыре года, чем выговаривать такое огромное число. А ведь есть звезды, от которых свет летит столетиями!

53

Дартс из иголки

Для опыта нам потребуется: нитка с иголкой.

Это старинный опыт, его придумали почти два столетия назад. Но он довольно забавный, и мы постараемся его проделать.

Если мы попробуем бросить иголку так, чтобы она воткнулась, например, в деревянную стену, то вряд ли что получится. Иголка кувыркается в воздухе, и рассчитать так, чтобы она воткнулась кончиком, не удастся ни за что.

Возьмем ниточку, вденем ее в иголку, оставим достаточно длинный хвостик (сантиметров десять). Если теперь бросить иголку, она полетит как дротик (или дартс, что по-английски как раз и означает «дротик»). И воткнется в дерево или подушечку.

Почему же с хвостом иголка летит прямо и втыкается, а без хвоста – никак?

На самом деле эту задачу решали наши далекие предки, которые изобрели лук. Мало было изобрести лук, надо было еще сконструировать стрелу. Все видели стрелу и знают, что на переднем конце у нее заостренный наконечник, а сзади – оперение. Перышки от птиц вставляли в обструганную палочку. Для чего?

Оказывается, именно хвост, или оперение, помогает стреле сохранять в воздухе свое положение и не кувыркаться. Вот что происходит. Центр тяжести стрелы находится примерно посередине. Законы физики таковы, что предметы обычно кувыркаются вокруг центра тяжести, если никакие другие силы не противодействуют этому. Значит, надо создать еще одну силу, которая бы мешала стреле кувыркаться. Что может оказывать воздействие на стрелу в полете? Воздух!

Если мы сделаем у стрелы пушистое оперение, то воздух, обтекая и почти не задевая гладкий деревянный ствол, будет «ударять» в пушистый хвост. И если стрела начнет кувыркаться, ее задний конец будет приподниматься или опускаться и «подставляться» под поток воздуха. Встречный поток воздуха будет усиленно давить на хвост и «возвращать» хвост назад. Таким образом, на стрелу все время действует набегающий поток, регулируя ее положение в пространстве. Тот центр, на который сильнее всего давит поток воздуха, называется центром аэродинамического (воздушного) давления.

Таким образом, чтобы летящая стрела не кувыркалась, надо, чтобы центр аэродинамического давления находился позади центра тяжести. Вот и все. А наша иголка с ниткой – это просто уменьшенная модель стрелы. Нитка играет роль оперения.

Кстати, теперь вы легко сами ответите на вопрос, зачем у воздушных змеев делают хвосты.

Да чтобы они не кувыркались в воздухе!

54

Как найти центр тяжести

Для опыта нам потребуется: обыкновенная палка.

Мы уже знаем правило: чтобы стабилизировать, выровнять полет предмета, надо, чтобы его центр аэродинамического давления находился сзади центра тяжести. Но как быстро найти центр тяжести у палки, стрелы? Для этого существует очень простой и старинный метод.

Расставьте руки и положите палку, например от швабры, на вытянутые указательные пальцы. Единственное условие – палка должна быть достаточно гладкой. Теперь начните медленно сдвигать пальцы. Пусть палка просто лежит на пальцах, не надо ее ничем придерживать.

Ваши пальцы соединятся точно под центром тяжести палки!

Почему так происходит?

Все очень просто. Здесь работает закон, связанный с силой трения. Когда один предмет (палка) трется о палец, то сила тем больше, чем больше давление. То есть тяжелая палка будет двигаться с бо́льшим трудом, чем легкая. Мы все знаем, что тяжелый шкаф по паркету двигать тяжело, а легкий скользит легко. Кажется, это очевидно.

Так вот, когда мы начинаем сдвигать пальцы, один из пальцев сдвигается чуть ближе к центру тяжести палки. Поэтому давление на этот палец увеличивается (на нем как бы лежит больший кусок палки и, соответственно, более тяжелый). Ведь весь вес распределяется на два пальца.

