— После первой же публикации на кафедру стали приходить мешки писем с просьбами о продаже столь необычной «обувки», — рассказывал мне профессор Рудой. — Волей-неволей пришлось продолжить работу. Больше других в том преуспели Борис Рябых и его товарищ Сергей Володин…
Чтобы вы лучше поняли, в чем главные затруднения создателей оригинального вида транспорта, давайте ознакомимся с основными принципами устройства механизации бега — УМБ «Персей» (таково официальное название конструкции). Основу ее составляет двухтактный двигатель внутреннего сгорания (ДВС). Первоначально он весил 2,4 кг, затем вес устройства, надеваемого на одну ногу, удалось снизить до 1,5 кг (без учета массы самой обуви).
Когда человек, обутый в УМБ, наступает на пятку, он тем самым повышает давление в цилиндре ДВС. Происходит самовоспламенение горючей смеси — примерно так же, как в дизеле. Как только смесь вспыхивает, давление в камере сгорания резко возрастает, выталкивая поршень. Тот через шток толкает вперед и вверх ногу с силой вполне достаточной, чтобы человек сделал шаг-прыжок длиной более 3 м. Во время прыжка происходит выхлоп продуктов сгорания из цилиндра и зарядка новой порцией смеси. Попеременно вступая в действие, при частоте около 100 шагов в минуту, сапоги-скороходы (вместе с человеком, естественно) способны преодолеть за час до 25 км, экономя бегуну до 70 % усилий.
Так дело обстоит в теории. На практике же лишь пятый вариант конструкции оказался работоспособным. Потому что всю конструкцию пришлось приспосабливать к вязко-упругим характеристикам человека. То есть, говоря иначе, человек — не робот, и если толчки окажутся чересчур жесткими, то пробежать не удастся и 100 метров. Возможны и долговременные осложнения, даже болезни, знакомые всем, кто долго работал, скажем, с отбойным молотком.
Впрочем, доработки пошли на пользу не только сапогам. Побочными следствиями совершенствования УМБ оказалась и более «мягкая», не дающая отдачи конструкция того же отбойного молотка, и эффективная система шумоглушения, и антидетонационная система, позволяющая намного продлить жизнь любому ДВС, и создание целой серии малоразмерных моторов, которые можно использовать в строительстве, на транспорте, в коммунальном и сельском хозяйстве… Но самое главное, конечно, — удалось-таки разработать вполне работоспособную конструкцию сапог.
И здесь снова придется вспомнить об армии. Точнее, ее командование само о себе напомнило. Узнав, что появился механизм, позволяющий даже в кирзовых сапогах бегать кроссы с приличной скоростью, оно наложило на него гриф секретности. Разработку повезли на экспертизу в НИИ воздушно-десантных войск. Однако, ознакомившись с конструкцией поближе, военные от сапог-скороходов отказались — решили, что автомобиль и грузоподъемнее, и скоростнее…
Гриф секретности с разработки сняли. Так что очередной вариант конструкции — уж девятый или десятый по счету — вскоре должен появиться в продаже. Наряду с другими руки к этому приложил и Виктор Гордеев — тот самый бывший студент-дипломник. Сейчас он возглавляет акционерное общество «Экоцентр», которое наконец-таки смогло наладить серийный выпуск сапог-скороходов.
Сейчас с их помощью можно развивать скорость до 60 километров в час, преодолевать значительные расстояния. И весят они теперь намного меньше — одна из последних моделей «сапог» имеет массу менее 1 кг.
Так что десятилетия работы не прошли даром. Сегодня «сапоги-скороходы» изготовляются уже десятками пар. Разработана уже и методика обучения в сапогах-скороходах. Каждый покупатель проходит первоначальное обучение со страховкой и под руководством инструкторов. На поясе — лонжа, своеобразный пояс безопасности, от которого отходит тросик с карабинчиком. Карабин цепляют за проволоку, натянутую на двух опорах. Если и потеряешь равновесие, повиснешь на лонже, как акробат в цирке.
ШТАНЫ-САМОХОДЫ
Пока эта публикация готовилась к печати, пришло сообщение из Страны восходящего солнца. Японцы создали «штаны-самоходы», которые избавляют от усталости во время прогулок, автоматически переставляя ноги своего обладателя.
