Поприветствуйте
Но перед тем как перейти к этим вопросам, давайте точно определим, что означает число
по мере увеличения числа членов, участвующих в этой сумме. Но это тоже не особенно полезно. Давайте лучше посмотрим на
Представьте себе, что у вас есть депозит в виде сберегательного счета в размере 1000 долларов в банке, который ежегодно выплачивает невероятно щедрую процентную ставку в 100% годовых. Через год на вашем счете будет 2000 долларов, то есть начальный депозит в размере 1000 долларов плюс 100-процентная ставка по ним, равная еще 1000 долларам.
Прикидываясь дурачком, вы просите у банка еще более выгодные условия: предлагаете выплачивать вам проценты раз в полгода, то есть чтобы банк выплачивал только 50% ставки в течение первых шести месяцев и 50% ставки следующие шесть месяцев. Естественно, вы окажетесь в выигрыше, так как будете получать проценты на проценты. Но насколько?
Ответ на этот вопрос следующий: ваша первоначальная сумма в 1000 долларов возрастет на коэффициент 1,50 за первое полугодие и снова на коэффициент 1,50 во втором полугодии. А поскольку 1,50, умноженное на 1,50, равно 2,25, то через год на вашем счете будет 2250 долларов. Это значительно больше, чем 2000 долларов, которые вы можете получить на изначальных условиях.
А что произойдет, если вы еще надавите на банк и убедите его разбить год на более короткие периоды выплаты процентов: по дням, секундам или даже по наносекундам? В этом случае вы смогли бы сколотить небольшое состояние?
Допустим, год поделен на 100 равных периодов, после каждого из которых выплачивается 1% ставки (при процентной ставке 100% в год, поделенной на 100 частей). Тогда в конце года сумма в 1000 долларов увеличится на коэффициент 1,01, возведенный в 100-ю степень, что приблизительно равно 2,70481. Другими словами, вместо 2000 или 2250 долларов на вашем счете будет б
И наконец, если сложный процент начисляется
Это наиболее существенный вычислительный аргумент в пользу числа
В процессе приближения к пределу, который вел к
Таков ключ к вездесущности
Рассмотрим кусочек урана в процессе радиоактивного распада. Момент за моментом каждый атом имеет определенный маленький шанс подвергнуться распаду. Произойдет ли это с каждым из них и когда — совершенно непредсказуемо, и каждое такое событие оказывает в целом бесконечно малое влияние. И все же в совокупности эти триллионы событий создают сглаженный, предсказуемый, экспоненциально затухающий процесс радиоактивного распада.
Или подумайте о населении Земли, которое растет в геометрической прогрессии. Во всем мире дети рождаются в случайных местах в непредсказуемые моменты, пока другие люди умирают тоже в случайных местах в непредсказуемые моменты. Каждое событие имеет мизерное в процентном отношении воздействие на демографическую ситуацию в мире, но в совокупности население растет в геометрической прогрессии с очень предсказуемой скоростью.
Есть еще одна причина для появления
Представьте себе, что популярный новый фильм показывают в местном кинотеатре. Это романтическая комедия, и сотни пар (намного больше, чем может вместить кинотеатр) выстроились в кассу в очередь за билетами, хотя и отчаялись попасть внутрь. Как только счастливая пара получает билеты, она пробирается в зал и ищет два места рядом. Для простоты предположим, что влюбленные выбирают эти места наугад, там, где есть свободные. Другими словами, они не заботятся о том, будут ли сидеть близко к экрану или далеко от него, на проходе или в середине ряда. Пока они рядом друг с другом, они счастливы.
Допустим, ни одна пара не будет пересаживаться, чтобы освободить место для другой. После того как молодые люди уселись, они никуда не передвигаются. Полное отсутствие вежливости. Зная это, кассир прекращает продавать билеты после того, как остается только одно свободное место. В противном случае начались бы драки.
