Доктором Коппом предложена концепция электромагнитной авиабомбы (рис. 3.16): такая бомба должна включать первичный источник питания (батареи), емкостной накопитель, ВМГ, высоковольтный взрывной трансформатор и излучатель – электроваккумный прибор, называемый виркатором (рис. 3.17).
Концептуальная схема авиабомбы с узкополосным излучателем на основе электровакуумного прибора – виркатора и системы его энергообеспечения на основе магнитокумулятивного (взрывомагнитного) генератора
3.2.3. Радиочастотное оружие на полупроводниковой элементной базе
Источники РЧЭМИ на полупроводниковой элементной базе компактны и могут быть размещены, включая батареи и антенну, в небольшом кейсе (рис. 3.18). Они способны генерировать импульсы РЧЭМИ длительностью от пикосекунд до микросекунд. Частота следования импульсов может быть подобрана такой, которая соответствует циклу обработки информации в компьютере или другой цели, что увеличивает эффект облучения.
Источник РЧЭМИ на полупроводниковой элементной базе, размещенный в кейсе
3.2.4. Базирование радиочастотного оружия
На борту самолета можно разместить генераторы РЧЭМИ любого типа и облучить значительное число целей. Энергия, необходимая для бортового излучателя РЧЭМИ, может отбираться от двигателей, а антенна – смонтирована на подвеске (рис. 3.19) или интегрирована в корпус. Невзрывные источники РЧЭМИ способны работать в течение десятков часов, однако должны быть приняты меры, чтобы их излучение не повредило электронику самолета-носителя.
Применение невзрывного источника РЧЭМИ с самолета радиоэлектронной борьбы
Размещение РЧО на грузовике позволяет террористам скрытно поразить намеченные цели. Один из сценариев – применение РЧО из взятого напрокат автомобиля, с замаскированной антенной, оставленного недалеко от взлетно-посадочной полосы гражданского аэродрома.
Для применения полицейскими силами фирмой «Рейтеон» разработан автомобиль с УПИ частотой 96 ГГц (рис. 3.20), предназначенный для разгона демонстрантов: на расстояниях до 200 м РЧЭМИ причиняет им легкие ожоги.
В военной прессе России не раз упоминались мощные источники РЧЭМИ, созданные для применения в качестве оружия. УПИ «Ранец» (рис. 3.21), установлен на автомобиле высокой проходимости. «Ранец» предлагался к продаже на нескольких оружейных выставках, он генерирует короткие (10–20 не), мощные (более 500 МВт) импульсы в сантиметровом диапазоне длин волн. Декларировалась (но, насколько известно, не подтверждена) способность этого источника «обеспечивать круговую оборону от высокоточного оружия в радиусе до 10 км».
Известны также системы, вызывающие срабатывание или повреждающие «интеллект» неконтактных мин (рис. 3.22). Экспериментальный образец, предназначенный для этой цели, создан германской фирмой «Райнметалл» и размещен на автомобиле «Унимог».
Слева – подрыв мины с неконтактным взрывателем, после ее облучения источником РЧЭМИ, установленным на автомобиле. Справа – антенны разработанной германской фирмой «Райнметалл» системы разминирования, установленные на автомобиле «Унимог»
3.2.5. Эффекты воздействия РЧЭМИ на цели
Одно из преимуществ РЧО заключается в скрытности действия, результат которого может проявиться во внезапно возникшей неисправности или помехах, что не обязательно свидетельствует о нападении. После воздействия РЧЭМИ могут наблюдаться:
– временный выход электроники из строя;
– длительный выход ее из строя;
– необратимые повреждения электронных устройств.
Временный выход из строя имеет место, если цель неспособна функционировать в условиях ее облучения, но восстанавливает работоспособность, когда облучение прекращается. Длительный выход из строя происходит при изменении характеристик какого-либо блока, что, как правило, требует вмешательства оператора. Необратимые повреждения происходят, если индуцированный РЧЭМИ токовый импульс «выжигает» важные элементы электронных схем (диоды, транзисторы и прочие) и дальнейшее функционирование цели невозможно без ее ремонта.