Судя по описанию, «штаны» представляют собой пару плоских «ног», которые крепятся вдоль конечностей хозяина, заканчиваясь под пятками. А на спину надевается упакованный в рюкзак блок управления. Все обмундирование весит примерно 17 кг, но тяжесть практически не ощущается за счет того, что человек не тратит энергию на шаги.
Компьютер с помощью специальных сенсоров улавливает сигналы мозга, посылаемые для совершения движений. И мгновенно передает их искусственным ногам. Таким образом, во время прогулки обладателю самоходных «штанов» нужно просто подумать, куда идти, — остальное сделают электроника и шарнирный механизм.
Пока в этих «штанах» можно ходить быстрым шагом. Но, как обещают создатели этой «чудо-техники» из университета Цукуба, скоро они догонят легендарного Карла Льюиса — олимпийского чемпиона, который, как известно, пробежал стометровку всего за 9,86 секунды.
КРОССОВКИ С КОМПЬЮТЕРОМ
«Когда я перехожу с асфальта на газон, мои кроссовки автоматически меняют жесткость подошвы, регулируя «отдачу» от земли в пятку, благодаря тому, что в каждой из них спрятаны моторчик и компьютер, способный делать 5 млн. вычислений в секунду»…
Так полгода назад написал корреспондент американского журнала Newsweek, испытав новые кроссовки. Подошвы кроссовок полые. Когда человек ставит стопу на грунт, датчик давления с точностью до сотых долей миллиметра определяет расстояние от верхней до нижней части подошвы. Результаты нескольких тысяч измерений каждую секунду обрабатывает процессор.
Как только нагрузка на подошву становится больше, процессор «понимает», что вы бежите по более твердой поверхности, и меняет геометрию и жесткость подошвы с помощью моторчика в каблуке. Все происходит быстро. Стоит один раз коснуться подошвой поверхности с другой жесткостью, как система отреагирует, и при следующем шаге вы уже почувствуете изменения.
Все это сложное устройство внутри кроссовки питается от аккумулятора, спрятанного под стелькой. Заряда хватает всего на 100 часов работы, поэтому после бега кроссовки лучше выключать специальной кнопочкой. Аккумулятор стандартный, стоит около 3 долларов США. Менять его придется через каждые 1000 км — если, конечно, вы к тому времени не купите новую пару обуви.
«Ходить в «умных» кроссовках мне понравилось, — сообщает далее корреспондент. — Когда я переходил, например, с бетона на землю, подошва становилась ощутимо тверже, и это было весьма приятно. А вот бегать в таких кроссовках неудобно. Стоило ускориться, как возникало ощущение, что задняя часть ботинка словно «проваливается» вниз, а корпус тянет назад»…
В общем, недоработка конструкции налицо. Тем не менее, с декабря 2004 года компания Adidas уже начала продажу «интеллектуальных» кроссовок по 250 долларов за пару.
СОЗДАНО В РОССИИ
Электростанция в… кармане
Представьте себе батарейку, способную практически вечно питать плейер, мобильник или даже ноутбук. Когда наконец запас энергии в батарейке подойдет к концу, его легко возобновить, заправив… бензином или газом.
Речь, конечно, не об обычной батарейке или аккумуляторе, а о топливном элементе нового поколения, о котором рассказал мне заместитель директора Института проблем технологии микроэлектроники и особо чистых материалов РАН, профессор, доктор технических наук Анатолий Федорович Вяткин.
— Но ведь топливные элементы известны уже довольно давно, — удивился я. — Их применяют, например, на космических кораблях, поскольку для бытовой техники или автомобилей такие элементы пока дороги…
— Все правильно, — подтвердил Анатолий Федорович. — Научный мир уже давно озабочен созданием дешевых и, главное, безвредных источников энергоносителей. Принцип так называемого «холодного горения», на котором основана работа топливного элемента, известен с 1839 года. И с тех пор изыскания возможности получения электроэнергии химическим путем, конечно, продвинулись далеко вперед… Однако до производства в промышленных масштабах дело пока не доходит…
Такое положение, по мнению А.Ф. Вяткина и его коллеги, старшего научного сотрудника института, кандидата технических наук В.В. Старкова сложилось по нескольким причинам. Пожалуй, главная состоит в том, что производство топливных элементов ныне очень дорого, а сами они по своим габаритам и весу лишь немногим отличаются от обычных аккумуляторов. Конечно, кто же будет ставить топливные элементы, например, в автомобиль, если они в 2–3 раза повысят его стоимость?