Раз так, то и возрастает сила трения. Палка начинает «тормозить» об этот палец. Теперь уже скользит другой палец и, в свою очередь, придвигается ближе к центру тяжести. Сразу возрастают давление и сила трения – и уже этот палец «тормозит», а начинает передвигаться следующий палец. И так постепенно, шаг за шагом, оба пальца потихонечку придвигаются к центру тяжести! Вот такая самонастраивающаяся система, где регулятором выступают сила трения и сила тяжести.

55

Почему звезды мерцают, а планеты – нет?

Если посмотреть на ночное небо, выехав подальше от освещенных мест, – скажем, на даче или в походе, – то мы увидим тысячи и тысячи переливающихся звезд. Они то вспыхивают поярче, то тускнеют.

Почему так происходит?

Ответ на этот вопрос понял мой папа и рассказал мне. Во всех книжках дается такое объяснение: лучи от звезд проходят через воздушные слои атмосферы перед тем, как попасть к нам в глаза. Поскольку атмосферные слои движутся, имеют разную температуру, плотность, прозрачность, лучи от звезд проходят то более яркими, то более тусклыми – и звезды мерцают.

Это объяснение было бы правильным, если бы не одно «но». На небесном своде помимо звезд есть еще и планеты: Марс, Венера, Юпитер, Сатурн. Они видны невооруженным глазом, то есть без бинокля и подзорной трубы. Так вот, планеты НЕ мерцают.

Но как же так! Ведь лучи от планет должны проходить точно так же через такие же слои, так же отклоняться, терять и приобретать яркость… Но этого не происходит.

Значит, общепринятое объяснение неверно.

Чтобы понять, в чем дело, надо выяснить, чем с точки зрения наблюдателя отличаются планета и звезда. Оказывается, что звезда всегда, даже в самый сильный на планете телескоп видна как точка. А планета видна как диск, круг, пятнышко, будто маленькая луна или солнце. Конечно, глазами без бинокля этот диск не отличить от звезды, но тем не менее это отличие есть. Но наша атмосфера не совсем прозрачна. В воздухе плавает пыль, грязь, мелкие частицы. Причины этому разные, например извержение вулканов. Когда взрывается крупный вулкан, он выбрасывает высоко в атмосферу огромное количество мелкой вулканической пыли, причем может даже упасть температура на всей Земле!

Так вот, пылинка сама по себе очень маленькая и летает высоко в небе, может быть на высоте нескольких километров. Она почти ничего не может заслонить собой. Но поскольку звезда – это точка для наблюдателя на земле, когда пылинка пересекает луч звезды, она на мгновение заслоняет этот луч, и звезда «мигает».

А от планеты пылинка не может перегородить весь ее луч света, потому что планета – это кружок на небе, и пылинка только покажется маленьким пятнышком на фоне этого кружка!

Скорее всего, именно поэтому звезды мерцают, а планеты – нет.

Какой важный вывод можно из этого сделать? Чем более загрязнена атмосфера, тем сильнее мерцают звезды. Можно определять загрязненность атмосферы прямо с земли! Таким образом, понимание различия между звездами и планетами помогает следить за экологией нашей планеты.

56

Можно ли спичкой закрыть звезду?

Для опыта нам потребуется: спичка.

Раз уж мы заговорили про звезды, вспомним довольно старый, но очень занятный опыт. В темную ночь, когда небо ясное и хорошо видны звезды, выйдите на балкон или улицу и посмотрите на одну из самых ярких звезд. Как мы уже знаем, звезда для наблюдателя всегда будет виднеться как точка. Мы также знаем, что маленькая пылинка, плавающая в верхних слоях атмосферы, может перекрыть луч от звезды.

Но это если пылинка находится очень далеко, на расстоянии в сотни метров или километров от наблюдателя. А вот можно ли перекрыть луч от звезды, скажем, спичечной головкой?

