Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Геном: автобиография вида в 23 главах - Мэтт Ридли на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

• жизнь едина и произошла от общего предка;

• первые формы жизни были основаны на РНК;

• и бактерии, и животные являются потомками древней формы жизни, которая существенно отличалась как от нас с вами, так и от современных бактерий. Скорее всего, это были крупные одноклеточные полиплоидные организмы с множеством линейных хромосом.

Не найдено никаких окаменелостей первых форм жизни на Земле, существовавших 4 млрд лет тому назад. Сохранилась только огромная книга живой природы — геном. Гены в каждой мельчайшей клетке вашего тела — это прямые потомки первых репликационных систем доисторических организмов, дошедшие до наших дней после более чем 10 млрд копирований и сохранившие в себе цифровые сообщения о первых днях жизни. Если в нашем геноме мы можем найти ответ на вопрос о том, как зарождалась жизнь, то как много нам может поведать геном о не столь отдаленных событиях нашей истории в последние сотни миллионов лет. В наших руках история человечества, записанная в цифровом формате и удобная для чтения с помощью компьютера.

В последние годы появились новые подтверждения того, что в основе первых форм жизни лежала РНК. Недавно была опубликована гипотеза, согласно которой первыми организмами с ДНК были вирусы, и именно в результате заражения этими вирусами первых организмов совершенно независимо друг от друга возникли три ветви жизни: бактерии, архебактерии и эукариоты (Forterre P. 2006. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. PNAS 103: 3669–3674).

Хромосома 2

Душа

В истории науки случалось, что ошибочное положение на долгие годы становилось прописной истиной только потому, что никто не удосужился его проверить. До 1955 года все ученые были твердо убеждены в том, что геном человека состоит из 24 пар хромосом. Ошибка произошла в 1921 году, когда техасец Теофилус Пейнтер (Theophilus Painter) сделал препаративные срезы семенников двух афроамериканцев и одного белого, кастрированных по решению суда за «слабоумие и антиобщественное поведение», зафиксировал срезы в химических препаратах и микроскопировал. Пейнтер долго пытался подсчитать скучившиеся хромосомы в сперматоцитах несчастных мужчин и наконец решил, что их 24. «Я пришел к убеждению, что это число верно», — скажет он позже. Интересно, но другие ученые затем повторяли подсчеты, используя разные методы, и тоже сходились во мнении, что хромосом 24.

В течение 30 лет никто не осмелился опровергнуть этот «очевидный факт». Одна группа ученых прервала исследование клеток печени человека, поскольку им удалось насчитать только 23 пары хромосом в клетках. Другой ученый разработал метод разделения хромосом, но не стал оспаривать число 24. И только в 1955 году, когда индонезиец Джо Хин Тио (Joe Hin Tjio) переехал из Испании в Швецию, в лабораторию Альберта Левана (Albert Levan), ошибка была обнаружена. Тио и Леван, используя более современную технику, четко насчитали 23 пары хромосом. Не поверив самим себе, они взялись за фотографии, опубликованные в старых книгах по генетике человека, но и там насчитали только 23 пары. Воистину, нельзя найти более слепого человека, чем тот, который не хочет видеть![11]

В самом деле, удивительно, что у человека не 24 пары хромосом. У шимпанзе 24 хромосомы, столько же у гориллы и орангутанга. Среди человекообразных обезьян мы — исключение. Наиболее неожиданное и очевидное отличие человека от человекообразных обезьян, которое можно увидеть под микроскопом, состоит в том, что у нас на одну хромосому меньше. Причина, и это сразу же было установлено, не в том, что одна из хромосом затерялась, а в том, что две обезьяньи хромосомы в человеческой клетке слились в одну. Хромосома 2, вторая по размеру в геноме человека, появилась в результате слияния двух средних хромосом обезьян. Это стало очевидным, когда сравнили чередование темных полосок на хромосоме 2 и на хромосомах обезьян.

В своем послании в Академию наук Ватикана 22 октября 1996 года Папа Иоанн Павел II (John Paul II) писал, что между предковыми формами обезьян и современным человеком лежит «онтологический разрыв» — момент, когда Бог вселил душу в животного предка. Таким образом, католическая церковь нашла способ примириться с теорией эволюции. Вполне вероятно, что онтологический разрыв с животным миром произошел именно тогда, когда слились воедино две хромосомы обезьяны. Значит, гены души должны лежать где-то посредине хромосомы 2.

Тем не менее наш вид нельзя считать вершиной эволюции. У эволюции вообще нет вершин, и нет такого понятия, как эволюционный прогресс. Естественный отбор представляет собой беспрерывный процесс изменения форм живых организмов для достижения оптимального соответствия с текущими физическими и биологическими условиями среды обитания. Бактерии, населяющие горловины черных курильщиков — подводных кратеров, извергающих едкие газы на дне Атлантического океана, прошли такой же путь эволюции от нашего общего предка Луки, как и банковский клерк, а возможно, и более длинный путь, учитывая несоизмеримо бо́льшую скорость размножения.

То, что данная книга посвящена геному человека, не означает, что это самый лучший геном. Хотя, безусловно, человек уникален в этом мире, поскольку у него в голове находится самый сложный компьютер на планете. Но сложность сама по себе не является целью эволюции. Все другие виды также уникальны. Тем не менее в этой главе я постараюсь объяснить, что является отличительной особенностью нашего вида от всех других. Хотя в истории эволюции жизни на Земле главе о возникновении безволосых обезьян в африканской саванне следовало бы отвести всего несколько строк, для нашего вида это событие имело чрезвычайно важное значение. Что же стало отправной точкой, откуда пошло развитие человека?

С точки зрения эволюции человек, безусловно, стал удачным решением. До этого не было ни одного крупного животного, столь плотно населившего Землю. Нас больше 6 млрд, что в сумме дает около 300 млн тонн живого веса. Конкурировать с нами по численности могут только одомашненные животные — коровы, куры и овцы, а также комменсалы: воробьи и крысы. Как с этим контрастирует число горных горилл, которых осталось не больше тысячи! Даже в те времена, когда человеческая цивилизация не разрушала среду их обитания, горных горилл было едва ли в десять раз больше.

Более того, наш вид проявил удивительные способности к заселению самых различных мест обитания. В условиях холода и жары, сухости и влажности, высокогорья и низин, вблизи моря и в глубине пустыни — всюду человек находил способ выжить. Из животных, расселившихся по всем континентам, кроме Антарктиды, можно назвать только скопу (Pandion haliaetus), сипуху (Tyto alba) и розовую крачку (Sterna dougallii), да и то эти птицы привязаны лишь к строго определенным местам обитания. Конечно, такой ошеломительный успех таит в себе опасность экологической катастрофы, которая может произойти довольно скоро. Согласитесь, для самого успешного вида мы довольно пессимистичны.

Следует заметить, что нашему успеху предшествовала череда неудач и поражений. Большинство человекообразных обезьян исчезли с лица Земли 15 млн лет тому назад, уступив место другим, более приспособленным обезьянам. Еще до этого, 45 млн лет назад, наш отряд приматов почти полностью был вытеснен со всех мест обитания более успешными грызунами. Предки всех млекопитающих, первые синапсидные тетраподы, 200 млн лет назад проиграли в состязании с динозаврами. 360 млн лет назад кистеперые рыбы проиграли в сражении с лучистыми рыбами, а еще раньше, 500 млн лет назад, в кембрийский период, первые хордовые не выдержали конкуренции с членистоногими, сохранив лишь тупиковую ветвь иглокожих. Мы добились успеха не по воле судьбы, а вопреки ей.

Спустя 4 млрд лет после возникновения Луки появилась новая форма жизни, которую Ричард Докинз (Richard Dawkins) назвал машиной выживания, — крупные организмы, наделенные телами, состоящими из большого числа клеток. Они намного успешнее справлялись с разворотом физико-химических процессов в сторону меньшей энтропии и с репликацией собственных генов. Возникновению этих существ предшествовал длительный период проб и ошибок, процесс, называемый естественным отбором. Триллионы новых тел были построены, опробованы и допущены к продолжению потомства, если они соответствовали все ужесточающимся критериям выживания. На первых этапах конкуренты старались выработать наиболее эффективные биохимические пути метаболизма: лучшим организмом был тот, который наиболее быстро и с наименьшими затратами энергии преобразовывал химические соединения окружающей среды в ДНК и белки. Эта фаза продолжалась примерно 3 млрд лет, в течение которых жизнь на Земле представляла собой бесконечную борьбу за выживание между разнообразными амебоподобными существами. Три миллиарда лет одноклеточные существа жили, рождаясь и умирая день за днем. Казалось бы, достаточно, чтобы реализовать все варианты развития.

Но эволюция на этом не завершилась. Примерно миллиард лет назад довольно неожиданно возник мир принципиально новых многоклеточных организмов. По меркам геологических эпох этот всплеск разнообразия, называемый кембрийским взрывом, произошел стремительно, в течение всего 10–20 млн лет. Возникло огромное количество организмов разных форм и размеров: снующие трилобиты длиной до полуметра, слизкие черви еще большей длины, огромные фестончатые водоросли. Одноклеточные организмы все еще преобладали, но крупные и бесконечно разнообразные многоклеточные «машины выживания» осваивали все новые и новые ниши. В эволюции многоклеточных наметилась стабильная тенденция к усложнению. Хотя в истории Земли было много примеров регресса, в частности, связанного с бомбардированием планеты крупными метеоритами, искореняющими на какое-то время наиболее развитые организмы, в целом животный мир более поздних эпох отличался тем, что предковые формы имели более сложное строение тела. Особенно явно тенденция к усложнению просматривается в эволюции мозга. Мозг становился сложнее и больше на протяжении всех геологических эпох. У животных кайнозоя, с наименьшим мозгом, показатели все же превосходили рекордные показатели мезозоя, но средний размер мозга в мезозое был значительно больше, чем у палеозойских образцов. Эгоистичные гены для удовлетворения своих амбиций нашли способ построения такого тела, которое не только могло выдерживать неблагоприятное воздействие окружающей среды, но и целесообразно действовать. Теперь если над генами нависнет угроза замерзания в зимнюю пургу, они смогут рассчитывать на то, что созданное ими тело совершит какой-то разумный поступок, например мигрирует на юг или построит укрытие.