Кроме того, обычные топливные элементы используют в качестве топлива чистые водород и кислород; их тоже нужно получить, где-то хранить, а это очень пожароопасные вещества…
Однако вспомним, в свое время и обычные батареи и аккумуляторы были весьма громоздки, дороги и небезопасны. А сейчас не редкость аккумуляторы, которые допускают тысячи циклов перезарядки, а по весу и цене мало отличаются от тех же одноразовых батареек. Такое стало возможным после того, как была разработана простая и дешевая технология их производства.
Нечто подобное предлагают наши ученые создать и для топливных элементов.
— Вспомните, когда-то в наших вычислительных машинах, радиоприемниках и магнитофонах использовались радиолампы и транзисторы, — вступил в разговор Виталий Васильевич Старков. — Они были малоэкономичными, громоздкими и ненадежными. Ныне же, когда в них используют микросхемы, электронные приборы стали совсем другими — компактными, долговечными, недорогими. Так давайте же тогда микроэлектронную технологию применим и к производству топливных элементов…
Конечно, сказать куда легче, чем сделать. Но у моих собеседников слова не разошлись с делом. В течение нескольких лет, используя в общем-то стандартные приемы микроэлектронного производства, им удалось создать технологию получения топливных элементов нового поколения.
Главной «изюминкой» в их разработке является использование структур из макропористого кремния. То есть, говоря попросту, исследователям удалось создать некое молекулярное «сито», имеющее заранее заданный размер и форму пор в нем.
— Это «сито» удобно уже тем, что, используя его вместо обычного, мы увеличиваем площадь поверхности структур, на которых происходит реакция, до 250 кв. м на каждый грамм вещества, что в десятки раз больше, чем у обычных плоских поверхностей, — пояснил Старков. — За счет этого можно существенно уменьшить физические размеры топливного элемента. Скажем, вот перед вами экспериментальный образец пластины для показа студентам. Ее размер 10x10 см. Теперь мы можем уменьшить ее площадь в 40 раз. И это еще не все…
Такое молекулярное «сито», как показали эксперименты, может быть дополнено палладиевой пленкой-мембраной, способной сепарировать водород из углеводородистых смесей. То есть, говоря проще, теперь на том же автомобиле можно оставить обычный бензобак, а топливная установка сама будет добывать необходимый ей водород из бензина и вырабатывать с его помощью электричество для работы электромотора.
Новый топливный элемент будет состоять всего из двух деталей: собственно преобразователя-микрочипа и баллончика с топливом. В итоге получается устройство, которое в зависимости от выходной мощности запросто может быть встроено не только в автомобиль, но и уменьшено до размеров аккумуляторов в том же ноутбуке. Стоить же оно будет дешевле все тех же аккумуляторов, поскольку замена кремниевым чипом графитовых электродов с паладиевым и серебряным покрытием, которые сегодня составляют приблизительно 60 % от стоимости всего топливного элемента, приведет к массовому производству подобных источников энергии.
Пользоваться же топливными элементами будет очень просто. Представьте себе геологов в глухой тайге, туристов в дальнем походе или группу спецназа, выполняющую особое задание. Ныне им приходится брать с собой солидный запас сменных батареек для питания радиостанций, навигационных приборов, компьютеров и т. д. Теперь же появляется возможность вместо всего этого иметь при себе лишь флягу с бензином.
— Почему же столь замечательных устройств мы пока не видим в магазинах? — спросил я своих собеседников.
— Со своей стороны мы сделали все, что нужно, — ответил на мой вопрос Анатолий Федорович Вяткин, — разработана технология, оформлены патенты, созданы экспериментальные и макетные образцы. Сейчас ведем переговоры с партнерами, которые готовы вложить средства в развертывание массового производства новых топливных элементов.
ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Как работает топливный элемент
Мы уже не раз рассказывали нашим читателям о работе топливного элемента. Тем не менее, для тех, кто не читал предыдущих публикаций, напоминаем, как он устроен.
Как и прочие источники тока, топливные элементы состоят из анода, катода и электролита между ними. Электрическая энергия выделяется в процессе восстановительно-окислительной реакции, которая поддерживается за счет подачи топлива и окислителя. На практике обычно речь идет о реакции образования из водорода и кислорода обычной воды.
Звучит все очень просто. Однако техническая реализация идеи на деле потребовала преодоления целого ряда трудностей. Прежде всего, как уже было сказано, оказалось непрактичным использование в качестве топлива непосредственно водорода. Поэтому ныне в качестве топлива чаще используют бензин или метиловый спирт — метанол.