Сначала, пока в кинотеатре довольно пусто, не возникает никаких проблем. Каждая пара легко находит два места рядом. Но через какое-то время остаются только одиночные места и одиночные промежутки между парами, которые двое не хотят занимать. В реальной жизни люди часто намеренно создают такие промежутки: чтобы положить пальто или не опираться на один подлокотник с неприятным незнакомцем. Но в нашей модели эти промежутки случайны.
Вопрос: если больше не осталось мест для пар, сколько свободных мест еще есть в кинотеатре?
Ответ следующий: оказывается, в кинотеатре с большим залом (когда в ряду много мест) доля пустующих мест примерно равна
что приближается к 13,5%72.
Хотя сам расчет слишком сложный для того, чтобы его здесь привести, легко заметить, что 13,5% находится в правой части диапазона между двумя крайними значениями. Если бы все пары сидели вплотную друг к другу, пустующих мест не было бы.
Тем не менее, если бы они расположились максимально
Догадываясь, что произвольный выбор должен лежать где-то между идеально рациональным и совершенно неэффективным, иначе говоря, быть средним между 0 и
Здесь большое число вариантов возникло из-за того, что у пар был богатый выбор в огромном кинотеатре. Наш следующий пример тоже об организации пар, только теперь не в пространстве, а во времени. То, о чем я говорю, касается довольно болезненной проблемы: со сколькими партнерами я должен встретиться прежде, чем выберу себе супругу73. Реальный вариант этой задачи слишком сложен для математического расчета. Рассмотрим упрощенную модель. Несмотря на допущения, невозможные в жизни, в ней все еще сохраняется некоторая душераздирающая романтическая неопределенность.
Предположим, вам известно, сколько потенциальных супругов вы встретите в течение жизни. (Фактическое количество не важно, лишь бы знать наперед, сколько их будет, и чтобы не слишком мало).
Предположим также, что вы могли бы оценить этих людей однозначно (то есть выбрать наилучшего), если бы увидели их всех вместе. К несчастью, это невозможно. Вы встречаете их только по одному и в случайном порядке. Таким образом, вы не можете знать, находится ли предмет ваших мечтаний с первым номером из вашего списка прямо за углом или вы уже встречались и расстались.
И правила этой игры таковы: как только вы позволите кому-то уйти, он (или она) тут же уходит. Второго шанса нет.
Наконец представим, что вы хотите остепениться. В этом случае, если вы порываете с тем «наилучшим на сегодняшний день», кого в прошлом не поместили в верхнюю часть списка, вы будете считать свою личную жизнь неудачной.
Есть ли надежда найти истинную любовь? Если да, то что нужно сделать, чтобы обеспечить себе наибольшие шансы?
Хорошая стратегия, хотя и не самая оптимальная, — разделить свою жизнь с момента, когда у вас начались романтические отношения, и до настоящего времени на две равные части. В первой половине вы мужчина нарасхват[28], а во второй — готовы к серьезным отношениям и собираетесь схватить первого же партнера, который будет лучше тех, с кем вы встречались до этого.
Следуя такой стратегии, есть по крайней мере 25-процентный шанс найти предмет мечтаний. И вот почему: шансов встретить его во второй половине жизни, когда вы созрели для серьезных отношений, у вас 50 на 50, и столько же встретить наилучшего на сегодня в первой половине жизни, когда вы еще легкомысленны. Вероятность, что произойдут оба события, составляет 25%. В этом случае вы найдете свою истинную любовь.
А все потому, что «наилучший на сегодняшний день» очень высоко поднял планку. Никто из тех, кого вы повстречаете после того, как будете готовы к серьезным отношениям, не будет привлекать вас так, как предмет мечтаний. Но даже в этот момент вы, возможно, станете сомневаться, что предмет мечтаний и есть тот единственный, кто сможет преодолеть планку, поставленную «наилучшим на сегодняшний день».
