Е Е Е Е.
Причем одинаковые символы Е перепутать невозможно, так как один из них обозначает 5, другой — 50, третий — 500, а четвертый 5000. Используя дополнительные обозначения для 10 000, 100 000, миллионов и т. д., можно записать любую цифру, как бы велика она ни была.
Правда, не думаю, чтобы такая система могла завоевать популярность. Даже если бы какой-нибудь грек придумал нечто подобное, ему наверняка бы не понравилась необходимость аккуратно выписывать эти маленькие значки. Во времена ручного переписывания документов лишние знаки означали дополнительный труд, и писцы наверняка воспротивились бы такой безрадостной перспективе.
Кто-то может решить, что дополнительные обозначения вообще не нужны. В конце концов, соответствующие группы можно записывать справа налево в порядке возрастания величины. Единицы расположатся в крайнем правом ряду, левее будут находиться десятки, дальше сотни и т. д. В гаком случае ВЕНА = 2581, а ЕЕЕЕ = 5555 и без дополнительных значков сверху.
Совершенно верно. Тут возможна другая сложность. А если в каком-то числе не будет группы десятков или единиц? Как быть, к примеру, с числом 10 или 101? Первое состоит из одной группы десятков без единиц, а второе — из групп сотен и единиц, но без десятков. Если использовать принятые обозначения, числа можно записать следующим образом: Ā' и А+Ā', только теперь без маленьких значков над буквами обойтись нельзя. Если попробовать, сразу станет ясно, что невозможно отличить А, обозначающую 1, от А, обозначающей 10, или АА = 101 от АА = 11 или АА =110.
Можно попробовать оставить пробел, обозначив 101 как А А. Но в эпоху ручного переписывания пробел наверняка очень быстро потерялся бы, превратив число в АА. Не менее вероятен и обратный процесс — трансформации АА в А А. И как обозначить пробел в конце числа? Я уверен, если греки и думали о чем-то подобном, то пришли к выводу, что пробелы между символами в числах сделают упрощение практически неприменимым. Они решили бы, что проще обозначить J
Никто из греков, даже сам великий Архимед, не подумал, что не обязательно вводить в символ пробелы. Их легко можно заполнить каким-нибудь ничего не значащим символом. Например, поставим вместо пробела значок $. Тогда число 101 можно записать в виде А+$-Á. Если мы так и поступим, пробелов не будет, да и в значках над буквой больше нет необходимости. Теперь 1 — это А, 10 — А$, 100 — А$$ и т. д. Любое число, как бы велико оно ни было, может быть записано с помощью девяти букв и одного символа, ничего не обозначающего.
Казалось бы, что может быть проще? После того, как это придумано!
И тем не менее человечеству потребовалось больше пяти тысячелетий, считая от появления первых обозначений чисел, чтобы додуматься до введения в практику символа пустоты. К сожалению, имя гения, которому принадлежит эта величайшая заслуга, осталось неизвестным человечеству. Мы только знаем, что он был индусом и жил не позднее IX века.
Индусы назвали новый символ
Новая система, названная арабской (поскольку европейцы узнали ее от арабов), очень медленно добралась до стран Запада и вытеснила римскую.
Арабские числительные возникли в тех краях, где никогда не использовали латинский алфавит, поэтому форма цифр ничем не напоминала буквы римского алфавита. С их появлением была устранена путаница между словами и цифрами, а получившая широкое распространение
Арабские цифры, которыми все мы сегодня пользуемся, — это 1, 2, 3, 4, 5, 6, 7, 8, 9 и конечно же 0. Мы привыкли к этим цифрам и, пожалуй, даже не осознаем, насколько полно. К примеру, если в настоящей главе вам что-то показалось странным или сомнительным, то, возможно, оттого, что я в ней намеренно не приводил ни одного арабского числительного.
