А вот самоделки, изготовленные участниками кружка «Изобретатели» Центра образования № 1811 из Измайлова оказались настолько оригинальны, что автор необычного «конструктора», семиклассник Антон Навернюк, даже имеет патент на изобретение!
Кстати, как правильно оформить патент, объясняли всем желающим сотрудники Центра работы с интеллектуальной собственностью Московского комитета по науке и технологиям. Так что, наверное, на следующем фестивале число запатентованных самоделок будет еще больше.
ПРЕМИИ
Почему мы живем не в антимире?
Нобелевская премия по физике 2008 года присуждена американцу Йоичиру Намбу (Yoichiro Nambu) за «открытие механизма спонтанного нарушения симметрии на субатомном уровне» и двум ученым из Японии Макото Кобаяси (Makoto Kobayashi) и Тосихидэ Маскава (Toshihide Maskawa), за «объяснение нарушения СР-симметрии и предсказание существования в природе, по меньшей мере, трех семейств кварков».
За этим сложным определением стоит вот что…
Мир в большинстве случаев только кажется нам симметричным. У любого человека два глаза, два уха, две руки и две ноги. Вроде бы все симметрично. Но при внимательном взгляде выясняется, что одна нога чуть больше другой, а правая рука, как правило, сильнее левой.
Откуда такие различия? Точного ответа на этот вопрос ученые пока не знают. В микромире тоже нет полной симметрии. И заслуга Йоичиру Намбу состоит прежде всего в том, что он попытался объяснить, почему это так.
Во Вселенной, как известно, существуют не только частицы, но и античастицы — например, электрону соответствует протон. Частицы эти по массе и другим параметрам соответствуют друг другу, но имеют заряды разного знака; электрон заряжен отрицательно, а протон — положительно. Причем если обе частицы столкнутся друг с другом, то происходит взрывная реакция аннигиляции — обе частицы исчезают, выделяя огромное количество энергии.
В момент рождения нашей Вселенной, по законам симметрии, должно было образоваться одинаковое количество частиц и античастиц. И если бы симметрия была полной, за Большим взрывом последовало бы множество малых, аннигиляционных, и Вселенная исчезла бы, не успев толком возникнуть.
Однако, на наше счастье, законы симметрии в мире соблюдаются лишь приблизительно. Как подсчитал Йоичиру Намбу, достаточно было всего одной «лишней» частицы материи на каждые 10 миллиардов частиц материи и антиматерии в первый момент существования Вселенной, чтобы она уцелела.
В общем, когда Йоичиру Намбу с коллегами попытались описать аналогичные цепные процессы в мире элементарных частиц, то из их описания последовало множество важных следствий.
В частности, предложенный Намбу механизм спонтанного нарушения симметрии позволил ввести понятие Хиггсовского поля, названного так по имени английского теоретика. Именно под его воздействием, как полагают теоретики, так крепко держатся друг за друга протоны и нейтроны в атомном ядре. Носителем, или квантом, поля Хиггса ныне считается особая частица — Хиггсовский бозон. Его предполагают обнаружить в экспериментах на Большом адронном коллайдере в ЦЕРНе, подтвердив тем самым предвидение теоретика, получившего за это половину Нобелевской премии.
Вторую часть премии поделили между собой два японских исследователя — Макото Кобаяси из Организации по исследованиям в области ускорителей высоких энергий и Тосихидэ Маскава из Института теоретической физики имени Юкавы Киотского университета. Их работы стали своего рода развитием идей, предложенных Намбу, применительно к более узкой области CP-симметрии. Буквы С и Р обозначают два типа симметрии — зарядовую (С — от английского слова
Первая состоит в том, что частицы и античастицы, как уже говорилось, имеют одинаковые свойства, отличаясь только зарядами.
Вторая, зеркальная, симметрия показывает, что все события квантового мира протекают одинаково вне зависимости от того, происходят они в нашем мире или в зеркально отраженном. Хотя сами по себе события и объекты в нашем и зазеркальном мире имеют некоторые отличия.
Поглядите на себя в зеркало, причешитесь. Какой рукой вы это сделали? Правой. А вот ваш двойник в зеркале причесывается левой рукой…
Совместная же CP-симметрия, или CP-четность, означает, что, несмотря на некоторые несоответствия, свойства частиц и античастиц в нашем и зеркально отраженном пространстве в целом совпадают.
Какое-то время физики считали, что законы СР-симметрии выполняются всегда. Однако в 1956 году выяснилось, что распад ядер радиоактивного кобальта-60 происходит с нарушением зеркальной симметрии. А чуть позднее выяснилось, что некоторые элементарные частицы — например, К-мезоны и их антидвойники — ведут себя чуть-чуть по-разному при слабых взаимодействиях, которые определяют радиоактивный распад ядер.