От нашего бездыханного прошлого миллиарды лет назад перенесемся в не столь отдаленные дни — на 10 млн лет назад. Уже намного позже того, как своего расцвета достигли насекомые, рыбы, динозавры и птицы, на Земле появились существа с самым большим мозгом (относительно массы тела) — человекообразные обезьяны. Доподлинно известно, что в это время по крайней мере два вида человекообразных обезьян обитали в Африке. Хотя не исключено, что их было больше. Одним из этих видов была предковая форма гориллы, а другой вид являлся общим предком шимпанзе и нас с вами. Предок гориллы поселился на высокогорных склонах центральноафриканских вулканов, изолировав себя от остальных человекообразных обезьян. В течение последующих 5 млн лет произошло разделение другого вида обезьян на шимпанзе и людей. Это стало известно, потому что данные события запечатлены в нашем геноме.

Еще в 1950 году великий анатом Дж. З. Янг (J. Z. Young) мог сомневаться в том, произошли люди от человекообразных обезьян или это была совершенно иная ветвь эволюции приматов, отделившаяся от общего ствола уже 60 млн лет назад. Он не соглашался с другими учеными, которые полагали, что орангутанг ближе всего стоит к людям[12]. Зато теперь мы абсолютно убеждены не только в том, что результатом последнего пересечения с обезьянами был наш общий предок именно с шимпанзе, но мы также знаем, что это разветвление произошло 5–10 млн лет назад. Поскольку мутации в генах происходят с определенной постоянной частотой, сравнивая гены, мы можем точно определить, как давно разделились два вида. Во всех исследованных генах, белках и интронах наблюдаются большие отличия между гориллой и шимпанзе, чем между шимпанзе и человеком. Эти исследования проводили методом гибридизации, суть которого состоит в том, что чем больше общего между образцами ДНК, тем при большей температуре происходит диссоциация ДНК в растворе.

Впрочем, откалибровать молекулярные часы таким образом, чтобы они показывали точную дату эволюционного события, весьма сложно. Поскольку человекообразные обезьяны живут долго и к размножению приступают уже в зрелом возрасте, их молекулярные часы тикают довольно медленно. (Мутации, передаваемые поколениям, накапливаются только во время размножения при образовании яйцеклеток и сперматозоидов.) Нет четкой формулы, по которой можно было проводить калибровку частоты мутаций исходя из продолжительности жизни. Более того, следует признать, что в разных генах ход часов отличается. Одни гены спешат и указывают на то, что пути развития человека и шимпанзе разошлись уже давно, другие, например гены митохондрий, свидетельствуют о тесном родстве наших видов. Поэтому время появления людей указывается в пределах от 5 до 10 млн лет[13].

Уже после написания этой книги в Кении были обнаружены наиболее древние останки предков человека, датируемые 7 млн лет, что подтверждает расчетные данные, полученные в результате сравнения геномов человека и шимпанзе.

Если не считать слияния двух хромосом в хромосому 2, остальные различия в геномах шимпанзе и человека весьма незначительны. А в хромосоме 13 вообще не было найдено никаких отличий. Если навскидку взять любой «абзац» в геноме шимпанзе и сравнить его с соответствующим «абзацем» в геноме человека, мы найдем лишь несколько отличных «букв», в среднем одну на 100 знаков, т. е. на 99% мы неотличимы от шимпанзе. При этом сходство с гориллой как человека, так и шимпанзе составляет только 97%. Другими словами, мы вместе ушли от гориллы, но шли разными путями.

Но как это возможно? Ведь отличие человека от шимпанзе огромно. Шимпанзе покрыт волосами, имеет другое строение черепа и всего тела, другие конечности, не обладает речью. Трудно найти хоть что-то в шимпанзе, что было бы на 99% таким же, как у нас. Но так ли это? По сравнению с чем? Если взять пластилиновые модели мышей и вылепить из одной шимпанзе, а из другой человека, то придется вносить одни и те же изменения. Шимпанзе и человек будут еще более подобными, если отправной точкой считать амебу. В обоих случаях мы имеем тридцать два зуба, пять пальцев на каждой из четырех конечностей, два глаза и одну печень. В обоих случаях есть волосяной покров, сухая кожа, позвоночник и три маленькие косточки в среднем ухе. По отношению к амебе или, лучше, оплодотворенной яйцеклетке, человек и шимпанзе действительно подобны на 99%. Нет ни одной косточки в теле шимпанзе, которой не было бы у человека. Нет ни одного химического соединения в мозге шимпанзе, которого не было бы в мозге человека. Иммунная, пищеварительная, кровеносная, лимфатическая и нервная системы построены у нас однотипно. Даже ядра мозга у нас совершенно одинаковы. Что касается строения мозга, то это был последний рубеж обороны противников теории происхождения человека от обезьяны. Викторианский анатом сэр Ричард Оуэн (Richard Owen) утверждал, что уникальным образованием в основании мозга человека является гиппокамп, который отсутствует у обезьян, и именно он является вместилищем души и свидетельством божественного происхождения. Он не нашел гиппокамп в свежепрепарированных мозгах горилл, привезенных из Конго путешественником Полем дю Шайю (Paul du Chaillu). Незамедлительно последовало опровержение Томаса Хаксли (Thomas Huxley). «Нет, у обезьян его нет», — упирался Оуэн. «Да нет же, есть», — настаивал Хаксли. Короче говоря, «дело о гиппокампе» дошло в 1861 году до бранной перепалки в викторианской Англии и нашло отражение в сатирическом издании Punch и в новелле Чарльза Кингсли (Charles Kingsley) «Дети вод» (The Water-Babies). Спор давно вышел за пределы анатомии. Хаксли говорил: «Я не ставлю своей целью загнать человеческое достоинство ниже собственной подошвы и не думаю, что это произойдет, если признать, что у человекообразных обезьян тоже есть гиппокамп. Но мне хочется вымести поганой метлой человеческое тщеславие»[14]. В отношении гиппокампа Хаксли был прав.

Таким образом, между нами и нашим общим предком с шимпанзе, проживавшим когда-то в Африке, не более 300 000 поколений. Если вы возьмете за руку свою маму, а она возьмет свою, и так далее в глубь поколений, то получится живая цепь людей протяженностью от Нью-Йорка до Вашингтона, в конце которой будет стоять «недостающее звено» — наш общий предок с шимпанзе. Пять миллионов лет — это большой промежуток времени, но эволюция измеряет время не в годах, а в поколениях. Бактерии потребуется всего 25 лет, чтобы получить столько же поколений.

Как выглядело это «недостающее звено»? Выстроив в ряд найденные окаменелости предков современного человека, ученые вплотную подошли к ответу на этот вопрос. Наиболее близко к развилке дорог находится, видимо, маленький получеловек-полуобезьяна ардипитек (Ardipithecus), скелет которого датируется 4 млн лет. Хотя некоторые ученые считают ардипитека «недостающим звеном», скорее всего, это не так. Уж слишком его тазовые кости приспособлены к прямохождению. Довольно трудно предположить, что, происходя от гориллы, в процессе эволюции ардипитек достиг такого совершенства, которое затем вновь было утрачено у шимпанзе. Окаменелости «недостающего звена» должны быть на пару миллионов лет моложе. Но исходя из того, как выглядит ардипитек, можно представить внешний вид «недостающего звена». Мозг у него был меньше, чем у современного шимпанзе. Он проворно мог передвигаться как на двух, так и на четырех ногах. Его рацион напоминал рацион шимпанзе: в основном фрукты и стебли растений. Самцы должны были быть крупнее самок. Нам, людям, очень трудно не полагать, что наш общий предок с обезьяной больше походил на шимпанзе, чем на нас. Возможно, шимпанзе опротестовали бы такой подход, тем не менее факты свидетельствуют о том, что действительно наш вид претерпел значительно более существенные изменения.

Как и все другие человекообразные обезьяны, «недостающее звено» было лесным животным, имеющим дом где-то в ветвях плиоценового леса. Но в какой-то момент времени популяция была разделена пополам. Мы можем это предположить, поскольку именно разделение популяций служит отправной точкой видообразования. Каждая дочерняя субпопуляция постепенно приобретает все новые и новые морфологические и генетические черты. Линией раздела могли стать горы, или широкая река (так, река Конго отделяет шимпанзе от их разновидности — бонобо), или как раз в это время образовавшийся рифтовый разлом земной коры, в результате которого отделилась восточноафриканская популяция обезьян, оказавшаяся отрезанной от тропических лесов в засушливой саванне. Французский палеонтолог Ив Коппен (Yves Coppens) в шутку назвал это событие «историей восточного побережья». По другой версии популяция разделилась на южную — шимпанзе, и североафриканскую, а линией раздела стала пустыня Сахара. Можно также предположить, что наводнение или прорыв Гибралтара отделили популяцию обезьян на средиземноморском острове, где им пришлось научиться бродить вдоль берега в поисках рыбы и моллюсков. Теорий много, но пока нет четкого доказательства достоверности ни одной из них.

Каким бы ни был механизм изоляции, мы можем предположить, что наши предки составляли небольшую изолированную группу, тогда как предки шимпанзе были превалирующей расой. Мы можем это предположить, поскольку, судя по данным популяционной генетики, известно, что наш вид «прошел сквозь горлышко бутылки», т. е. в недавней истории наших предков был момент, когда популяция находилась на грани вымирания из-за малочисленности особей. В истории шимпанзе такого момента не было. Поэтому случайное варьирование генома в популяции шимпанзе намного больше, чем варьирование у разных рас людей[15].

Давайте предположим, что эта маленькая группа особей сохранилась на острове. Изоляция балансирующей на грани исчезновения группы привела к близкородственному скрещиванию, что в свою очередь вызвало эффект генетического дрейфа. (Этот эффект проявляется в том, что в малых популяциях частота возникновения и накопления мутаций существенно возрастает.) Именно в такой ограниченной популяции могла закрепиться мутация слияния двух хромосом. Эта мутация привела теперь уже к генетической изоляции вида, поскольку здоровое потомство не могло родиться от двух родителей с разным числом хромосом. Эта граница уже никогда не могла быть преодолена, даже после слияния островной популяции с материковой. Межпопуляционные гибриды должны были быть бесплодными. (По этическим соображениям эксперименты по скрещиванию шимпанзе и человека никогда не проводились, но появление потомства действительно маловероятно.)