Мы все знаем, насколько появление арабских цифр упростило арифметические вычисления. Они избавили людей от множества ненужных забот, в основном благодаря присутствию зеро, которое является воистину бесценным. Необыкновенная важность зеро нашла свое отражение и в английском языке. Ведение арифметических подсчетов носит слегка устаревшее название
Теперь, если вы вернетесь к названию этой главы, то поймете, что его следует понимать буквально. Ничего считается! И появление специального символа для обозначения ничего является величайшим открытием человечества.
Глава 13 БУКВОЙ С ОБОЗНАЧАЕТСЯ СКОРОСТЬ СВЕТА В ПУСТОТЕ
Вряд ли можно назвать физическую формулу более известную, чем e = mc2, полученную Эйнштейном. Ее знают все: высокоинтеллектуальные читатели научной фантастики, физики-атомщики, студенты, газетные репортеры, домашние хозяйки, водители автобусов и даже некоторые конгрессмены.
Конечно, знать — это еще не значит понимать. Точно так же умение быстро пробормотать «Отче наш» не является свидетельством глубины религиозных чувств.
Давайте внимательно рассмотрим эту формулу. Каждая буква является начальной буквой в слове, обозначающем соответствующую величину: с — первая буква слова
Но это еще не все. Следует также иметь представления о единицах измерения всех ее составляющих. К примеру, нет смысла говорить о массе, равной 2,3. Масса может быть равна 2,3 грамма, 2,3 фунта, 2,3 тонны и т. д.
Теоретически можно выбирать любые удобные единицы измерения. Однако на практике обычно массу выражают в граммах, расстояние в сантиметрах, а время в секундах, а все последующие единицы выводят из трех фундаментальных.
Поэтому m в формуле Эйнштейна выражается в граммах (г), с — в сантиметрах в секунду (см/сек). Кстати, обратите внимание, что предлог «в» в выражении «сантиметры в секунду» при кратком обозначении единицы измерения заменен дробной чертой. Дело в том, что для получения скорости, выраженной количеством сантиметров, пройденных за 1 секунду, следует число сантиметров разделить на число секунд. Если, например, за 8 секунд пройдено 24 сантиметра, скорость равна 24 см:8 сек = 3 см/сек.
Но вернемся к предмету нашего разговора. В формуле величина с возведена к квадрат: с х с = с2, см/сек х см/сек = см2/сек2.
Точно так же, площадь участка земли 60 х 60 футов будет равна не 3600 футов, а 3600 квадратных футов.
Возникает вопрос: в каких единицах будет измеряться е? На него ответит сама формула Эйнштейна, если мы произведем с единицами измерения те же действия, что и с любыми другими алгебраическими символами. Напомню, е = mс2. Если m измеряется в г, а с2 — в см2/сек2, то единица измерения е — г см2/сек2.
Между прочим, еще задолго до появления формулы Эйнштейна было решено, что единица измерения энергии (на основе грамма — сантиметра — секунды) должна быть г см2/сек2. Я сейчас объясню почему.
Единица скорости — это см/сек. Я уже об этом говорил. Но что происходит, когда предмет меняет скорость? Предположим, в какой-то момент предмет движется со скоростью 1 см/сек, секундой позже его скорость становится 2 см/ сек, в следующую секунду 3 см/сек. Иными словами, предмет движется с ускорением (слово
В приведенном выше примере ускорение составляет 1 сантиметр в секунду в каждую секунду. Заменив последнее «в» дробной чертой, получим 1 см/сек/сек.
Как я уже говорил, мы имеем право обращаться с единицами измерения как с любыми алгебраическими символами. Произведя соответствующие преобразования, получим 1 см/сек/сек — 1 см/ сек2. Это и есть единица измерения ускорения.
В физике Ньютона сила вызывает ускорение. Согласно 1-му закону Ньютона, любой движущийся предмет, предоставленный сам себе, будет всегда двигаться с постоянной скоростью и в постоянном направлении. В частном случае скорость может быть нулевой, и, согласно тому же закону Ньютона, объект в состоянии покоя, если его не тревожить, останется в покое навсегда.