Эти события заставили ученых всерьез задуматься, почему такое возможно. И, в конце концов, теоретики предположили, что элементарные частицы, в свою очередь, состоят из неких «первокирпичиков», причем они в тех же К-мезонах и К-антимезонах чуть-чуть разные.
В 1964 году один из самых молодых тогда нобелевских лауреатов американец Мюррей Гелл-Манн предложил назвать эти «кирпичики» материи кварками. Название нового класса элементарных частиц он позаимствовал из романа Дж. Джойса «Поминки по Финнегану», где чайки истошно кричат: «Три кварка для мистера Марка!» В самом романе не объясняется, что такое кварк, но ясно, что им обозначается нечто зыбкое, почти не материальное. В общем, название физикам понравилось, и оно прижилось.
Сегодня теоретики уже рассуждают о разных видах кварков и дают им романтичные имена:
«Прежде всего, мы поняли, что трех и даже четырех кварков недостаточно, чтобы объяснить нарушение СР-симметрии, — пояснил Макото Кобаяси. — И мы стали думать, какие же новые частицы могли бы объяснить это нарушение. Вариантов было довольно много, но лишь один из них — наличие шести кварков — показался нам единственно верным».
Однако никому до сих пор не удалось наблюдать сами эти кварки в эксперименте. Возможно, это удастся сделать опять-таки с помощью Большого адронного коллайдера. Он предназначен для того, чтобы разгонять и сталкивать адроны. Так называется самый распространенный класс элементарных частиц — их открыто уже несколько сотен, наиболее известны среди них протоны и нейтроны.
По мнению теоретиков, все адроны состоят либо из трех кварков, либо из пары кварк — антикварк. При этом получается, что заряд кварка равен либо плюс двум третям, либо минус одной трети заряда электрона.
Но дробный заряд электрона — это, согласитесь, нечто вроде двух третей лошади. В школе такой ответ получается лишь при решении задач нерадивыми учениками. А в случае с дробными зарядами кварков и весьма эрудированные ученые никак разобраться не могут что к чему. И тому, кто сумеет решить эту задачку, не исключено, по праву достанется еще одна Нобелевская премия.
• Операционная система Microsoft «Windows» 2000/XP/Vista
• Процессор Pentium III 700 МГц (рекомендуется Pentium IV 1500 МГц и выше) % 512 Мб и выше оперативной памяти
• DVD ROM
• Разрешение экрана от 800x600 (SVGA)
• Возрастных ограничений нет
ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Смешные премии, которые заставляют задуматься
Загадка запутанных струн, уникальные способности плазмодиев, воздействие хруста картофельных чипсов на потребителей — вот лишь некоторые из тем, изучение которых сделало исследователей разных стран лауреатами Игнобелевской премии 2008 года.
Напомним, что эта награда, представляющая собой некий шарж на настоящие Нобелевские премии, была учреждена в 1991 году редактором «Журнала невоспроизводимых результатов» (теперь он называется «Анналы невероятных исследований») Марком Абрахамсом. Денежных призов лауреаты не получают, нет и четкого перечня научных дисциплин — он лишь в общих чертах повторяет нобелевский.
Однако церемония, проводимая в Гарварде накануне нобелевской недели, ежегодно привлекает все большее внимание.
И дело не только в том, что свои памятные призы лауреаты Игнобеля получают из рук настоящих нобелевских лауреатов. Изюминка, пожалуй, в ставших уже знаменитыми «Игнобелевских лекциях 24/7». Суть их такова: лауреат должен суметь и успеть изложить смысл своей работы в 7 словах всего за 24 секунды.
Популярность Игнобелевских премий стремительно растет еще и потому, что отобранные работы, хотя и необычные, но не такие уж и бессмысленные. Это поняли и организаторы. Если раньше они чествовали ученых за открытия, «которые не могут или не должны воспроизводиться», то теперь придерживаются более корректной формулировки — «за достижения, которые сначала вызывают смех, а потом заставляют задуматься».
Здесь мы расскажем лишь о тех премиях, которые, так или иначе, имеют отношение к науке и технике.
Итак, премию в области медицины получили исследователи под руководством Дэна Арьели из Университета Дьюка в США, которые провели такой эксперимент. Добровольцам в двух группах говорили, что хотят испробовать на них новое болеутоляющее. При этом первой группе сообщали, что лекарство очень дорогое. Пациентам второй группы сказали, что таблетки дешевые. После этого испытуемым наносили удар электрическим током.