По мнению доктора Прищепенко, эффекты воздействия РЧЭМИ должны классифицироваться в зависимости от того, какое влияние они оказывают на выполнение целью боевой задачи. Дело в том, что обработка информации в системах оружия носит циклический характер. Если, например, в системе наведения ракеты происходит сбой в течение одного или немногих таких циклов, имеет место то, что доктор Прищепенко называет «коротким последействием». Такой эффект не может сорвать выполняемую целью боевую задачу, поскольку у системы наведения остается достаточно времени, для повторного «захвата». Более мощное воздействие приводит к «перенасыщению» полупроводников пространственными зарядами, что дольше делает невозможной нормальную их работу и, даже если работоспособность после облучения восстановится, цель уже не сможет выполнить боевую задачу. Такой эффект – намного более длительный, чем «короткое последействие» – доктор Прищепенко называет «временным ослеплением». Он продемонстрировал его при воздействии излучения малокалиберного ЭМБП (42-мм реактивной гранаты с пьезоэлектрическим генератором частоты, рис. 3.13) на радиолокационную станцию миллиметрового диапазона, а также на мины с неконтактными магнитными взрывателями. Следующей категорией наносимых РЧЭМИ повреждений доктор Прищепенко считает «стойкий отказ», при котором происходит глубокая деградация или «выгорание» полупроводниковых элементов и вероятность восстановления работоспособности цели в данном боевом эпизоде можно во внимание не принимать.
«Выгорание» происходит вследствие выделения тепла при прохождении через полупроводниковые элементы токовых импульсов, индуцированных РЧЭМИ (таблица 3.1), и обычно наблюдается при воздействии сравнительно длительных (микросекундных) импульсов или последовательности их. Если же импульсы РЧЭМИ короткие (наносекунды и менее), то наблюдается другой эффект: пробой р-n переходов и неоднородных структур.Таблица 3.1. Мощность (кВт) токовых микросекундных импульсов, приводящих к выходу из строя полупроводниковых элементов различных классов.
При протекании импульсных токов возможны следующие повреждения:
– утрата диодами выпрямительных функций;
– интермодуляционные искажения;
– запирание (временная неработоспособность) микросхем;
– тепловой пробой;
– электрический пробой.
Вследствие утраты диодами своих функций, подвергаются воздействию и другие элементы. Воздействие возможно также через паразитные связи, наводки на соседних кабелях, путем ударного возбуждения колебаний на различных резонансных частотах. Подобный сигнал преобразуется в «видеоимпульс» нелинейными устройствами, такими как биполярные транзисторы, и, благодаря своей аномальной мощности, вызывает срыв передачи данных, сброс информации, а в некоторых случаях – приводящие к повреждениям наиболее чувствительных элементов перегрузки (таблица 3.2).Таблица 3.2. Эффекты деградации в электронных устройствах и их полупроводниковых компонентах в зависимости от величины напряженности электрического поля РЧЭМИ.
Интермодуляция возникает в близко расположенных схемах, или кабелях, когда суперпозиция сигналов, в сочетании с нелинейными эффектами, приводит к возникновению модулированного сигнала, влияющего на работоспособность системы.
Исследования стойкости электроники к воздействию РЧЭМИ весьма важны для противодействия РЧО. Российский «РАДАН» (рис. 3.23) – универсальный ускоритель, по утверждению его создателей способный генерировать УПИ, СШИ, а также излучение лазерного и рентгеновского диапазонов. Его вес – около 20 кг, он поставляется во многие страны, работает от автомобильных аккумуляторов.
«РАДАН» – источник РЧЭМИ ускорительного типа с лампой обратной волны
3.2.6. Воздействие РЧЭМИ на биообъекты
Тейлор и Гайри описали биологические последствия воздействия РЧЭМИ при поглощении его в кожных поверхностях. Некоторые из наблюдавшихся эффектов включали и хромосомные изменения, мутагенез, вирусную активацию и инактивацию (таблица 3.3.)Таблица 3.3. Последствия воздействия РЧЭМИ на биообъекты
3.2.7. Признаки применения радиочастотного оружия
В некоторых случаях признаками облучения могут служить ощущаемые слуховые галлюцинации (щелчки) и во всех – помехи и неожиданные отказы электроники. Как указывал доктор Прищепенко, одно из преимуществ радиочастотного оружия заключается в скрытности действия: оператор может не догадываться, что обслуживаемая им электронная система не просто дала сбой, а подверглась нападению.