Под действием силы, которая может быть гравитационной, электромагнитной, механической и т. д., скорость изменяется. Это означает, что изменяется величина скорости, или ее направление, или и то и другое.
Величина силы, действующей на предмет, измеряется вызванным ею ускорением, а также массой предмета, поскольку сила, приложенная к более тяжелому предмету, вызовет меньшее ускорение, чем та же сила, приложенная к более легкому предмету. (Если хотите, можете проверить. Ударьте изо всех сил сначала но надувному пляжному мячу, а затем по пушечному ядру и посмотрите, что получится.)
Ваши наблюдения можно будет выразить формулой: f = mа (сила равна массе, умноженной на ускорение). Единица массы — г, ускорения — см/сек2, а единица силы равна их произведению, то есть г см/сек2.
Очевидно, физикам со временем надоело постоянно произносить такую длинную размерность (грамм на сантиметр на секунду в квадрате), и они заменили ее коротким словом «дин» (от греческого
Дин — это количество силы, приложенное к телу массой 1 г и вызывающее ускорение 1 см/сек2.
Ясно?
Теперь о понятии работы. В понятии физиков работа — это совсем не то, чем я занимаюсь, сидя за пишущей машинкой и ломая голову над написанием очередной главы. Для физиков работа — это преодоление силы. Поднять предмет против действующей па него силы тяжести; отодвинуть металлический брусок, преодолев притяжение магнита; забить в стенку гвоздь, преодолев силу трения, — вот это работа.
Количество работы зависит от величины силы, которую необходимо преодолеть, и расстояния. Или w = fd (работа равна силе, умноженной на расстояние).
Единица расстояния — см, единица силы — дин, следовательно, единица работы — дин см. И снова физикам не понравилось произносить длинную размерность, и они придумали слово покороче — «эрг» (от греческого
1 эрг — это работа, выполненная при перемещении предмета на расстояние 1 см силой в 1 дин.
А теперь припомните, что дин = г см/сек2. Это означает, что единица работы — это см • г • • см/сек2. Или эрг = г • см2/сек2. Другими словами, 1 эрг — это работа, совершаемая при перемещении предмета массой 1 г на расстояние 1 см с ускорением 1 см/сек2.
Немного более века назад было обнаружено, что работа и энергия являются величинами равноценными, то есть их единицы измерения одинаковы. Следовательно, эрг является также единицей измерения энергии в системе единиц грамм — сантиметр — секунда.
Вернемся к формуле Эйнштейна. Подсчитанная по ней энергия измеряется в г см2/сек2, а это и есть эрг. Причем здесь нет никакого совпадения. Если бы но этой формуле получилась какая-нибудь другая единица, Эйнштейну пришлось бы заточить карандаш и начинать работу заново — искать ошибку.
Теперь можно подставить в формулу Эйнштейна численные значения. Что касается m, мы можем выбрать любое значение, какое нам понравится. Для простоты выберем m = 1 г.
В случае с у нас выбора нет. Скорость света в вакууме имеет строго определенную величину. В принятой нами системе единиц это 29 979 000 000 см/сек. Мы не сделаем большой ошибки, если округлим это число до 30 000 000 000 см/сек (представьте себе, при этой скорости свет пройдет 30 миллиардов сантиметров, то есть 3/4 расстояния до Луны всего лишь за 1 секунду!). Скорость света можно также представить в виде 3 х 1010 см/сек.
Чтобы получить с2, возведем эту величину в квадрат. Получим 900 000 000 000 000 000 000 см2, или 9 х 1020 см2/сек2. Выражение mс2, равное по формуле Эйнштейна энергии, приобретает вид: 1 г х 9 х 1020 г см2/сек2 = 9 х 1020 эрг.
Другими словами, если 1 грамм будет полностью преобразован в энергию, вы окажетесь счастливым обладателем 900 квинтиллионов эрг. И наоборот, если вам потребуется создать 1 грамм вещества из чистой энергии, вам придется позаботиться о поставке 900 квинтиллионов эрг.
Звучит очень впечатляюще, не так ли? 900 квинтиллионов эрг! Ух ты!