Кажется, что спичечная головка достаточно большая и если поставить ее перед глазом, то она закроет свет от звезды.

Попробуйте! Закройте один глаз, а другим посмотрите на звезду «через спичку».

Оказывается, спичка становится будто бы прозрачной! Свет от звезды все равно будет ясно виден! Что же это получается? Или неправда, что пылинка закрывает свет, или…

Объяснение здесь очень простое. Все дело действительно в расстоянии до объекта, который перекрывает ход лучей. Пылинка, хоть и маленькая, но «тень» от нее, пройдя сотни метров или километры, становится достаточно большим пятном, чтобы перекрыть зрачок глаза. А вот головка спички меньше по размеру, чем расширившийся в темноте зрачок. И хотя головка спички и закрывает часть света от звезды, зрачок «шире» и все равно ловит часть лучей. Лучи попросту проходят мимо спички и попадают в глаз все равно!

Вот если бы спичку поднять высоко в атмосферу, она бы закрыла собой звезду!

57

Как делают драгоценности

Для опыта нам потребуются: стеклянная банка, горячая вода, соль, сахар.

Один из интереснейших опытов, который можно сделать дома, – это выращивание кристаллов. Если вы читаете эту книгу по порядку, то помните, что мы уже выращивали кристаллы на дому (опыт 26). Сейчас повторим наш опыт, немного видоизменив его.

Что такое кристаллы? Кристаллы – это очень интересное состояние вещества. Вещество может находиться в четырех основных состояниях – жидком, твердом, быть газом и еще плазмой. Но если вещество твердое, чаще всего оно находится в «неупорядоченном» состоянии, внутри мелкие частицы, из которых это вещество состоит, как бы слеплены просто комом, кое-как, без всякого порядка.

Но бывает, что твердое вещество внутри построено как хорошее здание – кирпичик к кирпичику. Тогда уже получается кристалл. Вот, например, обыкновенная поваренная соль. Она внутри состоит из ма-а-а-аленьких кубиков. Каждый кубик построен из атомов хлора (ядовитый газ) и натрия (это металл, который может гореть даже в воде). А вместе, если их последовательно сложить, получается обычная соль. Хлор – натрий – хлор – натрий – хлор – натрий… ну и так далее.

Интересно, что первые кристаллы исследовали так: брали кристалл и били по нему молотком. Он разбивался на множество маленьких кристаллов такой же формы, как и первоначальный, большой кристалл. После этого ученым пришла в голову мысль, что внутри все кристаллы повторяют свою внешнюю форму и эта форма связана со строением кристалла из атомов! Эта догадка оказалась верной. Вот так-то!

Даже когда кристаллы вырастают очень большими, они сохраняют форму тех маленьких «кубиков» или других фигурок, например пирамидок, из которых они состоят. Почти все драгоценные камни являются кристаллами. Но мы не будем выращивать драгоценные камни, для этого нужна специальная аппаратура, мы вырастим кристалл соли.

Для этого понадобится обычная стеклянная баночка, горячая вода и соль! Нальем горячей воды в баночку и станем добавлять соли чайной ложкой, тщательно размешивая осадок на дне. Через некоторое время соль перестанет растворяться. Добавим еще немного соли, чтобы получился перенасыщенный, то есть очень сильный, раствор соли. И поставим баночку на подоконник. Все! Ничего больше делать не нужно. Надо только ждать.

Пройдет несколько дней, неделя, может быть, чуть больше. Каждый день мы будем смотреть, как образуется сначала корка из соли, потом выпадает осадок, потом появляются более крупные кристаллы.

В конце концов, когда испарится вся вода, мы получим маленькую соляную пустыню, где все горы и холмы будут строго кубиками!

Если мы попробуем отколоть кусочек соли от нашей кристаллической пустыни, он отколется кубиком или кусочком, составленным из кубиков.

Так, без всяких микроскопов, мы увидим, что соль состоит из кубических кристаллов!