Однако оптимальная стратегия — начать серьезный поиск партнера немного раньше, после 1/
Разумеется, при условии, что она в это время не будет играть в
20. Любит не любит
«Весной, — писал Теннисон, — воображение молодого человека с легкостью поворачивается к мыслям о любви». Увы, потенциальный партнер молодого человека может иметь собственные представления о любви, и тогда их отношения будут полны бурных взлетов и падений, которые делают любовь столь волнующей и столь болезненной. Одни страдальцы от безответной ищут объяснение этих любовных качелей в вине, другие — в поэзии. А мы проконсультируемся у исчислений.
Представленный ниже анализ будет насмешливо-ироничным, но он затрагивает серьезные темы. К тому же если понимание законов любви может от нас ускользнуть, то законы неодушевленного мира в настоящее время хорошо изучены. Они принимают форму дифференциальных уравнений, описывающих изменение взаимосвязанных переменных от момента к моменту в зависимости от их текущих значений. Возможно, у таких уравнений мало общего с романтикой, но они хотя бы могут пролить свет на то, почему, по словам другого поэта, «путь истинной любви никогда не был гладким».
Чтобы проиллюстрировать метод дифференциальных уравнений, предположим, что Ромео любит Джульетту74, но в нашей версии этой истории Джульетта — ветреная возлюбленная. Чем больше Ромео любит ее, тем сильнее она хочет от него спрятаться. Но когда Ромео охладевает к ней, он начинает казаться ей необыкновенно привлекательным. Однако юный влюбленный склонен отражать ее чувства: он пылает, когда она его любит, и остывает, когда она его ненавидит.
Что происходит с нашими несчастными влюбленными? Как любовь их поглощает и уходит с течением времени? Вот где дифференциальное исчисление приходит на помощь. Составив уравнения, обобщающие усиление и ослабление чувств Ромео и Джульетты, а затем решив их, мы сможем предсказать ход отношений этой пары. Окончательным прогнозом для нее будет трагически бесконечный цикл любви и ненависти. По крайней мере четверть этого времени у них будет взаимная любовь.
Чтобы прийти к такому выводу, я предположил, что поведение Ромео может быть смоделировано с помощью дифференциального уравнения
которое описывает, как его любовь (
Напротив, поведение Джульетты можно смоделировать с помощью уравнения
Отрицательный знак перед постоянной
Единственное, что еще осталось определить, — их изначальные чувства (то есть значения
Представленные выше дифференциальные уравнения должны быть знакомы студентам-физикам: Ромео и Джульетта ведут себя как простые гармонические осцилляторы. Таким образом, модель предсказывает, что функции
Модель можно сделать более реалистичной разными путями. Например, Ромео может реагировать не только на чувства Джульетты, но и на свои собственные. А вдруг он из тех парней, которые настолько боятся, что их бросят, что станет остужать свои чувства. Или относится к другому типу парней, которые обожают страдать — именно за это он ее и любит.
Добавьте к этим сценариям еще два варианта поведения Ромео: он отвечает на привязанность Джульетты либо усилением, либо ослаблением собственной привязанности — и увидите, что в любовных отношениях существуют четыре различных стиля поведения. Мои студенты и студенты группы Питера Кристофера из Вустерского политехнического института предложили назвать представителей этих типов так: Отшельник или Злобный Мизантроп для того Ромео, который охлаждает свои чувства и отстраняется от Джульетты, и Нарциссический Болван и Флиртующий Финк для того, который разогревает свой пыл, но отвергается Джульеттой. (Вы можете придумать собственные имена для всех этих типов).
Хотя приведенные примеры фантастические, описывающие их типы уравнений весьма содержательны. Они представляют собой наиболее мощные инструменты из когда-либо созданных человечеством для осмысления материального мира. Сэр Исаак Ньютон использовал дифференциальные уравнения для открытия тайны движения планет. С помощью этих уравнений он объединил земные и небесные сферы, показав, что и к тем и к другим применимы одинаковые законы движения.
Спустя почти 350 лет после Ньютона человечество пришло к пониманию того, что законы физики всегда выражаются на языке дифференциальных уравнений. Это верно для уравнений, описывающих потоки тепла, воздуха и воды, для законов электричества и магнетизма, даже для атома, где царит квантовая механика.