Но не торопитесь удивляться и восхищаться! Лучше подумайте: эрг — для нас единица незнакомая. А так ли уж она велика?
Что ж, 1 эрг — это немного. Более того, это совсем мало. Эрг появился в системе измерений грамм — сантиметр — секунда, но оказался так мал, что на практике вряд ли мог стать полезным. Например, давайте рассмотрим задачу подъема груза весом в 1 фунт на высоту 1 фут. Понятно, что для этого надо преодолеть силу тяжести. В данном случае это не трудно и не потребует большого расхода энергии. Думаю, вы без труда поднимете и 100 фунтов на высоту 1 фут и даже не почувствуете усталости. Сильный мужчина справится и с 1000 фунтов.
Энергия, затраченная на подъем 1 фунта на 1 фут, равна 13 558 200 эрг. Если такая пустяковая работа требует затрат миллионов эрг, нам необходима более крупная единица измерения, чтобы оперировать со сравнительно небольшими числами.
Например, существует единица измерения энергии, названная джоуль. 1 джоуль = 10 000 000 эрг.
Эта единица получила название по имени британского физика Джеймса Прескотта Джоуля. Он, унаследовав изрядное состояние и семейный бизнес, предпочел посвятить себя научным исследованиям. В период с 1840-го по 1849 год он провел ряд тщательных экспериментов, которые продемонстрировали взаимные превращения работы и теплоты и вплотную подвели физиков к пониманию закона сохранения энергии. Закон был впервые сформулирован в 1847 году немецким ученым Германом Людвигом Фердинандом фон Гельмгольцем, которому достались все лавры.
Джоуль оказался исключительно полезной единицей для повседневной жизни. Подъем тела весом 1 фунт на высоту 1 фут требует около 1,36 джоулей энергии. По-моему, очень удобная единица измерений.
А тем временем физики, изучавшие теплоту, ввели новую единицу, удобную для своих целей. Это была калория (от латинского
Когда было наглядно продемонстрировано, что все другие формы энергии и все формы работы могут преобразовываться в теплоту, стало очевидно, что любая единица, подходящая для измерения количества теплоты, пригодна для измерения любых видов энергии и работы.
Джеймс Джоуль опытным путем доказал, что 4,185 джоулей энергии или работы могут преобразоваться в 1 калорию. Таким образом,
1 кал = 4,185 джоулей = 41 850 000 эрг.
Хотя калория как единица измерения очень удобна физикам, она маловата для химиков. При химических реакциях обычно поглощается или выделяется количество теплоты, выражаемое в калориях очень большими числами. К примеру, при распаде 1 г углевода на углекислоту и воду высвобождается примерно 4000 калорий. При сгорании 1 грамма жира высвободится около 9000 калорий. А человеческое существо, выполняющее такую работу, какой занимаюсь я, потребит в день 2 500 000 калорий.
Числа были
Эти единицы периодически называют маленькой и
По моему мнению, самое разумное решение заключается в следующем: в метрической системе 1 кг = 1000 г, 1 км = 1000 м и т. д. Так почему бы не назвать большую калорию килокалорией, сокращенно ккал? 1 ккал — 1000 кал.
Итак: 1 ккал = 1000 кал = 4185 джоулей = 41 850 000 000 эрг.
Еще одна единица измерения — энергия — возникла в связи с появлением понятия мощности. Мощность — это скорость выполнения работы. Машина может поднять груз массой в 1 тонну на высоту 1 фут за 1 минуту или 1 час. В обоих случаях энергия будет затрачена одинаковая, однако потребуется более мощный рывок, чтобы выполнить работу за более короткий промежуток времени.
На поднятие груза весом 1 фунт на высоту 1 фут затрачивается энергия 1 фут-фунт. Эта работа может быть выполнена за 1 секунду, и фут-
Первым человеком, предпринявшим серьезную попытку измерить мощность, был Джеймс Уатт (1736–1819). Он сравнил мощность паровой машины, которую сам изобрел, с мощностью лошади, измерив мощность в лошадиных силах (л. с.). При этом он сначала измерил мощность лошади в футах-фунтах/сек, после чего приравнял 1 л. с. к 550 футам-фунтам/сек.