Параллельно происходили другие существенные изменения в анатомии предков человека. Скелет изменился таким образом, что стало возможным прямохождение на двух ногах, которое в большей степени подходило для перемещения на значительное расстояние по открытой равнинной местности. Напротив, способ передвижения обезьян больше подходит для оседлого образа жизни в лесу или на холмистой местности. Стала также изменяться кожа. Волосяной покров сокращался, и появилось обильное потоотделение в жаркую погоду, что совершенно не свойственно другим человекообразным обезьянам. Эти изменения вместе с сохранившейся шапкой волос на макушке и системой возвратно-теплообменных вен на голове говорят о том, что наши предки больше уже не жили в тени и туманах экваториального леса, а ходили прямо под палящим экваториальным солнцем[16].

Можно дальше обсуждать изменения в экологии, которые привели к таким разительным отличиям в строении скелета, но основной вывод мы можем сделать уже сейчас: наши предки были изолированы в довольно сухой, равнинной местности, покрытой травой. Эта среда обитания нашла наших предков, а не они ее. Примерно в то время, когда произошло разделение предков человека и шимпанзе, действительно, во многих областях Африки джунгли сменила саванна. Чуть позже, примерно 3,6 млн лет назад, произошло извержение вулкана Садиман, который находится на территории современной Танзании. На свежевыпавшем пепле четко отпечатались следы трех гоминидов лаетоли, которые куда-то шли с юга на север по своим делам. Впереди шла наиболее крупная особь, средняя особь отставала всего на шаг, а чуть левее семенила маленькая особь. На полпути они остановились и посмотрели на запад, а затем продолжили свой путь. Окаменевшие следы рассказали небольшую историю о наших вероятных предках, людях лаетоли, которые уже в те времена уверенно передвигались прямо на двух ногах.

Но до сих пор нам известно очень мало. Были люди лаетоли мужчиной, женщиной и ребенком или мужчиной и двумя женщинами? Чем они питались? Где жили? Восточная Африка становилась все более сухой по мере того, как в рифтовые долины переставал поступать влажный воздух с запада. Вряд ли люди пришли сюда в поисках менее дождливого климата. Напротив, нам необходима вода. Наше свойство обильно потеть на жаре, адаптация пищеварительного тракта к перевариванию разнообразной пищи, в том числе и рыбы, и даже наше стремление к отдыху на морском или речном берегу и умение плавать говорят о том, что для наших предков всегда предпочтительнее был влажный климат. Окаменевшие останки наших предков следует искать у берегов древних рек и озер.

В какой-то момент древние люди превратились в хищников. Несколько новых видов людей появились уже после того, как лаетоли оставили свои следы на пепле. Одним из широко известных видов являлись австралопитеки. Возможно, они были потомками лаетоли, но точно не нашими предками. Это была травоядная ветвь гоминидов. Генетика мало может рассказать о них, поскольку они вымерли, не оставив потомков. Сведения об австралопитеках были получены в результате изучения их окаменелых останков. Этим занимались семья Лики (Leakey), Дональд Джохансон (Donald Johanson) и другие антропологи. Если не считать огромных челюстей, австралопитеки были мелкими созданиями. Они были меньше и глупее, чем шимпанзе, но ходили прямо на двух ногах. Их огромные челюсти имели мощную мускулатуру. Они постоянно что-то жевали, вероятно, траву и другую грубую растительность и поэтому утратили клыки, которые мешали жевать жесткую пищу из стороны в сторону. В какой-то момент они исчезли, примерно около миллиона лет назад. Вполне возможно, что их съели предки современного человека.

Наши непосредственные предки были более крупными существами — примерно такого же роста, как современные люди, или даже чуть выше. Об этом свидетельствует известная находка мальчика из Нариокотоме, обнаруженная Аланом Уокером (Alan Walker) и Ричардом Лики (Richard Leakey) и датируемая 1,6 млн лет[17]. В это время предки людей уже используют каменные орудия в качестве замены утраченным клыкам. Они удивительно приспособлены для того, чтобы убивать и поедать беззащитных австралопитеков. В мире животных следует опасаться двоюродных братьев. Львы убивают леопардов, волки убивают койотов. Наши головастые разбойники были вооружены каменным оружием и ходили на охоту группами. Небольшое преимущество в борьбе за существование наставило наших предков на путь, который привел их к ошеломительному эволюционному успеху. С этих пор мозг становится все больше и больше. Один любознательный математик подсчитал, что каждые 100 000 лет мозг увеличивался на 150 млн нервных клеток — один из примеров бесполезной статистики, которыми изобилуют проспекты для туристов. Большой мозг, мясной рацион, медленное развитие с длинным детством. (Даже во взрослом возрасте у людей стали сохраняться черты, присущие детям: голая кожа без волосяного покрова, уменьшенные челюсти и высокий лоб.) Все эти признаки развивались параллельно. Без мяса требующий протеинов большой мозг становился слишком дорогой роскошью.

Если бы не произошло уменьшения челюстей, мозгу бы не хватило места в голове. Без увеличения продолжительности детства недоставало бы времени для учения, в процессе которого нужно было заполнить большой мозг необходимыми знаниями.

Локомотивом процесса эволюции являлись половые предпочтения. Помимо изменения размеров мозга происходили существенные изменения во внешнем виде наших предков. Так, заметно сокращалось отличие в росте между мужчинами и женщинами. Если у шимпанзе и австралопитеков самцы были в 1,5 раза больше самок, у современных людей эта разница в росте значительно меньше. Факт постепенного увеличения размеров самок у предков людей мало обсуждался исследователями. А ведь это свидетельствует о смене половых отношений в популяции. Вместо беспорядочных половых связей без образования прочных семейных уз у шимпанзе и полигамных гаремов у горилл появились более длительные семейные объединения с тенденцией к моногамии. Выравнивание половой диспропорции в росте определенно свидетельствует об этом. В популяциях, где половые связи устанавливаются на длительное время, особое влияние на отбор индивидуумов для продолжения рода оказывают взаимные предпочтения самцов и самок. Если в полигамных семьях определяющим было количество половых связей, то в моногамной семье на первое место выходит качество партнера. Половые предпочтения, способствующие плодовитости семьи, закреплялись в наследственности. Так, предпочтение самцами молодых самок было целесообразным, поскольку у молодой самки впереди более длинный репродуктивный период и самец сможет оставить более многочисленное потомство. Собственно, выбор определялся не возрастом самки, а тем, как она выглядит. Поэтому самки с сохранившимися ювенильными (детскими) чертами имели больше шансов на успех у самцов. К таким чертам относится высокий выпуклый лоб, как у новорожденного. Но увеличение размеров лба также связано с увеличением объема мозга. Поэтому половые предпочтения и развитие способности мышления вполне могли идти рука об руку.

Развитие моногамных отношений в семье вело к разделению труда между мужчиной и женщиной. У людей сложились уникальные партнерские отношения между полами, которых нет ни у каких других видов. У мужчин, оставивших женщин для сбора кореньев и плодов, появилось время разогнать адреналин по жилам в небезопасном предприятии — охоте на крупных животных. Мясом затем они делились с женщинами, благодаря чему те получали богатую протеинами еду, не прерывая заботы о детях. Именно в результате такого разделения труда древние предки людей смогли выжить в засушливых районах Африки, одинаково успешно потребляя как растительную, так и животную пищу. Поскольку охотиться начала только мужская часть популяции, переход на мясную пищу не привел к повороту эволюции наших предков на путь узкого приспособления к хищничеству, как это случилось, например, с большими кошками.

Половое разделение труда способствовало дальнейшему усложнению и развитию общественных отношений. Благодаря тому что пища справедливо делилась между всеми членами группы, появилась возможность трудовой специализации уже на уровне отдельных особей. Именно появление специалистов, в совершенстве владеющих определенным видом занятий, стало причиной эволюционного успеха нашего вида, поскольку дало возможность развиваться технологиям. На протяжении всей последующей истории человека специализация возрастала и продолжает усиливаться в наши дни[18].

И вновь разные эволюционные изменения в человеке оказывали взаимное влияние друг на друга. Большой мозг требует богатой белками пищи (это не значит, что вегетарианцы деградируют, поскольку в наши дни достаточно белков можно получить, потребляя бобовые, но наши предки были весьма ограничены в выборе рациона).

Потребление богатой белком пищи способствует развитию общества, но развитие общества требует дальнейшего развития мозга (нужно было научиться считать, иначе общество погубили бы бездельники). Разделение труда между полами ведет к моногамии, поскольку семья теперь становится также экономической единицей общества. Переход к моногамии усиливает выбраковку индивидуумов по половым предпочтениям, что ускоряет и направляет эволюцию вида. И так вверх по спирали от стимула к стимулу, от обезьяноподобных животных к человеку. Этот карточный домик теории эволюции человека был построен на весьма ограниченных научных фактах. И все же у нас есть повод надеяться, что дальнейшие открытия подтвердят нашу теорию. Окаменелые остатки очень мало могут рассказать нам о социальном поведении наших далеких предков. Они для этого слишком сухи и немногословны. Гораздо больше можно почерпнуть из записей в нашем геноме. На уровне генов естественный отбор выражается в изменении последовательности нуклеотидов в ДНК или аминокислот в соответствующих белках. Изменения генов происходят постоянно, неся на себе отпечаток событий, управляющих эволюцией на протяжении 4 млрд лет. Если мы только научимся извлекать информацию из генома, он расскажет нам больше и объективнее о нашей истории, чем папирусные свитки и берестяные грамоты.

Около двух процентов генома человека таят в себе сведения о том, как шла эволюция людей после отделения их от общего предка с шимпанзе. Осталось немного: оцифровать всю последовательность нуклеотидов генома человека на компьютере, сделать то же самое с усредненным геномом шимпанзе, отделить активные гены от бессмысленных последовательностей нуклеотидов, провести сравнительный анализ двух геномов ген за геном и связать найденные отличия с факторами, воздействовавшими на эволюцию наших предков в раннем плейстоцене. Те гены, которые не изменились, отвечают за основные биохимические реакции и общее развитие организма. Вероятно, что отличия будут обнаружены в генах индивидуального развития под управлением гормонов. Произошли некоторые изменения в последовательности нуклеотидов, что заставило увеличиться и изогнуться стопу, а пальцы на руках сделаться более ловкими.