Во всех случаях теоретическая физика должна найти правильные дифференциальные уравнения и решить их. Когда Ньютон обнаружил этот ключ к тайнам Вселенной и понял его великую значимость, он опубликовал его в виде латинской анаграммы. В вольном переводе она звучит так: «Полезно решать дифференциальные уравнения»75.
Глупая идея описать любовные отношения с помощью дифференциальных уравнений пришла мне в голову, когда я был влюблен в первый раз и пытался понять непонятное поведение моей девушки. Это был летний роман в конце второго курса колледжа. Я очень напоминал тогда первого Ромео, а она — первую Джульетту. Цикличность наших отношений сводила меня с ума, пока я не понял, что мы оба действовали по инерции, в соответствии с простым правилом «тяни-толкай». Но к концу лета мое уравнение начало разваливаться, и я был еще более озадачен. Оказалось, произошло важное событие, которое я не учел: ее бывший возлюбленный захотел ее вернуть.
В математике мы называем такую задачу задачей о трех телах. Она заведомо неразрешима, особенно в контексте астрономии, где впервые и возникла. После того как Ньютон решил дифференциальные уравнения для задачи о двух телах (что объясняет, почему планеты движутся по эллиптическим орбитам вокруг Солнца), он обратил внимание на задачу о трех телах для Солнца, Земли и Луны. Ни он, ни другие ученые так и не смогли ее решить. Позже выяснилось, что задача о трех телах содержит семена хаоса76, то есть в долгосрочной перспективе их поведение непредсказуемо.
Ньютон ничего не знал о динамике хаоса, но, по словам его друга Эдмунда Галлея[29], пожаловался, что задача о трех телах «вызывает головную боль77 и так часто не дает ему спать, что он больше не будет об этом думать».
Здесь я с вами, сэр Исаак.
21. Выйди на свет[30]
Господин Дикурцио был моим наставником в средней школе — хмурый и требовательный, склонный к сарказму человек, носивший скучного вида очки в черной оправе. Словом, симпатяга. Но я заметил его безумную страсть к физике.
Однажды я рассказал ему, что прочитал биографию Эйнштейна. В ней говорилось, что во время учебы в колледже Эйнштейн был сильно поражен чем-то под названием «уравнения Максвелла для электричества и магнетизма»; и я заявил, что не могу ждать, пока начну достаточно разбираться в математике, чтобы узнать, что они собой представляют.
Это произошло во время ужина в школе-интернате. За большим столом сидели еще несколько студентов, жена учителя и две его дочери; господин Дикурцио раскладывал картофельное пюре по тарелкам. При упоминании об уравнениях Максвелла он бросил ложку, схватил бумажную салфетку и начал писать на ней загадочные символы, точки и кресты, перевернутые треугольники,
Что за абракадабру он бормотал? Теперь-то я понимаю, что он давал объяснения в терминах векторного исчисления78 — раздела математики, описывающего все находящиеся вокруг нас невидимые поля. Вспомните магнитное поле, поворачивающее стрелку компаса на север, гравитационное поле, притягивающее ваш стул к полу, или микроволновое поле, которое готовит ваш ужин.
Наибольшие достижения векторного исчисления лежат в том сумеречном мире, где математика сталкивается с реальностью. В самом деле, история Джеймса Максвелла и его уравнений показывает один из сверхъестественных случаев несомненной эффективности математики. Так или иначе, перетасовав несколько символов, Максвелл обнаружил, что такое свет79.
Чтобы осознать значимость его открытия и получить общее представление о векторном исчислении, давайте начнем со слова «вектор». Оно происходит от латинского корня
Вспомните одну из схем для начинающих танцоров бальных танцев, покрытую стрелками, указывающими, как, танцуя румбу, ставить правую ногу, а затем левую:
Эти стрелки и есть векторы. Они содержат два вида данных: направление (в каком направлении переставлять ногу) и величину (на какое расстояние ее нужно переместить). Все векторы имеют такую двойственность.