3.2.8. Распространение радиочастотного оружия и меры снижения этой угрозы
Технологии РЧО продолжают совершенствоваться и распространяться, что угрожает странам, экономика и оборона которых зависят от микроэлектроники. РЧО разрабатывается по крайней мере десятком стран, и существенную помощь им оказывают ученые из бывшего Советского Союза. Некоторые из этих стран замечены в продаже передовых технологий агрессивным или поддерживающим терроризм государствам.
Лица, имеющие соответствующее образование, могут, пользуясь открытыми источниками, создать взрывной или невзрывной образец РЧО. В 1998 г. доктор Д. Шрайнер, ранее работавший в Центре разработке авиационного оружия ВМС, свидетельствовал перед комитетом Конгресса США, что «РЧО может быть сделано любым, кто имеет диплом инженера или даже опытным техником. Техническая информация для этого есть в открытых источниках, а необходимые детали не являются редкими и необычными, так что образцы такого оружия могут быть изготовлены подобно автомобильной системе зажигания».
Очевидно, что выведение из строя банковских сетей, системы управления воздушным движением или связи вполне способно угрожать стабильности государства. Электромагнитное нападение может и не привести к человеческим жертвам, но усилия пропаганды террористов будут направлены на демонстрацию связи между наступившими тяжелыми последствиями и мнимой нераспорядительностью властей. Оценки и экспериментальные факты показывают, что террористического применения РЧЭМИ стоит опасаться: даже значительные габариты направленных источников могут быть сочтены преступниками приемлемыми (могут вспомнить и про «чемоданчик»), На дистанциях в десятки – сотни метров излучатель можно наводить и «на глаз», не заботясь о «сжигании» собственной системы наведения за счет боковых лепестков излучения, да и уже упоминавшаяся скрытность действия выступает скорее как преимущество. Конечно, нельзя исключать и криминальное применение источников прямого преобразования: в этом случае к эффектам, вызванным РЧЭМИ, добавится действие ударной волны и осколков, доставка такого источника близко к цели приведет к большим значениям воздействующих плотностей РЧЭМИ, а отражение от стен и пола усугубит ситуацию.
При возведении важных объектов принимаются меры для их защиты от ЭМИ ЯВ, но экранирование не бывает идеальным (окна, щели, кабельные вводы и пр.). Учитывая, что волны РЧЭМИ, генерируемого как взрывными, так и невзрывными источниками не столь длинные, как у ЭМИ ЯВ, вполне возможны трудно предсказуемые эффекты, возникающие вследствие дифракционных и интерференционных явлений при облучении. Стойкость сооружения или изделия к ЭМИ ЯВ не гарантирует стойкости к излучению с той же плотностью мощности, но значительно более широкополосному и коротковолновому – этот факт не раз был подтвержден испытаниями.
Все же, риск электромагнитной террористической атаки и ущерб от нее могут быть понижены.
Вполне вероятно, что атаке будет предшествовать разведка объекта: обнаружение направлений его наибольшей уязвимости. Конечно, приемники РЧЭМИ будут при этом замаскированы (например, в детской коляске). Возможно пассивное срабатывание ЭМО (например – расположенного в проезжающей автомашине) от датчика, реагирующего на повышенный уровень излучения цели (один из лепестков передачи/приема на данной частоте). Службы охраны должны быть ориентированы на обнаружение любой электронной аппаратуры и признаков ее использования.
• Целесообразно искажать распределение диаграмм направленности излучения/приема важных объектов, устанавливая в некоторых местах простейшие маломощные излучатели.
• Чем больше зеленых насаждений будет окружать охраняемый объект, тем лучше: листва и хвоя хорошо поглощают и рассеивают РЧЭМИ.
• Важнейшие объекты должны быть снабжены датчиками, сигнализирующими об облучении мощным РЧЭМИ. Эта мера не убережет от атаки, но сигнал тревоги позволит задержать террористов и избежать ее повторения.
Наряду с применяемыми в настоящее время экранированием и схемотехническими мерами, целесообразно распространить защитные мероприятия и на элементную базу: интегрировать в структуру микросхем специально разработанные для блокирования перегрузок по току и напряжению элементы.