Сейчас даже трудно представить, каким образом можно будет перейти от расшифровки отдельных генов к пониманию того, как они управляют всем организмом. Генетика развития организма до сих пор находится в зачаточном состоянии, хотя то, что именно гены управляют этим процессом, не вызывает сомнения. Различие между человеком и шимпанзе — это генетическое различие и ничего больше. Даже если учесть, что в развитии человека немаловажным фактором является воспитание и культурно-социальные отношения, следует признать, что в основе отличия нашего вида от всех других лежит генетика. Предположим, что ядро яйцеклетки шимпанзе будет внедрено в лишенную ядра яйцеклетку человека и помещено в утробу, а рожденный ребенок будет воспитываться в обычной семье, станет ли он человеком? Думаю, даже не нужно проводить такой крайне неэтичный эксперимент, чтобы прийти к выводу о том, что ребенок все равно останется обезьяной. Пусть он унаследует цитоплазму и митохондрии человека, будет взращен человеческой плацентой и станет развиваться в человеческом обществе — ничто из этого не сможет изменить программы развития обезьяны.

Хорошей аналогией может послужить проявление фотографии. Предположим, что мы сфотографировали шимпанзе. Положили пленку в проявитель на требуемое время. Неважно, какая фирма выпускала проявитель и каков его химический состав. Если он работает, то на фотографии появится шимпанзе, но никак не человек. Снимок — это гены яйцеклетки, а все остальное — лишь проявитель. Чтобы из яйцеклетки развился организм, нужны соответствующие условия и питание. Но то, каким будет организм, зависит только от информации, записанной в его генах.

Что касается поведения, то тут, безусловно, немаловажное значение оказывает воспитание. Детеныш шимпанзе в обществе представителей другого вида будет так же социально ущербен, как и Тарзан, выросший в обезьяньей стае. Как Тарзан не научился говорить, так и обезьяна, выросшая среди людей, никогда не научится субординации в обезьяньей стае, технике общения с представителями своего вида, строительству гнезд в ветвях деревьев или ловле термитов с помощью палочки. Для выработки правильного поведения одних генов недостаточно, по крайней мере у таких высокоразвитых животных, как обезьяны.

Тем не менее в формировании поведения особи также участвуют гены. Если трудно представить, как изменения в двух процентах генома могли привести к столь значительным отличиям внешнего вида человека и обезьян, то еще более трудно понять, как изменения в последовательности нуклеотидов смогли настолько существенно изменить быт и поведение нашего обезьяноподобного предка. Выше я подробно рассказал, как изменялась система половых отношений — от беспорядочных половых связей у шимпанзе и полигамии горилл до моногамных семейных отношений у предков людей. Из этого можно сделать вывод о том, что для каждого вида характерно свое строго определенное поведение, которое нельзя объяснить только воспитанием. Но как группа генов со своим генетическим кодом может изменить образ жизни с полигамного на моногамный? У меня по этому поводу нет ни малейшей идеи, и все же я не сомневаюсь в том, что гены ответственны как за анатомию, так и, хотя бы частично, за поведение организмов.

Хромосома 3

История открытий

В 1902 году в свои 45 лет Арчибальд Гаррод (Archibald Garrod) уже считался столпом английской медицины. Он был сыном выдающегося посвященного в рыцари ученого сэра Альфреда Баринга Гаррода (Alfred Baring Garrod), чей труд о подагре, болезни, поражавшей высшие слои общества, считался триумфом медицины. Яркая и стремительная карьера самого Арчибальда неотвратимо вела его к рыцарству после получения им в Оксфорде высочайшего звания королевского профессора медицины (за медицинскую работу на Мальте во время Первой мировой войны) вслед за великим Уильямом Ослером (William Osler).

Уильям Ослер (1849–1919) — канадский врач, которого еще при жизни называли иконой современной медицины. С 1905 года работал в Оксфорде.

Мы можем легко представить себе этого человека, не так ли? Баловень судьбы, надменный и чопорный аристократ эпохи короля Эдуарда, занимающийся наукой, жесткий накрахмаленный воротник которого и сжатые в ниточку губы дополняют облик человека с консервативными взглядами и убеждениями. Каким неверным может быть первое мнение о человеке! В 1902 году Арчибальда Гаррода осенила неожиданная догадка, которая могла прийти лишь человеку, намного опередившему свое время. Что двигало Гарродом, случайность или гений, когда почти неосознанно он прикоснулся к ответу на величайшую загадку: что представляет собой ген. Действительно, столь неожиданно четким оказалось его понимание гена, что должны были пройти годы даже после его смерти, чтобы появился кто-либо способный понять смысл сказанного Гарродом: «ген — это пропись приготовления одного химического соединения». Более того, Гаррод даже обнаружил один из генов.

Работая в госпитале Святого Варфоломея на Грейт-Ормонд-стрит в Лондоне, Гаррод столкнулся с несколькими пациентами, страдающими редким, но неопасным заболеванием — алкаптонурией. Помимо ряда других неприятных симптомов, таких как артрит, для больных был характерен красноватый или чернильно-черный цвет мочи и ушной серы, который они приобретали через определенное время пребывания на воздухе в зависимости от принимаемой пищи. В 1901 году Гаррод обратил внимание на одну семью, в которой двое из пяти детей страдали алкаптонурией. Это наводило на мысль, что проблема связана именно с семьей. Он обнаружил, что родители детей были двоюродными братом и сестрой. Тогда Гаррод изучил семейные истории других пациентов. Оказалось, что в восьми из семнадцати случаев алкаптонурии родители пациентов состояли друг с другом в том или ином родстве. Но болезнь не просто передавалась от родителей к детям. У людей, страдающих алкаптонурией, рождались нормальные дети, но болезнь могла проявиться в следующем поколении. К счастью, Гаррод следил за последними достижениями в биологии. Его друг Уильям Бэтсон (William Bateson) был одним из тех, кого пленили лишь два года назад обнаруженные в архивах и переизданные труды Грегора Менделя (Gregor Mendel). Бэтсон как раз писал научную работу, с тем чтобы популяризировать вновь обретенную теорию менделизма о рецессивах — признаках, проявляющихся в одном поколении, скрытых в следующем и вновь возникающих в третьем поколении при близкородственном скрещивании. Он даже сохранил ботаническую терминологию Менделя, назвав эти признаки химическими мутациями.

До этих пор под мутациями понимали только изменения во внешнем виде растений.

Идеи Менделя заинтересовали Гаррода. Вполне вероятно, думал он, что болезнь наследуется от обоих родителей и проявляется из-за того, что в организме не хватает какого-то вещества. Будучи хорошим специалистом не только в генетике, но и в химии, он знал, что потемнение мочи и ушной серы связано с присутствием в них гомогентизиновой кислоты. Эта кислота синтезируется в организме любого человека, но быстро разрушается и выводится. Гаррод предположил, что причиной накопления гомогентизиновой кислоты может быть то, что перестает работать катализатор, участвующий в ее разрушении. Гаррод знал, что катализаторами биохимических реакций выступают ферменты, представляющие собой белки. Следовательно, наследуемый признак (ген) связан с отсутствием всего одного соединения. У больных людей этот ген производит дефектный белок. Но если из двух генов дефективным является только один, болезнь не проявляется, так как одного полноценного гена оказывается вполне достаточно, чтобы компенсировать дисфункцию другого.

Так появилась теория Гаррода о «врожденных ошибках метаболизма», из которой следует гораздо более фундаментальное предположение о том, что гены кодируют катализаторы химических реакций по принципу «один ген — один белок». Гаррод писал: «Врожденные ошибки метаболизма происходят в результате сбоя на одном из этапов в цепи химических реакций, вызванного отсутствием или дисфункцией определенного фермента». Поскольку ферменты — это белки, можно сказать, что именно в белках заложена «химическая индивидуальность особи». Книга Гаррода, изданная в 1909 году, тщательно рецензировалась и была положительно воспринята, но все рецензенты упустили самое важное в этой работе. Они хвалили автора за выяснение причины редкого заболевания, но никто из них не обратил внимания на фундаментальное значение открытия. Теория Гаррода оставалась незамеченной в течение последующих 35 лет, пока не была вновь открыта. К тому времени появилось много новых подтверждающих ее фактов и теорий наследственности, а Гаррод уже десять лет как был мертв[19].

Теперь нам известно, что основное назначение генов состоит в сохранении рецептов синтеза белков. Именно белки выполняют почти все химические, структурные и регуляторные функции организма. Они продуцируют энергию, борются с инфекцией, переваривают пищу, образуют волосы, переносят кислород и пр. Абсолютно все белки появились потому, что в организме есть гены, в каждом из которых закодирована структура определенного белка. Но обратное утверждение будет неверным. Есть гены, которые не кодируют белки, например гены рибосомальных РНК, лежащие на хромосоме 1. Но даже эти гены нужны для того, чтобы создавать другие белки. Предположение Гаррода совершенно верно: от своих родителей мы наследуем огромный список рецептов по приготовлению разных белков или по созданию устройств, необходимых для синтеза белков, и ничего больше.

Современники Гаррода упустили основную мысль его учения, но по крайней мере воздали должное его таланту. К сожалению, этого нельзя сказать о человеке, чьи идеи он наследовал, — Грегоре Менделе. Даже трудно представить себе, насколько разными были миры Гаррода и Менделя.

Мендель родился в 1822 году в маленькой деревушке Хейнцендорф (Heinzendorf), теперь Хинчица (Hynčice), в Северной Моравии и крещен по рождению Иоанном. Его отец Антон арендовал небольшой участок земли у помещика, на которой трудился от зари до зари. Когда Иоанну было 16 лет и он с отличием учился в средней школе г. Троппау (Troppau), произошло несчастье. Здоровье его отца было окончательно подорвано, когда его придавило упавшее дерево. Антону пришлось продать ферму своему зятю, чтобы дать возможность сыну окончить школу и поступить в университет Оломоуц (Olmütz). Но денег катастрофически не хватало. Чтобы получить образование, Иоанну пришлось стать монахом ордена Августинцев, взяв себе имя брат Грегор. Он без труда окончил теологический колледж в Брюнне (Brünn), теперь Брно, и стал приходским священником. Этот уровень был не для пытливого ума юноши. Мендель пытался поступить в Венский университет, но провалился на экзаменах.