Векторы, как и числа, можно складывать и вычитать, но наличие направленности делает их более сложными. Тем не менее сложение векторов становится более понятным, если вы представите его в виде инструкции по танцам. Например, что получится, если сначала вы делаете один шаг на восток, а следующий на север? Естественно, вектор, который указывает на северо-восток.
Примечательно, что скорость и сила ведут себя так же: они складываются, как и танцевальные шаги. Это должно быть знакомо любому теннисисту, который когда-либо пытался подражать Питу Сампрасу и бил по мячу справа снизу от линии, когда бежал на полной скорости к боковой линии. Если направить мяч без учета своего движения, то удар будет неточным. Скорость мяча по отношению к корту — это сумма
За пределами векторной алгебры лежит векторное исчисление: раздел математики, который использовал господин Дикурцио. Вы помните, что любое исчисление — это математика перемен. Поэтому векторное исчисление должно включать в себя изменение векторов во времени и пространстве. В последнем случае говорят о «векторном поле».
Классический пример векторного поля — силовое поле вокруг магнита. Для его демонстрации положите магнит на лист бумаги и начните сыпать на него железные стружки. Каждая стружка ведет себя как маленькая стрелка компаса, и ее направление совпадет с направлением локального «севера», определяемого магнитным полем в этой точке. Совокупность стружек создает захватывающую картину силовых линий магнитного поля, которые пролегают от одного полюса магнита к другому.
Направления и величины векторов в магнитном поле меняются от точки к точке. Как и во всех исчислениях, ключевым инструментом для количественного расчета таких изменений является производная. В векторном исчислении оператор производной называется «дельта» — от греческой буквы ∆ (дельта), обычно используемой для обозначения изменений в отдельных переменных. Как напоминание о родственных связях, в векторном исчислении также применяется перевернутый треугольник ∇. (Это тот самый таинственный перевернутый треугольник учителя Дикурцио, который он несколько раз нарисовал на салфетке и который называется «набла».)
Оказывается, существует два различных, но одинаково естественных способа взять производную у векторного поля, применяя к нему «наблу». Первый называется дивергенцией поля. Чтобы интуитивно почувствовать, как она измеряется, взгляните на векторное поле, показывающее, как вода потечет из источника слева в раковину справа.
Для этого примера, чтобы отслеживать векторное поле, вместо железных стружек возьмем множество мелких корок или фрагменты плывущих по поверхности воды листьев. Мы собираемся использовать их в качестве зондов. Их движение будет показывать, как вода течет в каждой точке. Представьте, что произойдет, если выложить небольшой кружок из корок вокруг источника. Очевидно, что корки начнут раздвигаться и круг станет расширяться, так как вода вытекает из источника. Источник здесь
На рисунке ниже оттенками серого изображены численные значения дивергенции в каждой точке поля. Светлые оттенки показывают точки, где поток имеет положительную дивергенцию, а темные — места отрицательной дивергенция там, где поток
Другой способ измерения производной — ротор векторного поля. Грубо говоря, ротор показывает, насколько сильно поле крутится вокруг данной точки. (Вспомните карты погоды, демонстрирующие вращающуюся розу ветров вокруг ураганов и тропических штормов, которые вы видели в новостях.) В векторном поле на рисунке области, выглядящие как ураганы, имеют большой ротор.
Украсив векторное поле оттенками серого, можно показать, где ротор имеет наибольшие положительные (светлая область) и наибольшие отрицательные (темная область) значения. Обратите внимание, что положительность или отрицательность ротора говорит также о том, в каком направлении вращается поток (против или по часовой стрелке).
Ротор чрезвычайно информативен для ученых, имеющих дело с механикой жидкостей и аэродинамикой. Несколько лет назад моя коллега Джейн Ван с помощью компьютера смоделировала структуру воздушного потока вокруг стрекозы в момент, когда та зависает на одном месте80. Вычисляя ротор, Джейн обнаружила, что, когда стрекоза машет крыльями, это формирует пару противоположно вращающихся вихрей (роторов), действующих как маленькие торнадо под ее крылышками и создающих достаточную подъемную силу, чтобы удерживать насекомое в воздухе. Таким образом, векторное исчисление помогает объяснить, как летают стрекозы, шмели и колибри, что долгое время было загадкой для традиционной аэродинамики неподвижного крыла самолета.