«Электромагнитная» разновидность терроризма пока не реализована, но меры по обучению персонала и оснащению наиболее важных объектов инфраструктуры для противодействия ей должны носить упреждающий характер.
Можно предположить, что дальнейшее развитие технологий повлияет на развитие РЧО и его компонентов следующим образом.
• Повысятся средние и пиковые значения мощности РЧЭМИ, а также общая энергия излучения в импульсе.
• Увеличится КПД преобразования первичной энергии в энергию РЧЭМИ.
• Будут созданы сети синхронно управляемых источников РЧЭМИ.
• Повысится длительность формируемых импульсов РЧЭМИ [12] .
• Размеры элементов РЧО: источников первичной энергии, источников РЧЭМИ, антенн будут еще более уменьшены.
• Технологии РЧО станут доступны все большему числу специалистов.
• Потенциал РЧО станет учитываться во всех видах операций.
Дальнейшая миниатюризация полупроводниковых элементов приведет к возрастанию их уязвимости от РЧО, поэтому для повышения надежности электронной техники необходима разработка специальных мер ее защиты.
Появления РЧО как на поле боя, так и в практике правоохранительных органов следует ожидать в самом ближайшем будущем. Однако способы защиты от РЧО существуют, включая экранирование критически важных электронных систем и установку на них быстродействующих защитных элементов, в том числе – интеграцию таких элементов в большие микросхемы. Пока подобные меры защиты не разработаны, большинство образцов электроники уязвимо по отношению к мощным импульсам РЧЭМИ, особенно – субнаносекундной длительности.
Заключение
О роли правоохранительных органов
Полиция и аварийные службы Соединенных Штатов готовятся встретить новые угрозы, в частности и такие, вероятность которых невелика, но которые могут повлечь весьма тяжкие последствия. Подобные усилия предпринимаются в Канаде, Великобритании, Европе и Австралии и Азии. До настоящего времени, большая часть этих усилий была связана с восполнением пробелов в подготовке к нападениям террористов с применением ими химического и биологического оружия. Внимания же другим угрозам, включая нетрадиционные взрывчатые вещества, РЧО и нападениям с применением комплекса подобных средств, уделяется недостаточно. Правоохранительные органы должны полагаться на поддержку закона в борьбе с распространением такого оружия прежде, чем оно станет неконтролируемым.
Лазеры и РЧО воздействуют электромагнитной энергией на цель, что вызывает ее поражение или существенное ухудшение функционирования. Хотя применение такого оружия не приводит к смертельным поражениям людей, причинение существенного вреда их здоровью возможно. В Советском Союзе исследовалось влияние РЧЭМИ на человеческое сознание, другие биоэффекты.
Повышает обеспокоенность по поводу возможного применения РЧО террористами или преступниками осознание огромной роли компьютеров и другой электронной техники, а также быстрое распространение информации о соответствующих технологиях. Хотя до сих пор ни одной реальной катастрофы, связанной с облучением лазером, не произошло, возрастает мощность коммерчески доступных устройств, какими уже были атакованы полицейские вертолеты, а ложные угрозы применения – привели к срыву эвакуации пострадавших самолетом. Применение РЧО против самолета может не оставить даже таких улик, как замеченное очевидцами световое излучение.
Неуязвимые к воздействию РЧО элементы гражданской инфраструктуры вряд ли существуют, а к особо уязвимым следует отнести все информационные системы: финансового сектора, транспорта, энергоснабжения, телекоммуникаций, системы GPS, радио и телевидения, обеспечения продовольствием: в условиях, когда применение РЧО неочевидно, в них может произойти утрата данных и повреждение аппаратуры. Системы охраны этой аппаратуры могут быть преодолены разными приемами, начиная от глушения и кончая использованием взрывчатых веществ. Нетрудно представить, как скажется на деятельности полиции отказ систем связи, видеонаблюдения и других.
Крайне опасна подобная угроза и для аварийных служб. Нарушения связи сделают невозможной координацию их действий с полицией, получение информации от пунктов сети «телефонов 911».
Преступления с применением стрелкового оружия – не редкость в США, но если у преступников появится много РПГ, управляемых ракет, термобарических боеприпасов – характер действий полиции должен существенно измениться.