Измерение мощности в футах-фунтах/сек и лошадиных силах является вполне законным, практически везде мощность двигателей принято измерять в лошадиных силах. Эти единицы неудобны тем, что напрямую не увязаны с системой измерений грамм — сантиметр — секунда. 1 фут-фунт = 1,355282 джоуля, 1 л. с. = 10,688 ккал/мин. Оперировать этими величинами не очень удобно.
Идеальной единицей измерения мощности в системе грамм — сантиметр секунда можно было бы считать эрг в секунду. Однако эрг слишком мал, поэтому удобнее использовать джоули в секунду. А поскольку 1 джоуль = 10 000 000 эрг, 1 Дж/сек = 10 000 000 эрг/сек = 10 000 000 г см2/сек2.
Теперь осталось придумать для единицы более короткое название, предпочтительнее односложное. Выбор представляется очевидным! Что может быть лучше фамилии человека (состоящей из одного слога), который первым попытался измерить мощность. Итак, 1 Дж/сек был принят равным 1 ватту (Вт).
Умножив мощность на время, мы вернемся к энергии. Например, если 1 ватт умножить на 1 секунду, получится 1 Вт с. А поскольку 1 Вт = 1 Д ж/сек, 1 Вт • с = 1 Дж и является единицей измерения энергии.
Более знакомой и привычной единицей является киловатт-час (кВт ч). 1 кВт = 1000 Вт,
1 час = 3600 сек. 1 кВт ч = 1000 х 3600 Вт • с = = 3 600 000 Дж = 36 000 000 000 000 эрг.
А так как 4185 Дж = 1 ккал, 1 кВт ч -860 ккал — 860 000 кал.
Человеческое существо, потребляющее 2500 ккал/день, производит (разумеется, в форме теплоты) примерно 104 ккал/час, что равноценно 0,120 кВт ч/час = 120 Вт. В следующий раз, когда вы придете к друзьям на коктейль (или войдете в переполненный вагон метрополитена) в жаркий августовский вечер, можете подумать об" этом, глядя на каждого нового гостя или пассажира. Появление каждого дополнительного человека равноценно включению еще одной лампочки на 120 Вт. Таким образом вам наверняка станет еще жарче, но вы получите изрядное удовлетворение, которое дают только научные знания.
Но вернемся к теме. Вы убедились, что существует немало единиц, в которых может быть выражено количество энергии, образовавшееся при полном превращении 1 грамма массы. Этот грамм высвободит:
900 000 000 000 000 000 000 эрг,
или 90 000 000 000 000 Дж,
или 21 500 000 000 000 кал,
или 21 500 000 000 ккал,
или 25 000 000 кВт ч.
В результате можно сделать вывод: эрг — очень малая единица, но когда их 900 квинтиллионов, это не может не впечатлить. Преобразовав 1 грамм массы в энергию и использовав ее с должной эффективностью, мы обеспечили бы горение 1000-ваттной электрической лампочки в течение 2850 лет, то есть от эпохи Гомера до наших дней.
Разве это не решит проблему топлива?
Давайте поставим вопрос по-другому: какую массу следует преобразовать, чтобы произвести 1 кВт ч энергии?
Если 1 грамм массы производит 25 000 000 кВт ч энергии, то для производства 1 кВт • ч необходимо 1/25 000 000 грамма.
Полученная величина чрезвычайно мала. Предположим, мы выбрали единицу, меньшую грамма, и назвали ее микрограмм. Это миллионная часть грамма, то есть 10-6 г. Тогда 1 кВт ч получается преобразованием 0,04 микрограмма массы.