Менделю пришлось вернуться в Брюнн тридцатиоднолетним неудачником, годящимся только для монастырской жизни. Но ему легко давалась математика, он прекрасно играл в шахматы, не был чужд увлечению искусством и обладал добрым и веселым нравом. Кроме того, он, как и его отец, был очень хорошим садовником, умел прививать и разводить фруктовые деревья. Корни его таланта исходили из крестьянского опыта и многовековой практики. Законы наследственности были впервые постигнуты и использованы на практике не учеными, а древними неграмотными людьми, научившимися выводить сорта растений и породы животных. Но эти знания никогда не были систематизированы. Отдавая должное народным знаниям, Мендель писал: «Никогда ранее селекционерам не доводилось развить свое мастерство до такой степени, чтобы уметь просчитать все доступное разнообразие форм или вычислять вероятность появления той или иной формы». После этих слов, с которыми Мендель обращался к аудитории, слушатели обычно засыпали.

Итак, отец Мендель, достигнув тридцатичетырехлетнего возраста, начинает серию экспериментов с горохом в монастырском саду, которые продолжались на протяжении восьми лет, в течение которых было высажено 30 000 саженцев разных растений (только в 1860 году — 6 000 опытных растений). Результаты эксперимента с большим опозданием изменили научный мир. Но сам Мендель понимал, что он получил. Результаты были публикованы им в Verhandlungen des naturforschenden Vereins Brünn (Труды Общества естествоиспытателей города Брюнна) — журнала, который со временем занял место на полках всех ведущих библиотек. Признание к Менделю не приходило, и он постепенно утратил интерес к работе в саду, став аббатом Брюнна — добрым, заботливым, но, может, не очень набожным священником. (Во всяком случае в его трудах доброкачественной пище отведено больше места, чем Богу.) Его последние годы были посвящены затяжной позиционной войне за отмену нового налога, взимаемого правительством с монастырей. Мендель был последним аббатом, платившим этот налог. Если бы спросили умирающего Менделя, чем он прославился в жизни, пожалуй, он упомянул бы только Леоша Яначека (Leoš Janáček) — талантливого девятнадцатилетнего юношу из церковного хора, которого он вывел в главные хормейстеры Брюнна.

В своих экспериментах в церковном саду Мендель скрещивал разновидности гороха. Но его занятие нельзя назвать любительской игрой в науку. Это был масштабный, системный и хорошо продуманный эксперимент. Мендель отобрал для скрещивания растения с семью парами изменчивых признаков (фенотипом). Он скрещивал растения с гладкими и морщинистыми, а также с зелеными и желтыми горошинами. Другие пары отличались стручками: гладкие и морщинистые, зеленые и желтые, с серыми и белыми покровными волосками. Учитывалась также морфология растений: с боковыми и концевыми цветками, с длинным и укороченным стеблем. Впрочем, какое количество разных признаков он опробовал, мы не знаем. Это лишь те из них, данные по которым были опубликованы. Все перечисленные признаки не только поддаются селекции, но каждый из них кодируется единственным геном. Наверное, это не случайно. Мендель отобрал именно те признаки из многих, которые соответствовали ожидаемым результатам. Во всех случаях гибридные растения выглядели как одна из родительских форм. Казалось, что альтернативный признак исчез. Но это было не так. Мендель позволил гибридным растениям самоопылиться, и, как предполагалось, утраченный признак растения-дедушки вновь проявился в первозданной форме у четверти внуков. Он считает и пересчитывает: 19 959 растений второго поколения, в которых доминантный признак соотносится с рецессивным в пропорции 14 949 растений к 5 010, или 2,98:1. Только в следующем столетии сэр Рональд Фишер (Ronald Fisher) с удивлением заметит, насколько это соотношение близко к 3:1. Следует помнить, что Мендель был талантливым математиком, поэтому еще до начала экспериментов он предполагал получить именно такое соотношение[20].

Мендель как одержимый хватается за разные растения — фуксия, кукуруза и др. И всюду он находит одну и ту же пропорцию. Он понимает, что обнаружил фундаментальный закон наследственности: признаки не смешиваются друг с другом. За признаками лежат какие-то жесткие неделимые субъединицы, которые и определяют наследственность. Тут ничто не напоминает смешивание жидкостей, никакого кровосмешения. Напротив, это больше напоминает калейдоскоп, в котором случайным образом перемещаются твердые неделимые частицы. Рассуждая ретроспективно, до этой идеи можно было додуматься давно. Как иначе можно было объяснить факт, что в одной семье дети могут быть как с карими, так и с голубыми глазами?

Дарвин, который сформулировал свою теорию, основываясь на идее наследственности путем кровосмешения, тем не менее, пару раз приходит к мысли о независимости признаков. «Недавно я поразмыслил, — пишет он Хаксли в 1857 году, — и мне пришла мысль, что размножение путем оплодотворения скорее можно представить как соединение, а не как слияние признаков двух индивидуумов… Иначе невозможно понять, как из скрещенных форм вновь образуется такое же разнообразие признаков, какое было у их предков»[21]. Этот вопрос заметно волновал Дарвина. Только недавно его теория подверглась серьезной критике со стороны шотландского профессора Флиминга Дженкина (Fleeming Jenkin). Дженкин на неопровержимых фактах показал, что естественный отбор и наследственность на основе кровосмешения несовместимы. Если в основе наследственности лежат смешиваемые жидкости, то теория Дарвина не будет работать, поскольку любые новые прогрессивные изменения в организме просто растворятся в следующих поколениях. Для подтверждения своих доводов Дженкин привел пример белого человека, который поселился на тропическом острове и пытается превратить аборигенов в европейцев, обзаведясь множеством жен. Кровь белого человека очень скоро сойдет на нет, и это произойдет в ближайших поколениях. В глубине души Дарвин понимал, что Дженкин прав, и даже вспыльчивый Томас Генри Хаксли (Thomas Henry Huxley) пасовал перед аргументацией Дженкина. Но Дарвин так же был убежден в том, что его теория верна. Ему бы почитать Менделя, и дважды два сложились бы вместе.

Описанный пример растворения признака в результате многочисленных скрещиваний носителя признака с теми, у кого его нет, называется «парадоксом Дженкина». В полной мере разрешить парадокс Дженкина не удалось не только Дарвину, но и современным генетикам.

Многие вещи кажутся элементарными в ретроспективе, но необходимо вмешательство гения, чтобы простое стало очевидным. Менделю удалось понять, что кажущееся растворение признака в следующем поколении связано с тем, что каждый признак определяется не одной, а двумя субъединицами наследственности. В начале XIX века Джон Дальтон (John Dalton) доказал, что вода представляет собой миллиарды неделимых частиц— атомов, и выиграл спор с приверженцами теории непрерывности. И вот теперь Мендель доказал атомную природу биологии: в основе наследственности лежит сочетание неделимых субъединиц. У этих субъединиц на заре генетики было много названий: факторы, геммулы, пластидулы, пангены, биофоры, иды, иданты. Но со временем закрепилось название ген.

В течение четырех лет, начиная с 1866 года, Мендель слал свои работы с новыми результатами в Мюнхен профессору ботаники Карлу-Вильгельму Негели (Karl-Wilhelm Nägeli). Со все нарастающей дерзостью он пытался привлечь его внимание к важности своих открытий. Но все четыре года Негели не мог понять сути. Он отвечал вежливо, но несколько свысока, потом посоветовал проверить полученные соотношения на других растениях, например ястребинке (Hieracium). Он не мог дать более вредного совета, если бы даже очень захотел. Ястребинка — это апомиктическое растение, т. е. для образования плода требуется опыление, но в действительности пыльца не прорастает, и скрещивания не происходит. Естественно, у Менделя получились странные результаты. Поупражнявшись впустую с ястребинкой, Мендель забросил эти опыты и принялся за пчел. Было бы интересно, если бы ему в те годы удалось постичь их сложно переплетенную гаплоидно-диплоидную генетику.

Тем временем Негели публикует свой огромный трактат о наследственности. Безусловно, о работах Менделя в нем не было ни слова. Но что примечательно, Негели приводит свой удивительный пример наследственности, но вновь не может понять сути даже собственного примера. Негели знает, что если скрестить ангорскую кошку с кошкой любой другой породы, то у котят и в помине не будет ангорской шерстинки, но этот признак вновь проявит себя у некоторых котят следующего поколения. Трудно найти еще лучшее подтверждение теории Менделя о рецессивах.

В жизни Менделя был еще момент, когда он находился в шаге от признания. Чарльз Дарвин, который всегда столь пристально всматривался в новые идеи, высказанные в трудах других ученых, имел у себя и даже рекомендовал друзьям книгу В. О. Фоке (W. O. Focke), в которой ссылки на работы Менделя приводились 14 раз, но сам не удосужился заглянуть в эти труды. Видимо, Менделю так было определено судьбой, чтобы мир вновь открыл его только в 1900 году, много лет спустя после его смерти и смерти Дарвина. Это произошло почти одновременно в разных местах. Сразу три ученых-ботаника — Хуго де Фриз (Hugo de Vries), Карл Коррен (Carl Corren) и Эрих фон Чермак (Erich von Tschermak) — повторили в своих лабораториях эксперименты Менделя на разных растениях, а затем обнаружили архивные публикации.