Некоторые признаки такого развития ситуации проявляются и сейчас. Еще несколько лет назад контрабандисты побросали бы свой груз, побоявшись связываться с офицерами, охраняющими границу США. Теперь они нередко встречают их огнем автоматического оружия, в бою применяют тактику пехоты и пользуются системами связи. Многие образцы нетрадиционного оружия, упомянутые в Справочнике, доступны или станут доступны для преступных сообществ и террористов. Полиция может достигнуть превосходства над ними, только узнав об этом оружии прежде, чем оно будет применено против ее офицеров.
Военные доктрины некоторых государств предусматривают нападения на гражданскую инфраструктуру США с применением новых видов оружия, включая инфразвуковое, лазеры, РЧО, экологическое и биологическое оружие, то есть – ведение асимметричной войны, которая может заставить полицию и аварийные службы занять позиции на линии фронта. Они должны быть готовы к этому.
Комплексный подход
Правоохранительным органам необходимо более тесно, чем сейчас, взаимодействовать с противопожарными службами и медицинскими учреждениями.
Например, если установлено, что в инциденте применено отравляющее вещество, то это требует согласованных усилий всех служб: полицейские обеспечивают охрану периметра, эвакуацию, перекрывают движение, собирают улики и доказательства; противопожарная служба обеспечивает спасение и доврачебную медицинскую помощь; персонал больниц – готовится к соответствующему лечению пострадавших. В случае бионападения, полицейские детективы и врачи должны объединить усилия по розыску преступника. Защита информации может потребовать координации усилий полиции с частными лицами, управляющими утилитами. Во всех этих случаях необходима поддержка военных и гражданских властей.
Приложения
Список сокращений и определения терминов, встречающихся в Справочнике
Излучение ослабляется пропорционально квадрату расстояния. Если пробоя нет, то максимальная дальность поражения (R) жестко связана с минимальным размером источника (r) и отношением плотностей энергии РЧЭМИ: пробивной (Dd) к минимально необходимой для требуемого воздействия на цель (Deff):
Из рис. П.2 видно, что ограничения, связанные с пробоем воздуха, делают более выгодной генерацию РЧЭМИ в режиме коротких (наносекунды и менее) импульсов.
Пробой делает практически нереальным и создание таких плотностей мощности РЧЭМИ, которые представляли бы опасность для человека.
Пробой – фундаментальное ограничение, с которым ничего нельзя поделать, и, как угодно изменяя конструкцию источника РЧЭМИ, невозможно устранить связь его размеров с теми максимальными дальностями поражения электроники, которые можно ожидать при боевом применении. В чистом, сухом воздухе на уровне моря, цель средней стойкости поражается на дальности, не превышающей тысячу размеров источника (R<1000 г), даже если плотность энергии РЧЭМИ на его поверхности максимально возможная – пробивная.
Процесс распада атомных ядер, сопровождающийся испусканием излучений различных видов:
альфа-частиц (ионизованных ядер гелия) и осколков ядер более тяжелых элементов;
бета-частиц – электронов или позитронов;
гамма-квантов – электромагнитных колебаний с частотами свыше 1018Гц;
нейтронов – электронейтральных ядерных частиц.
Интенсивность распада характеризуется активностью – их количеством в единицу времени – и измеряется в Беккерелях (1Бк соответствует 1 распаду в секунду). Процесс распада – вероятностный, поэтому суммарная активность значительного количества ядер спадает экспоненциально и характеризуется периодом полураспада – временем уменьшения ее вдвое.
Чем более длителен период полураспада, тем большее количество изотопа необходимо для обеспечения данного значения активности. Доза облучения, полученная от радиоактивного источника данной активности, зависит от времени и расстояния на котором находился объект облучения, а также – от биологической эффективности излучения.
Все виды ядерных излучений сопровождаются ионизацией ими окружающего вещества. Ионизация является причиной нанесения радиационных поражений человеку. При ионизации ядерные излучения расходуют свою энергию, более или менее интенсивно. Так, альфа-частицы и осколки ядер поглощаются слоем воздуха толщиной менее сантиметра и полностью – в поверхностном слое кожи человека. Они не представляют опасности при внешнем облучении, но, в случае попадания альфа-активных или делящихся веществ внутрь, способны вызвать раковые заболевания.