Можно усложнить опыт. Возьмем и растворим в горячей воде соль вместе с сахаром. Будем класть ложку соли, ложку сахара, ложку соли, ложку сахара… Дальше, после того как вода испарится, наковыряем получившихся кристаллов и попробуем их на вкус. Язык откажется воспринимать такой вкус – будет непонятно, соль это или сахар!

Еще усложним опыт. Сделаем горячий перенасыщенный раствор соли. Из предыдущего опыта с кристаллизацией соли выковырнем кусочек соли покрупнее, обвяжем его ниточкой и опустим в раствор, когда он остынет. Пусть кристаллик соли висит в соленом растворе, пока тот испаряется. Через несколько дней мы увидим, что кристаллик начал расти! Можно получить довольно большой кусок кристаллической соли таким простым методом.

Теперь уже можно понять, как делают искусственные драгоценные камни, например рубины. Расплавляют при огромной температуре вещество, из которого состоит рубин. Затем берут кристаллик рубина и дотрагиваются до поверхности расплавленной массы рубинового вещества. Конечно, это делают не руками, а специальными машинами, при высоких температурах и давлении. Атомы из вещества начинают «прилипать» к кристаллику, надстраивая его, как рос у нас кусочек соли. Рубин начинает расти. При этом его очень медленно поднимают из расплавленной массы, и снизу он все продолжает расти! Таким образом через некоторое время из массы вытягивается рубиновый столбик. Затем его остужают, режут на отдельные драгоценные камушки и используют в различных механизмах или драгоценных украшениях.

Поскольку рубин очень твердый и гладкий, из него делают, например, опоры для маятников в механических часах. Если вы посмотрите на часы, на многих написано «семнадцать камней» или «одиннадцать камней». Вот эти-то «камни» и есть рубиновые кристаллы, из которых делают опоры для осей. Движущиеся части в часах трутся о рубин, но не стирают его и не тратят слишком много энергии на трение. Так драгоценности служат в механизмах.

58

Копия монеты за две минуты

Для опыта нам потребуются: монетки, фольга, клей.

У любого из нас есть возможность достать несколько мелких монет. Если мы посмотрим на монету, у нее всегда есть «лицевая» сторона и «обратная» сторона. Обычно их называют «орел» и «решка». Говорят, что эти названия произошли потому, что на одной стороне всегда был изображен герб России – орел. А на другой – решетка (на старинных монетах).

Теперь же орла можно увидеть, а решетки нет. Вместо нее бывают разные изображения, особенно на юбилейных монетах.

Интересно, можно ли сделать копию монеты за пару минут?

Мы воспользуемся таким физическим свойством материалов, как пластичность. Разные вещества обладают разной пластичностью. Это способность материала изменять свою форму и не «рваться» на части. Понятно, что пластилин – очень пластичный (даже название происходит от этого же слова). А вот камень – не пластичный. Попытаешься его «смять» – в лучшем случае он расколется…

Металлы более пластичны, чем многие другие материалы. Например, медь очень пластична, ее можно ковать, мять, сгибать. Кстати, чтобы медь сделать ну очень пластичной, ее надо накалить в пламени (костра, например), а потом, нагретую докрасна, сунуть в воду. Тогда ее можно сильно мять, растягивать, ковать – и она не треснет.

Алюминий менее пластичный, чем медь, но, если его расплющить в очень тонкую пленку, фольгу, он будет достаточно хорошо принимать любую форму. У алюминия есть еще одно хорошее свойство: он не ядовит и не окисляется (не ржавеет). Именно поэтому фольгу для заворачивания продуктов делают из алюминия.

Возьмем же кусочек фольги, положим на монетку и разгладим сверху ногтем или тупым карандашом. Надо только делать это аккуратно, чтобы не порвать фольгу. Мы увидим, что алюминиевая фольга приняла форму монеты и на ней проступил рельеф, например двуглавый орел!



Поделиться книгой:

На главную
Назад