Менделизм ворвался в биологию неожиданно. Научный мир к тому времени сжился с теорией плавной и непрерывной эволюции. Жесткие и неделимые субъединицы наследственности с ног на голову переворачивали эти представления. По Дарвину эволюция была не чем иным, как постепенным накоплением в результате естественного отбора незначительных случайных изменений. Если гены — это жесткие неделимые атомы, перепрыгивающие незамеченными через поколения, как же они могут постепенно изменяться и отсеиваться? Но с появлением новых данных в начале XX века триумф менделизма над дарвинизмом становился все более очевидным. Уильям Бэтсон выразил мнение многих о том, что только корпускулярная природа наследственности может разрешить многие противоречия теории естественного отбора. Вообще Бэтсон был скандально известной личностью, славившейся своей удивительной непоследовательностью и эгоцентризмом. Он свято верил в то, что эволюция происходит большими скачками от одной формы к другой без каких-либо переходных форм. Эксцентричной теории дискретности эволюции он посвятил свою книгу, вышедшую в 1894 году, после чего стал постоянным объектом нападок ортодоксальных дарвинистов. Слегка удивленный неожиданной находкой, он с распростертыми руками принял работы Менделя и первым перевел их на английский язык. «В теории Менделя нет ничего, что противоречило бы кардинальной доктрине возникновения видов, — писал Бэтсон, претендуя на роль апостола Нового Завета. — В то же время, результаты последних исследований со всей очевидностью показывают необходимость избавить теорию естественного отбора от некоторых ее неестественных атрибутов… Нельзя не признать, что возведение естественного отбора в абсолют зиждется на ряде постулатов, сформулированных в работах самого Дарвина, но я абсолютно уверен, что если бы работы Менделя попали в его руки, он бы сам немедленно переписал эти постулаты»[22].

Но именно потому, что наиболее ярким проповедником идей Менделя стал Бэтсон, европейские научные круги встретили теорию с большой настороженностью. В Великобритании непримиримая борьба между менделистами и приверженцами биометрии продолжалась еще 20 лет. Вскоре спор, как обычно, перекинулся в США, впрочем, там противоположные взгляды никогда не достигали такой диаметральности. В 1903 году американский генетик Уолтер Саттон (Walter Sutton) сообщил, что хромосомы ведут себя в точности, как наследственные факторы Менделя: в паре хромосом всегда одна наследуется от отца, а другая — от матери. Томас Хант Морган (Thomas Hunt Morgan), отец американской генетики, сразу же стал новоявленным менделистом. В результате Бэтсон, который терпеть не мог Моргана, быстро переметнулся в другой лагерь и возглавил борьбу с теорией хромосом. Как много в истории науки решают личные отношения между людьми. Бэтсон вскоре подвергся обструкции, а Морган стал основоположником великолепной школы генетиков и увековечил свое имя в единице измерения расстояния между генами на хромомосе — сантиморгане. В Великобритании война продолжалась до тех пор, пока в 1918 году свету не явился великий математический ум Рональда Фишера (Ronald Fisher), которому удалось примирить дарвинизм с менделизмом, ведь в действительности Мендель не опровергал, а убедительно доказывал теорию Дарвина.

Впрочем, все еще имелись разногласия по поводу мутаций. Дарвин основой эволюции считает изменчивость, а Мендель— стабильные и неделимые атомы наследственности. Если гены — это атомы биологии, то представление о том, что они могут меняться, выглядело таким же еретическим, как алхимия. Перелом произошел, когда первую индуцируемую мутацию удалось получить человеку настолько противоположному Гарроду и Менделю, что это даже трудно себе представить. Рядом с почтенным доктором времен короля Эдуарда и монахом Святого Августина нам приходится поставить скандального и непоседливого Германа Джо Мюллера (Hermann Joe Muller). Как и многие блестящие, талантливые еврейские ученые, бежавшие из Германии в Америку в 1930-х годах, Мюллер пересекал в это же время Атлантический океан, только в другом направлении. Рожденный в Нью-Йорке сын хозяина мелкого магазина, торгующего металлическими деталями, он поступил на факультет генетики Колумбийского университета, но разошелся во взглядах со своим наставником, Морганом, и в 1920 году перевелся в Техасский университет. Ходили слухи о том, что причиной ссоры с блистательным Мюллером был антисемитизм Моргана. Но, скорее, всему виной стал несдержанный характер самого Мюллера. Всю свою жизнь он с кем-то дрался. В 1932 году, после того как от него ушла жена, а сотрудники стырили (по его словам) его открытие, Мюллер пытается покончить с собой, а потом плюет на все и уезжает из Техаса в Европу.

Величайшая заслуга Мюллера, получившего Нобелевскую премию, состоит в открытии мутагенеза. Здесь уместно упомянуть об Эрнесте Резерфорде (Ernest Rutherford), который несколькими годами ранее открыл превращения атомов и доказал, что термин «атом», что по-гречески означает неделимый, по сути своей неправильный. В 1926 году Мюллер спросил себя: «А действительно ли мутации настолько уникальные биологические процессы, что являются совершенно не управляемыми и не контролируемыми, как еще совсем недавно думали о превращениях химических атомов?».

В следующем году он нашел ответ на свой вопрос. Облучая фруктовых мушек рентгеновскими лучами, Мюллер вызвал у них серию мутаций, проявившихся в следующем поколении в виде всевозможных деформаций. «Мутации, — писал он, — оказались совсем не такими уж недоступными богами, творящими свои проказы из недоступной цитадели в глубине цитоплазмы». Так же, как и атомы, частицы Менделя должны иметь свою внутреннюю структуру, которую можно изменить с помощью рентгеновских лучей. Они все равно оставались генами после мутации, но уже другими генами.

Искусственно вызванные мутации подстегнули современную генетику. Используя методику Мюллера с рентгеновским облучением, в 1940 году Джордж Бидл (George Beadle) и Эдвард Татум (Edward Tatum) создали мутантный вариант хлебной плесени Neurospora. Затем они доказали, что мутант утратил способность синтезировать некоторые соединения потому, что у него недоставало функциональных версий некоторых ферментов. Они сформулировали закон, который сразу же получил известность и используется с некоторыми поправками до сих пор: один ген — один белок. Это стало речитативом генетиков всего мира: один ген, один белок. В данном законе воплотилась старая догадка Гаррода с уточнениями современной биохимии. Тремя годами позже настало время замечательного открытия Лайнуса Полинга (Linus Pauling). Он установил причину ужасной формы анемии, от которой страдали главным образом африканцы. При этой анемии эритроциты крови изгибались в виде серпа. Происходило это из-за мутации в гене, кодирующем гемоглобин. Болезнь вела себя в точном соответствии с законом Менделя. Это было убедительное доказательство того, что гены представляют собой рецепты белков. Мутация вызывает изменение рецепта, из-за чего меняется сам белок.

А что же в это время делает Мюллер? Ему не до науки. В 1932 году его захватывают идеи социализма и евгеники — селекции человека. Он верит, что, планомерно скрещивая людей, можно добиться того, чтобы рождались только гении, такие как Маркс и Ленин (в последующих своих книгах Мюллер благоразумно заменил прообразы гениев на Линкольна и Декарта). Идеи социализма и евгеники влекут его через Атлантический океан в Европу. Он приезжает в Берлин за несколько месяцев до прихода к власти Гитлера. Скоро он станет свидетелем ужасной сцены разгрома нацистами лаборатории его шефа Оскара Фогта (Oscar Vogt), осмелившегося приютить у себя еврея.

Мюллер едет дальше на восток, в Ленинград, в лабораторию Николая Вавилова, как раз перед тем как великий антименделист Трофим Лысенко, обласканный Сталиным, начинает гонения генетиков-менделистов, отказывающихся принять его собственную сумасбродную теорию о том, что пшеницу, как русскую душу, нужно не выводить селекцией, а воспитанием подгонять к соответствию с требованиями нового режима. Тех, кто не соглашался под держивать этот бред, не просто преследовали, а расстреливали. В тюрьме умирает Вавилов. Все еще не теряющий надежду Мюллер шлет Сталину копию своей книги о евгенике, но, узнав, что к его теории вождь народов не благосклонен, вовремя успевает уехать из СССР. Он отправляется в Испанию, чтобы принять участие в гражданской войне в составе интернациональной бригаде, где заведует банком донорской крови. Оттуда Мюллер перебирается в Эдинбург. Злой рок преследует его. В столицу Шотландии Мюллер приезжает как раз перед началом Второй мировой войны. Он понимает, что темный зимний Эдинбург, где в лаборатории приходится ходить в перчатках, — не лучшее место для научной деятельности. В отчаянии он хочет вернуться в США, но в Америке не очень-то хотят видеть скандального и неуживчивого социалиста с подозрительными взглядами, к тому же жившего в Советском Союзе. Наконец, университет Индианы предоставляет ему должность, а всего через год он получает Нобелевскую премию за открытие мутагенеза.

Но сами гены продолжали оставаться непостижимой загадочной тайной. Ученые ломали голову над тем, каким образом в гене может быть записана структура белка. Многие полагали, что генами могут быть только другие белки. Казалось, в клетке больше нет ничего, достаточно сложного для выполнения такой функции. Ах да, в хромосомах есть еще одно довольно незатейливое вещество — нуклеиновая кислота, называемая ДНК. Впервые ДНК выделил из пропитанной гноем повязки раненного солдата в немецком городе Тюбингене (Tübingen) в 1869 году шведский доктор Фридрих Мишер (Friedrich Miescher). Уже тогда Мишер предположил, что ДНК может быть ключом к разгадке наследственности. В 1892 году в своем письме дяде он высказывает удивительно пророческие мысли о том, что именно ДНК может передавать наследуемую информацию «так же, как слова в языках всего мира создаются из 24–30 букв алфавита». Но ДНК состоит всего из четырех нуклеотидов. Как такое монотонное соединение может хранить в себе информацию о сложном белке?[23]

Но на сцену уже вышли люди, которым предстояло отгадать великую загадку природы. В бытность Мюллера в университете Индианы в Блумингтоне (Bloomington) в его лаборатории появляется одаренный девятнадцатилетний бакалавр Джеймс Уотсон (James Watson). Вскоре он становится учеником иммигранта из Италии Сальвадора Лурия (Salvador Luria). (Не удивительно, что Уотсон не ужился с Мюллером.) Уотсон все больше склоняется к мысли о том, что гены состоят из ДНК, а не из белков. В поиске доказательств он едет в Данию, затем, разочаровавшись в коллегах, переезжает в 1951 году в Кембридж. Судьба столкнула его в Кавендишской лаборатории с такой же яркой личностью, как он сам, — Фрэнсисом Криком (Francis Crick), который также был увлечен идеей наследственности посредством ДНК.

Кавендишская лаборатория — известная физическая лаборатория Кембриджа, названная в честь основавшего ее физика Генри Кавендиша (Henry Cavendish, 1731–1810). Кроме Уотсона и Крика в этой лаборатории работали в разные годы выдающиеся физики Э. Резерфорд и академик П. П. Капица.