Результат вы и сами можете предсказать. На большинство испытуемых первой группы лекарство подействовало. А вот во второй группе таблетки не помогли никому. Между тем в обоих случаях добровольцы получали таблетки, состоявшие из обыкновенного крахмала. Такова сила внушения.
Массимилиано Дзампини (Университет Тренто) и Чарлз Спенс (Оксфордский университет) исследовали… хруст картофельных чипсов. Ученые выяснили, что именно по звуку потребители чипсов делают вывод о свежести продукта. Предлагая испытуемым картофельные чипсы, они электронным способом меняли звук хруста. В зависимости от этого испытуемый считал чипсы более или менее свежими, чем они были на самом деле. Таким образом, у производителей появилась еще одна возможность продвигать свою продукцию.
Лауреатами в области физики стали американцы Дориан Рэймер и Дуглас Смит из Калифорнийского университета в Сан-Диего. В октябре 2007 года они опубликовали исследование под названием «Спонтанное спутывание в узел колеблющейся струны». Используя математическую теорию, ученые доказали, что длинные и гибкие струны, если их интенсивно встряхивать, спутаются в узел быстро, а короткие и жесткие струны, если их не трогать, в узел, скорее всего, не спутаются совсем.
Группа японских ученых под руководством Тосиюки Накагаки (Университет Хоккайдо) и примкнувший к ним Агота Тот из Сегедского университета (Венгрия) стали лауреатами премии по биологии за многолетние исследования плазмодиев. Так называется слизистая масса грибов-миксомицетов. Величина плазмодиев колеблется от 2–3 кв. мм до 1,5 кв. м.
Но главное — не размеры. Оказывается, плазмодии в состоянии передвигаться при помощи выростов протоплазмы — псевдоподиев. Причем, как заметили нынешние лауреаты, плазмодий
Согласитесь, здесь есть над чем задуматься: феноменальные способности проявляет организм, у которого не обнаружено ни мозга, ни органов чувств…
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Можно ли пройти сквозь стену?
В фантастической повести братьев Стругацких «Понедельник начинается в субботу» многие сотрудники НИИ чародейства и волшебства умеют проходить сквозь стены. Каким образом? Нужно только очень сильно захотеть, разогнаться и…
Какой-то смысл здесь, казалось бы, есть: атомы в кристаллической решетке любого вещества занимают сравнительно немного места, а между ними достаточно пространства, чтобы в эти промежутки могли без помех пройти атомы другого тела.
Все вроде бы понятно. Но на практике никакие объяснения и ускорения не помогают. Даже луч света далеко не всегда может пробиться через ту или иную преграду. Впрочем, иногда может, причем даже сквозь непрозрачную.
Недавно физики из Твентского университета в Нидерландах и в самом деле заставили лазерный луч пройти через толстый слой непрозрачного материала.
Оговоримся: этот эксперимент удается повторить далеко не с каждым веществом. Если оно активно поглощает свет, то ничего не получится. Однако есть обширный класс веществ — обычная бумага, молоко или белая краска, — которые почти не поглощают свет, зато сильно его отражают и рассеивают. Большинство фотонов при этом, многократно изменив направление движения, вылетают обратно. Вот, кстати, почему бумага или белая краска почти весь свет отражают.
Но еще в 80-е годы XX века теоретики показали, что даже в таких «случайно неоднородных средах» всегда найдутся «открытые каналы», по которым часть электромагнитного излучения (в том числе и света) все же проходит насквозь. Это так называемый тоннельный эффект.
Конечно, чем толще слой, тем меньше каналов, но часть из них остается при любой толщине. При обычном освещении доля прошедшего света крайне мала, каналы возникают редко и нерегулярно, поэтому отыскать их в эксперименте очень трудно.
Теперь ученые нашли способ это проделать. Они облучали красным лазером слой из гранул оксида цинка, который художники используют в составе цинковых белил, и фиксировали прошедший сквозь слой свет цифровой видеокамерой. На пути лазера перед образцом устанавливался пространственный модулятор на жидких кристаллах, который мог изменять поляризацию луча.
Далее с помощью сигнала обратной связи с цифровой камеры фронт луча подстраивали так, чтобы максимально увеличить пропускание света образцом, и таким образом проницаемость удалось увеличить ни много ни мало на 44 %!
Ученые считают, что полученные результаты прекрасно согласуются с теорией, которая предсказывает, что предельная величина пропускания случайного слоя равна 2/3 исходного излучения вне зависимости от толщины преграды.
Эксперименты голландцев внушают большие надежды. Сильно рассеивающие материалы встречаются довольно часто. Кроме того, полученные результаты справедливы не только для света, но и для радиоволн, звуковых колебаний и даже электронов, которые, с точки зрения квантовой теории, тоже являются электромагнитными волнами.