Под действием высокой температуры в результате процесса реформинга метанол или иное органическое топливо выделяет водород, который затем и поступает на анод топливного элемента. Функции электролита в современных топливных элементах обычно выполняет тончайшая полимерная мембрана с нанесенным на нее слоем платинового катализатора. Она обладает уникальным свойством: пропускает положительные ионы, то есть ядра атомов водорода, но задерживают электроны.
Ионы, проходя сквозь мембрану, вступают на катоде в реакцию в атомами кислорода, содержащегося в воздухе. В обычных условиях такая реакция приводит к образованию гремучего газа и носит взрывной характер, но в топливном элементе она протекает мирно благодаря тому, что идет не во всем его объеме, а лишь на поверхности мембраны с катализатором. Выделяемое при этом тепло поддерживает процесс реформинга. А электроды, отобранные мембраной у атомов водорода, следуют к катоду по внешней цепи, создавая тот самый электрический ток, который нам необходим для питания тех или иных приборов.
1 — мембрана; 2 — катодная (или анодная) плата; 3 — газодиффузионная пластина; 4 — графитовый блок; 5 — проводящая плата; 6 — блоки подведения водорода, кислорода и отвода воды.
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Метан и жизнь
Метан, как известно, образуется на болотах, в угольных и торфяных пластах, где его производят особые метанообразующие микробы, которые живут в бескислородных пространствах, включая такие особые, как, скажем, коровий желудок.
Установлено, что примерно 2,3 млрд. лет назад именно эти необычные микробы вдохнули в молодую планету Земля жизнь. Не появись некогда эти плодовитые организмы, эволюция на нашей планете пошла бы совершенно иным путем. Не потеряли, впрочем, своего особого значения эти микробы и в наши дни…
Как считают исследователи, задолго до появления цианобактерий, которых до недавнего времени считали ответственными за выработку кислорода на нашей планете, Земля стала обитаемой благодаря жизнедеятельности другой группы одноклеточных — анаэробных метаногенов. Именно они, судя по последним данным, господствовали на протяжении первых двух миллиардов лет истории новорожденной планеты.
Экспериментальные подтверждения этой гипотезы ученые начали получать совсем недавно.
Солнце в те далекие времена — порядка 4,6 млрд. лет тому назад — не было таким ярким и жарким, как сегодня. Тем не менее, в течение 2,3 млрд. лет каменная летопись планеты не содержит каких-либо убедительных свидетельств о широкомасштабных оледенениях. Это означает, что климат в те времена был теплее, чем, скажем, во время цикла великого оледенения, бывшего около 100 тыс. лет назад.
Дело в том, что благодаря жизнедеятельности метаногенов — микроорганизмов, вырабатывающих метан в качестве побочного продукта обмена веществ, уровень этого газа в атмосфере древней планеты был в 600 раз выше, чем сегодня. А стало быть, несмотря на то, что Солнце в то далекое время светило менее ярко, чем сейчас, парниковый эффект, вызванный высоким уровнем метана, был достаточно сильным, чтобы уберечь Землю от замерзания.
Однако ученые не сразу дошли до этой истины. В начале 70-х годов прошлого столетия Карл Саган и Джордж Маллен из Корнеллского университета предположили, что Земля обязана своим существованием в первую очередь аммиаку, который вызывает еще более сильный парниковый эффект, чем метан. Но дальнейшие исследования показали, что даже в бескислородной атмосфере ультрафиолетовые лучи Солнца быстро разрушают этот газ.
Тогда в качестве другого возможного кандидата была выбрана двуокись углерода (СО2) — один из главных газов, который выделялся из извергавшихся в то время вулканов. Но в 1995 году исследователи из Гарвардского университета с помощью расчетов и компьютерного моделирования показали, что молодую Землю не мог согревать и этот газ, так как его содержание в атмосфере было слишком низким.
В конце 80-х годов XX века наконец было установлено, что метан задерживает большее количество тепла, чем СО2 в такой же концентрации. А стало быть, планета обогревалась именно с его помощью.
Чтобы проверить это предположение, профессор Джеймс Кастинг и его коллеги из Научно-исследовательского центра Эймса при NASA создали соответствующую компьютерную модель. И убедились, что для того, чтобы поддерживать температуру поверхности Земли выше точки замерзания, атмосфера молодой планеты должна была всего на 0,1 % состоять из этого газа.