Теперь, когда вы получили представление о дивергенции и роторе, давайте вернемся к уравнениям Максвелла. Они выражают четыре фундаментальных закона: первый — для дивергенции электрического поля, второй — для его ротора, а третий и четвертый такого же типа — для магнитного поля. Уравнения дивергенции связывают электрические и магнитные поля с источниками их возникновения, заряженными частицами и токами, которые создают их изначально. Уравнения ротора описывают, как электрические и магнитные поля взаимодействуют и изменяются с течением времени. При этом уравнения обладают красивой симметрией: они связывают скорость изменения во
Максвелл использовал математические приемы, эквивалентные векторному исчислению, которое в его время еще не было известно, и вывел логические следствия из этих четырех уравнений. Перетасовка символов привела его к выводу, что электрические и магнитные поля могут распространяться в виде волн, похожих на рябь в пруду. За исключением электрических и магнитных полей, больше походивших на симбиотические организмы. Они поддерживали друг друга. Волновое движение электрического поля воссоздавало магнитное поле, которое, в свою очередь, воссоздавало электрическое поле, и так далее; каждое тянуло другое вперед, причем ни одно из них не могло сделать это самостоятельно.
Это был первый прорыв — теоретическое предсказание электромагнитных волн. Но действительно потрясающее открытие ждало Максвелла впереди. Когда он вычислил скорости этих гипотетических волн с использованием известных свойств электричества и магнетизма, из его уравнений стало ясно, что поля передвигаются со скоростью около 193 тысячи миль в секунду — такое же значение для скорости света вывел французский физик Ипполит Физо за десять лет до этого!
Как я хотел бы стать свидетелем момента81, когда человек впервые понял истинную природу света. Считая свет электромагнитной волной, Максвелл объединил три древних и, казалось бы, не связанных между собой явления: электричество, магнетизм и свет. Хотя такие экспериментаторы, как Фарадей и Ампер, ранее нашли основные части этой головоломки, именно Максвелл, вооруженный своей математикой82, сложил их.
Сегодня мы купаемся в некогда гипотетических волнах Максвелла, имея радио, телевидение, сотовые телефоны и Wi-Fi. Таково наследие его колдовства с символами.
22. Новая нормальность
Статистика внезапно стала сверхмодным направлением. С появлением интернета, электронной торговли, социальных сетей, проекта по расшифровке генома человека, а также в связи с развитием цифровой культуры в целом мир стал захлебываться в данных.83 Маркетологи изучают наши вкусы и привычки. Разведывательные службы собирают информацию о нашем местонахождении, электронной переписке и телефонных звонках. Специалисты по спортивной статистике жонглируют цифрами84, решая, каких игроков покупать, кого набирать в команду, а кого посадить на скамью запасных. Каждый стремится объединить точки в график и обнаружить закономерность в беспорядочном скоплении данных.
Неудивительно, что эти тенденции отражаются и в обучении. «Давайте обратимся к статистике»85, — увещевает в своей колонке газеты New York Times Грег Мэнкью, экономист из Гарвардского университета. «В учебной программе по математике в средней школе слишком много времени уделяется традиционным темам, таким как евклидова геометрия и тригонометрия. Эти полезные для обычного человека умственные упражнения, однако, малоприменимы в повседневной жизни. Учащимся было бы гораздо полезнее больше узнать о теории вероятности и статистике». Дэвид Брукс идет еще дальше86. В своей статье, посвященной дисциплинам, заслуживающим внимания для получения достойного образования, он пишет: «Возьмите статистику. Вот увидите, окажется, что знание того, что такое стандартное отклонение, вам очень пригодится в жизни».