Карьеру Крика нельзя назвать быстрой и яркой. В свои тридцать пять он еще не получил статус PhD (PhD соответствует кандидату наук — примеч. ред.). Немецкие бомбы разрушили лабораторию в Лондоне, где он должен был заниматься измерением вязкости теплой воды под давлением. Крик не очень расстроился из-за того, что его карьера в физике зашла в тупик. Его и раньше манила к себе биология, поэтому он быстро нашел себе работу в Кембридже, где его темой стало измерение вязкости цитоплазмы клеток. Кроме того, он занимался кристаллографией в Кавендише. Но у Крика не хватало ни терпения для того, чтобы успешно развивать свои научные идеи, ни должной исполнительности для того, чтобы развивать чужие. Его постоянные насмешки над окружающими, пренебрежение к собственной карьере в сочетании с самоуверенностью и привычкой давать советы другим раздражали коллег по Кавендишу. Но Крик и сам был не в восторге от научной направленности лаборатории, сконцентрировавшейся исключительно на белках. Он был уверен, что поиск идет не в том направлении. Тайна генов скрывается не в белках, а в ДНК. Соблазненный идеями Уотсона, он забросил собственные исследования и сосредоточился на изучении молекулы ДНК. Так появился великий дуэт двух по-дружески соперничающих талантов: молодого амбициозного американца, знающего немного биологию, и ярко мыслящего, но несобранного тридцатипятилетнего британца, разбирающегося в физике. Соединение двух противоположностей вызвало экзотермическую реакцию.

Уже через несколько месяцев, собрав воедино свои и ранее полученные другими, но не обработанные данные, два ученых подошли вплотную к величайшему открытию во всей истории человечества — расшифровке структуры ДНК. Даже у Архимеда, выскочившего из ванны, не было большего повода хвалиться своим открытием, чем у Уотсона и Крика, праздновавших 28 февраля 1953 года свою победу в небольшом пабе «Орел» (Eagle). «Мы открыли секрет жизни», — все не мог прийти в себя Уотсон, опасаясь, что где-то была допущена ошибка.

Но ошибки не было. Все оказалось чрезвычайно просто: ДНК содержит в себе код, записанный вдоль всей ее молекулы — элегантно вытянутой двойной спирали, которая может быть сколь угодно длинной. Код копируется благодаря химическому сродству между составляющими химическими соединениями — буквами кода. Комбинации букв представляют собой текст прописи молекулы белка, записанный пока неизвестным кодом. Ошеломляющей была простота и изящность структуры ДНК. Позже Ричард Докинз (Richard Dawkins) писал: «Что действительно было революционным в эре молекулярной биологии, наступившей после открытия Уотсона и Крика, — это то, что код жизни был записан в цифровой форме, до невероятного похожей на код компьютерной программы».

Через месяц после того как была опубликована структура ДНК Уотсона и Крика, в один день британская экспедиция покорила Эверест и на трон взошла новая королева Англии. Если не считать небольшой заметки в News Chronicle, журналисты оставили незамеченным открытие двойной спирали ДНК. Но сегодня ученые рассматривают это событие как величайшее открытие столетия, если не тысячелетия.

Открытию ДНК предшествовали долгие годы разочарований и поражений. Код генов, с помощью которого записывается информация о наследственности, упрямо не сдавался. Но теперь Уотсон и Крик утверждали, что открытие сделано поразительно легко, — немного рабочих версий, хорошее знание физики и научное вдохновение. Взлом кода прошел блестяще. Стало очевидным, что код генов — это комбинация четырех букв A, C, G и T. Комбинации этих букв переводятся в текст другого алфавита, состоящего из 20 букв — аминокислот, являющихся составными субъединицами белков. Но как, где и каким способом?

Лучшие идеи рождались в голове Крика, включая идею об «адаптивной молекуле» — то, что сейчас мы называем РНК. Хотя не было никаких экспериментальных предпосылок, Крик пришел к выводу о том, что такая молекула должна быть. Так и произошло. Но у Крика была еще одна идея, которую называют «лучшей из всех ложных идей». Крик придумал код для шифрования структуры белка, который был значительно более элегантный, чем код матушки Природы. Идея была в следующем. Предположим, что единицей кода является слово из трех символов — кодон. (Мысль о том, что в слове должно быть не меньше трех букв, была очевидной. Сочетание четырех букв по две буквы в слове дают только 16 возможных комбинаций, чего недостаточно для кодирования 20 аминокислот.) Теперь допустим, что между словами нет ни пробелов, ни знаков препинания. Исключим из кода все слова, которые могут быть неверно интерпретированы, если чтение кода начать не с той позиции. Хорошую аналогию придумал Брайан Хейс (Brian Hayes) — возьмем все трехбуквенные слова, которые можно записать по-английски буквами A, S, E и T: ass, ate, eat, sat, see, set, tat, tea и tee. Теперь удалим слова, которые могут быть ошибочно прочитаны, если чтение начать не с той буквы. Например, представим себе текст, записанный с помощью этих слов без пробелов и знаков препинания. Возьмем случайные восемь символов в середине текста: «ateateat». Поскольку нам неизвестно, с какой буквы начинается текст, мы его можем прочитать по-разному: «a tea tea t», «at eat eat» или «ate ate at». Таким образом, из трех слов «tea», «eat» и «ate» в нашем словаре должно остаться только одно, чтобы избежать ложного прочтения.

Крик проделал те же манипуляции с буквами A, C, G и T. Он сразу же удалил из словаря AAA, CCC, GGG и TTT. Затем он сгруппировал оставшиеся 60 слов таким образом, чтобы каждая группа содержала слова из тех же трех букв, следующих друг за другом в том же порядке. Например, слова ACT, CTA и TAC объединены в группу, поскольку в них C всегда стоит после A, A — после T, а T — после C. В другой группе мы имеем слова ATC, TCA и CAT. Если вы проделаете то же самое, то получите ровно 20 групп — столько же, сколько разных аминокислот используется в белках! Казалось, это не могло быть простым совпадением. По Крику только одно слово из группы кодировало аминокислоту, а остальные слова должны были быть под запретом в генетическом коде.

Напрасно Крик призывал не относиться слишком серьезно к его версии генетического кода: «Наши предположения и догадки относительно генетического кода, который нам предстоит разгадать, настолько шатки и умозрительны, что мы не можем на них полагаться. Мы взяли их за основу просто потому, что, базируясь на простых и допустимых с точки зрения физики постулатах, нам удалось получить магическое число 20». Ведь открытая на тот момент структура двойной спирали ДНК сама по себе не предоставляла никаких свидетельств относительно генетического кода. Но ликование ученых не прекращалось. Через пять лет уже никто не сомневался в верности кода Крика.

Однако время теорий стремительно уходило. На смену им шел эксперимент. В 1961 году Маршалл Ниренберг (Marshall Nirenberg) и Дж. Генрих Маттеи (J. Heinrich Matthaei) расшифровали одно «слово» генетического кода. Для этого они просто синтезировали молекулу РНК, состоящую только из буквы U (урацил — эквивалент тимина (буквы T) в молекуле ДНК). Затем синтезированные молекулы были помещены в суспензию рибосом и активированных аминокислот. Система заработала, выдав на-гора белковый полимер, состоящий из одной аминокислоты — фенилаланина. Первое слово кода было взломано: UUU означает фенилаланин. Это открытие похоронило лишенный знаков препинания код Крика. Если бы Крик был прав, генетикам никогда не пришлось бы столкнуться с мутацией «сдвига рамки считывания», когда потеря одного нуклеотида в середине гена превращает в мусор весь последующий код. Впрочем, версия кода, которую предпочла Природа, хотя и не столь элегантна, но более устойчива к мутациям замены одного нуклеотида на другой, поскольку одна и та же аминокислота может кодироваться несколькими кодонами[24].

К 1965 году уже весь код был известен, и началась эра современной генетики. Вершины, которые с таким трудом покоряли генетики 1960-х, в 1990-х годах стали рутиной. И вот, в 1995 году наука вернулась к давно уже умершим пациентам Арчибальда Гаррода с их чернеющей мочой. Теперь наука уже точно могла сказать, в каком месте и в какой хромосоме происходит грамматическая ошибка кода, ведущая к алкаптонурии. История этой болезни оказалась в сжатом виде историей генетики XX столетия. Напомним, алкаптонурия — это очень редкое и неопасное заболевание, легко устранимое, если придерживаться определенной диеты. Именно поэтому болезнь оставалась неинтересной для врачей и науки. В 1995 году два испанских ученых, подталкиваемые главным образом значимостью болезни в плане истории генетики, взялись за раскрытие тайны. В экспериментах с плесневым грибком Aspergillus им удалось получить мутант, который накапливал пурпурный пигмент при наличии в среде фенилаланина — гомогентизиновую кислоту. Как и предполагал Гаррод, у мутанта была нефункциональная версия фермента гомогентизатдегидрогеназы Разрезав геном грибка на кусочки с помощью специальных ферментов, ученые установили фрагменты ДНК, которые делали мутант отличным от исходной культуры. В конце концов им удалось отыскать интересуемый ген в геноме грибка. Воспользовавшись последовательностью нуклеотидов гена, ученые провели поиск среди известных последовательностей нуклеотидов генома человека в надежде найти что-то похожее. Удача им улыбнулась. На длинном плече хромосомы 3 находился «абзац» ДНК, последовательность букв в котором на 52% совпадала с последовательностью букв в гене грибка. Выделив этот ген у больных алкаптонурией и сравнив его с соответствующим геном здоровых людей, ученые обнаружили отличие в одну «букву» либо в 60-й, либо в 90-й позиции от начала гена. С потерей одной «буквы» из-за сдвига рамки считывания теряется смысл всего последующего текста гена. Синтезируемый белок становится нефункциональным и не может выполнять свою работу[25].