Бета-излучение поглощается большими слоями вещества (например – несколькими метрами воздуха) и способно наносить радиационные поражения при внешнем облучении (в основном – кожных покровов), но более опасно при облучении внутреннем (при попадании внутрь организма бета-излучающих веществ).
Гамма-излучение, в зависимости от энергии квантов, может распространяться на многие километры от источника и вызывает радиационные поражения организма в целом.
Нейтроны немногим уступают гамма-квантам в проникающей способности и также опасны для всего организма. Вступая в реакции с различными ядрами, они образуют радиоактивные изотопы, которые наносят поражение вторичными излучениями различных видов.
Мерой того, сколько энергии «оставило» излучение в веществе, является Грей (Гр): джоуль на килограмм. Эта единица в 1000 раз крупнее употреблявшейся ранее внесистемной (Рентгена). От поглощенной дозы зависят последствия облучения, а сама доза – от типа воздействующего излучения и его энергии. Так, несмертельные, но требующие лечения поражения человек получает, если через его тело пройдет 1013 нейтронов МэВных энергий.Таблица. П.1 Последствия однократного быстротечного облучения в зависимости от поглощенной дозы ионизирующего излучения.
Литература и ресурсы для получения дополнительной информации
Введение
Arquilla, John and David Ronfeldt. eds.
Lesser, Ian O., Bruce Hoffman, John Arquilla, David Ronfeldt, and Michele Zanini.
Liang, Qiao and Wang Xiangsui.
Nair, Y.K. (Brigadier, YSM [Ret.]).
Thomas, Timothy L. "Human Network Attacks."
http://call.army.mil/call/fmso/fmsopubs/issues/human-net/ humannet.htm.
Самодельные взрывные устройства
Brodie, Thomas G.
Ellis, John W.
Grubisic, Joseph. "Explosives and Terrorism." in Buckwalter, Jane Rae, ed.
Штатное оружие на основе нетрадиционных взрывчатых веществ, а также предназначенное для применения против авиации и бронетехники
Leaf, Tim. "Thermobaric Weapons: A Weapon of Choice for Urban Warfare," Marine Corps Study Group – Quantico. Found at http://call.army.mil/call/ spc-prod/mout/docs/thermodoc.htm.
Grau, Lester W. "The RPG-7 On the Battlefields of Today and Tomorrow,"
Grau, Lester W., "A Weapon For All Seasons: The Old But Effective RPG-7 Promises to Haunt the Battlefields of Tomorrow."
Human Rights Watch. "Backgrounder on Russian Fuel Air explosives ("Vacuum Bombs"). February 2000. Found at http://www.hrw. org/hrw/press/2000/ 02/chech0215b.htm.
Janzen, CPT Scott C. "The Story of the Rocket Propelled Grenade."
Schaffer, Marvin B.
Schaffer, Marvin B.
Schaffer, Marvin В.
Террористический потенциал нелетального и ограниченно летального оружия
Alexander, John В.
Bunker, Robert J. ed. "Non-lethal Weapons: Terms and References."
Bunker, Robert J. and T. Lindsay Moore. "Non-lethal Technology and Fourth Epoch War: A New Paradigm of Politico-Military Force."
Химическое и биологическое оружие
Cams, W. Seth. "Bioterrorism and Biocrimes: The Illicit Use of Biological Agents in the 20th Century." Working Paper, Centre for Counterproliferation Research, National Defence University, August 1998.
Sidell, Frederick R., William С Patrick III, Thomas Dashiell.
Radiological Threats
Allison, Graham Т., Owen R. Cote, Jr., Richard A. Falkenrath, and Steven E. Miller.
Cockbum, Andrew and Leslie Cockburn.
International Physicians for the Prevention of Nuclear War.
Sanz, Timothy L. "Nuclear Terrorism: Selected Research Materials."
Sanz, Timothy L. "Nuclear terrorism: Published Literature Since 1992."
Лазеры и угрозы, связанные с ними
Bunker, Robert J. "Terrorist Laser Employment Against Civil Aviation: Issues, Concerns, and Potential Incidents."
Bunker, Robert J. "Criminals and Laser Pointers: Tactical Concerns Over Emergent Laserarms."