Но даже микрограмм слишком велик и поэтому неудобен; тем более что нас может заинтересовать единица мощности меньше, чем кВт ч. Поэтому мы можем говорить о микромикрограммах (сейчас их называют пикограммами). Это одна миллионная от миллионной части грамма, иными словами, 10-12 г. Теперь можно утверждать, что для производства:
Чтобы вы лучше прочувствовали эти числа, хочу вам сообщить, что масса обычной клетки человеческого тела — 1000 пикограммов. Если бы условия сложились так, что человеческое тело получило способность преобразовывать массу в энергию, преобразование содержимого 125 клеток (тело, где их не менее 50 000 000 000 000, вполне может себе позволить), снабдило бы тело питанием в размере 2500 ккал на целый день.
Количество массы, которое после преобразования выработает 1 эрг энергии, является слишком маленькой величиной, поэтому нужна величина еще меньше, и мы обратимся к пикопикограммам. Это 10-24 г, то есть триллионная триллионной части грамма. Потребуется 1950 пикопикограммов массы, чтобы произвести 1 эрг энергии.
Ну и что? Отдельный атом водорода имеет массу примерно 1,66 пикопикограмма, атом урана — 235 — массу 400 пикопикограммов. Следовательно, 1 эрг энергии получается преобразованием 1200 атомов водорода или 5 атомов урана-235.
При обычном расщеплении только 1/1000 часть массы превращается в энергию, и для производства 1 эрга энергии понадобится 5000 расщепленных атомов урана. При слиянии атомов водорода в энергию преобразуется 1/1000 часть массы, значит, для получения 1 эрга энергии понадобится 120 000 слившихся атомов водорода.
На этом, я думаю, можно оставить в покое формулу е = mс2.
Глава 14 ЕДИНИЦА ВОЗДЕЙСТВИЯ
После переиздания моей книги «Я, робот» издательством «Даблдей & Компани» некоторые обозреватели (несомненно, обладавшие огромным интеллектом и тонким вкусом) начали отзываться о ней как о «классическом произведении», что не могло не доставить мне удовольствие.
Слово «классический» имеет то же значение, что прилагательное «первоклассный» или часто звучащее в устной речи слово «классный». Любое из них полностью совпадает с моим собственным мнением о книге «Я, робот», но я (исключительно ввиду своей скромности и щепетильности) скорее умру, чем признаю этот факт открыто. Сейчас я упоминаю об этом лишь потому, что наша беседа с вами, уважаемые читатели, является сугубо конфиденциальной.
Правда, слово «классический» имеет и второе значение, которое нравится мне намного меньше. Литераторы эпохи Возрождения часто использовали его, рассуждая о произведениях античной Греции и Рима. Следовательно, «классический» означает не только «хороший», но еще и «старый».
Что я могу сказать… Книга «Я, робот» впервые увидела свет несколько лет назад, а ее отдельные главы были написаны… Ну, это не важно. Суть заключается в том, что я решил слегка обидеться, поскольку меня посчитали достаточно старым для написания классического произведения. Поэтому следующую главу я посвятил одной из областей, где «классический» является скорее оскорблением, чем похвалой.
Попятно, что это должна быть область, где быть старым автоматически означает быть неправым. Можно с умным видом рассуждать о современном искусстве, литературе или мебели, мысленно презрительно ухмыляясь, поскольку рассматриваемые произведения не выдерживали никакого сравнения с великими творениями старых мастеров. Однако, как только речь зайдет о современной науке, оратору останется только снять шляпу и с почтением прижать ее к груди.
В первую очередь это относится к физике. Существует современная физика и классическая физика. Причем граница между ними проведена очень точно: все, что было до 1900 года, относится к классической физике, то, что было после, — к современной.
На первый взгляд такое деление выглядит весьма спорным. Напрашивается вывод, что дело лишь в необъективности наших современников, живущих в XX веке. Однако при более детальном рассмотрении выясняется, что такое деление имеет полное право на существование, оно вполне объяснимо и очень точно. Именно в 1900 году увидели свет основные труды по теоретической физике. После этого ничего подобного уже не было.
Теперь вы, наверное, уже догадались, о чем я собираюсь говорить.