Это пример «скучного» гена, выполняющего «скучную» биохимическую работу в организме человека, поломка которого ведет к «скучной» болезни. В нем нет ничего удивительного или уникального, например тайных связей с интеллектом человека или гомосексуальными наклонностями. Он ничего не расскажет нам о происхождении человека. Он не проявляет своего эгоистичного характера, как некоторые другие гены. Он не нарушает законов Менделя и не может убивать или калечить. У всех живых существ на планете этот ген делает одну и ту же работу. Он есть даже у пекарских дрожжей и выполняет те же функции, что и у человека. Тем не менее ген гомогентизатдегидрогеназы заслужил упоминания в истории генетики за ту роль, которую он сыграл в понимании законов наследственности. Даже этот унылый маленький ген символизирует красоту и совершенство законов природы, сформулированных когда-то Грегором Менделем, являясь их материальным воплощением в микроскопической спирально завитой двуцепочечной молекуле из четырех букв, лежащей в основе всего живого на Земле.

Хромосома 4

Злой рок

Откройте любой каталог генома человека, и вместо списка потенциалов и возможностей человека вы увидите длинный перечень заболеваний со сложными трудно запоминающимися названиями, которые состоят из двух-трех имен центральноевропейских врачей. Один ген вызывает болезнь Ниманна-Пика, а другой— синдром Вольфа-Хиршхорна, еще множество генов являются причинами заболеваний, имеющих причудливые названия. Создается впечатление, что гены — это возбудители болезней. «Открыт ген психического заболевания», «Ген ранней дистонии», «Выделен ген рака почек», «Установлена связь аутизма с геном переноса серотонина», «Новый ген болезни Альцгеймера», «Генетика маниакального поведения» — обычные заголовки печатных и Интернет-изданий.

Давать генам названия болезней — это такая же нелепая идея, как называть органы человека присущими им заболеваниями: печень у человека для цирроза, сердце — для инфаркта, мозг — для безумия. Каталожные названия генов указывают не на глубину наших знаний, а на меру нашего незнания того, как работает геном. Действительно, все, что нам известно о работе большинства генов, — это то, какая болезнь у человека разовьется, если данный ген перестанет работать. Это ведет к появлению убийственно неверных сентенций в публикациях, отражающих ход мысли не только в головах широкой публики, но и врачей: «У больного X обнаружен ген Вольфа-Хиршхорна». Не верно. У всех у нас есть ген Вольфа-Хиршхорна. Как иронично это не звучит, его нет только у людей, страдающих синдромом Вольфа-Хиршхорна. Болезнь как раз является результатом полного отсутствия этого гена в хромосомах больного. Только благодаря тому что этот ген работает, все остальные люди не страдают данным синдромом. Причиной заболеваний являются мутации в генах, а не сами гены.

Синдром Вольфа-Хиршхорна — это редкое и очень тяжелое заболевание. Данный ген настолько необходим организму, что его отсутствие приводит к гибели в раннем возрасте. Этот ген, лежащий на хромосоме 4, является, пожалуй, одним из наиболее известных генов, связанных с генетическими заболеваниями. Описано совершенно другое заболевание, также связанное с поломками в этом гене: хорея Хантингтона. Итак, мутация в гене вызывает хорею Хантингтона, а отсутствие гена — синдром Вольфа-Хиршхорна. Нам почти ничего неизвестно о том, какие функции выполняет этот ген в обычной жизни, но в мельчайших деталях мы знаем, где именно в гене могут произойти ошибки и к каким ужасающим последствиям для организма они приводят. Ген содержит многократно повторяющееся «слово»: CAG CAG CAG CAG… Это слово повторяется иногда 6 раз, иногда 30, а иногда — сотни раз. Ваша судьба, ваше здоровье и ваша жизнь находятся в руках этой повторяющейся последовательности. Если «слово» повторяется 35 раз или меньше, все нормально. У большинства из нас в геноме данный ген содержит 10–15 повторов. Если слово повторяется 39 раз или больше, то в середине жизни или ближе к старости человек вдруг начинает деградировать, постепенно утрачивая контроль над собой, и преждевременно умирает. Болезнь начинается с легких нарушений интеллектуальных способностей, затем следует тремор в руках и ногах, глубокая депрессия, иногда галлюцинации. Болезнь завершается полным психическим расстройством и смертью через 15–25 лет после ее начала. И нет никакой надежды, никаких средств, чтобы вылечить или хотя бы приостановить болезнь. А представьте себе состояние и качество жизни людей, в роду у которых были больные хореей Хантингтона, — всю жизнь они пребывают в ожидании начала страшной болезни.

Единственная причина болезни лежит в ошибке гена. Если в гене больше 39 повторов, человек обречен заболеть хореей Хантингтона, если меньше — эта болезнь ему никогда не грозит. Во всем этом есть такая огромная доля детерминизма и злого рока, о котором Кальвину даже не приходилось мечтать.

Жан Кальвин (Jean Calvin, 1509–1564) — французский теолог, основоположник кальвинизма — теории о всеобщей предопределенности.

На первый взгляд это кажется убедительным доказательством того, что если задействованы гены, то уже невозможно ничего изменить и мы можем лишь подчиниться судьбе. Действительно, не важно, курите вы или нет, принимаете ли вы витамины, насколько тяжело и где вы работаете. Возраст, в котором наступит болезнь Хантингтона, зависит лишь от одного — сколько раз в гене повторилось слово CAG. Если в гене 39 повторов, то с уверенностью в 90% можно утверждать, что безумие наступит в 75 лет, а первые симптомы появятся в 66. Если 40 повторов, то к 59 годам человек превратится в растение, если 41 — то к 54 годам, если 42 — к 37 годам и т. д. Несчастные, у которых около 50 повторов в гене, сойдут с ума уже к 27 годам. Удивительно, как много могут значить повторы в одном гене. Если мы растянем хромосому вдоль всего экватора, то разница, отделяющая больного человека от здорового, будет заключаться в цепи нуклеотидов длиной всего несколько сантиметров[26].

Никакой гороскоп не может похвастаться такой точностью прогноза. Никакая теория причинно-следственных связей, ни фрейдизм, ни марксизм, ни Библия, ни колдуны никогда не предсказывали судьбу человека с такой точностью. Ни пророкам Ветхого Завета, ни всевидящему оку греческих оракулов, ни ясновидящим и цыганам с картами и магическими кристаллами не удавалось определить год смерти человека, да еще и получить научное подтверждение этого. Перед нами лежит ужасающее своей неизбежностью и неуклонностью пророчество, записанное в генах. В геноме человека миллиарды трехсимвольных слов, но только число повторов этого слова в определенном месте на хромосоме 4 полностью определяет нашу судьбу и психическое здоровье.

Болезнь Хантингтона, о которой стало широко известно после смерти известного певца Вуди Гатри (Woody Guthrie) в 1967 году, впервые была описана доктором Джорджем Хантингтоном (George Huntington) в 1872 году на восточном побережье Лонг-Айленда. Он обратил внимание на то, что болезнью страдают члены одной семьи. Дальнейшие исследования показали, что больные Лонг-Айленда были лишь ветвью более широкого генеалогического дерева, корни которого уходят в Новую Англию. В двенадцати поколениях этого рода зафиксировано тысячи случаев болезни. Все они являются потомками двух братьев, эмигрировавших из Саффолка (Suffolk) в 1630 году. Некоторые из их потомков были сожжены в 1693 году в Салеме (Salem) за колдовство. Вероятно, за колдовство приняли раннее проявление болезни Хантингтона. Поскольку болезнь проявляла себя только во второй половине жизни, когда несчастные уже обзавелись семьей и детьми, болезнь не влияла на численность потомства больного, поэтому не отсеивалась в поколениях. Напротив, в ряде исследований было показано, что у людей с мутацией было даже больше детей, чем у их братьев и сестер, избежавших этой злой участи[27].

Болезнь Хантингтона была первым описанным примером доминантного генетического заболевания людей. В отличие от алкаптонурии, которая возникает, только если обе копии гена повреждены, для возникновения болезни Хантингтона достаточно того, чтобы лишние повторы оказались только на одной хромосоме. Есть сведения, что болезнь развивается быстрее с более сильными проявлениями расстройств и с тенденцией к накоплению новых повторов, если ген унаследован от отца.

В конце 1970-х годов одна целеустремленная женщина решила бросить вызов болезни Хантингтона. События развивались так. Вдова Вуди Гатри вскоре после его смерти основывает Комитет по борьбе с хореей Хантингтона. В этот комитет входит доктор Мильтон Векслер (Milton Wexler). Жена и три его шурина страдают болезнью Хантингтона. Дочь Векслера, Нэнси, знает, что с вероятностью в 50% она унаследовала этот страшный ген, поэтому поиск гена Хантингтона стал смыслом ее жизни. Ей советовали не торопиться. Сейчас искать ген все равно, что искать иголку в стоге сена. Это бессмысленно. Через несколько лет техника и методы станут более совершенными, тогда это и станет возможным. На что Нэнси отвечала: «Если у вас болезнь Хантингтона, у вас нет нескольких лет, чтобы ждать». Прочитав в журнале публикацию венесуэльского доктора Америко Негретте (Americo Negrette), она в 1979 году вылетает в Венесуэлу в сельскую местность, затерянную на берегу залива Маракайбо (Lake Maracaibo), где находятся три деревни — Сан-Луис (San Luis), Барранкитас (Barranquitas) и Лагунета (Laguneta). Огромный и почти отрезанный от моря залив Маракайбо расположен в западной части Венесуэлы за горами Кордильера-де-Мерида (Cordillera de Mérida).

Среди жителей этих отрезанных от мира деревень, которые приходятся друг другу родственниками, широко распространена болезнь Хантингтона. По преданию болезнь пришла в XVIII веке с заезжим моряком. Нэнси Векслер удалось проследить родословную семей, страдающих болезнью Хантингтона, вплоть до начала XIX столетия, до женщины по имени Мария Консепсьон (Maria Concepción). Она жила в Пуэблос-де-Агуа (Pueblos de Agua) — маленькой деревушке, стоящей на сваях над водой. Векслер насчитала 11 000 прямых потомков этой женщины в восьми поколениях, из которых в 1981 году в живых было 9 000. На момент прибытия Векслер 371 из них страдали болезнью Хантингтона, и еще у 3 600 был риск с вероятностью не менее 25% заболеть этой болезнью, поскольку хотя бы один из дедушек или одна из бабушек стали ее жертвой.



Поделиться книгой:

На главную
Назад