Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Террористическое и нетрадиционное оружие - Коллектив Авторов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

 Имплозивное устройство (рис. 2.9). Требует наличия около 8 кг плутония или в несколько раз большего количества оружейного урана.

Рис. 2.9 Слева – демонстрационный макет одного из первых британских имплозивных зарядов. Черная сердцевина в центре – сборка с делящимся веществом (плутонием). Макет демонстрирует, как, при одновременном подрыве на его внешней поверхности, нескольких десятков детонаторов, происходит направленный внутрь взрыв, сжимающий сборку и переводящий ее в сверхкритическое состояние. Справа – произведенный фирмой WMTD имитатор самодельного ядерного заряда имплозивного типа. Имитация не слишком удачная, поскольку размер «заряда» – чуть ли не минимальный, который допускают ядерно-физические ограничения. Изготовление такого малогабаритного заряда – сложнейшая задача, для этого нужны специалисты наивысшей квалификации и уникальное оборудование, да еще необходимо где-то украсть плутоний высокой чистоты. Детонаторов в таком заряде – всего несколько штук, а инициирование во множество точек осуществляется с помощью сложной системы каналов, заполненных изготовленным по особой технологии взрывчатым веществом с высокостабильными характеристиками

Значительно более эффективный по сравнению со ствольным, сложный в осуществлении, но потенциально реализуемый для хорошо финансируемой группы вариант (рис. 2.10). При имплозии, сферическая сборка с плутонием сжимается со всех сторон взрывом шарового слоя мощного взрывчатого вещества (рис. 2.11). Сама сборка состоит из нескольких концентрических шаровых слоев (плутония, замедлителя нейтронов, инерционного, рис. 2.12). Для инициирования имплозии применяются несколько десятков подрываемых одновременно детонаторов. Иногда, чтобы уменьшить количество детонаторов, используют взрывные линзы (рис. 2.13), каждая из которых также снабжена детонатором, расположенным не ее вершине.

Рис. 2.10

Габариты низкотехнологичного СЯЗ, который в состоянии изготовить террористы, будут, скорее всего, метровыми – как и заряда «Гаджет», подорванного в 1945 г. над Нагасаки

Рис. 2.11

Вверху – элементы израильского заряда имплозивного типа. Плутоний не существует в природе в ощутимых количествах, его получают в ядерном реакторе. Этот металл радиоактивен и настолько ядовит химически, что детали из него покрывают никелем, чтобы избежать прямого контакта. Полость в никелированной (вероятно – плутониевой) сердцевине закрывается ввинтной крышкой: туда, перед боевым применением, помещают изотопный источник. Источник этот инициирует цепную реакцию нейтронами, когда внутренняя поверхность сжимаемой взрывом плутониевой сборки ударом вминает золотую оболочку, на которую электролитически нанесен полоний, в шарик из бериллия (до этого момента полоний и бериллий не контактируют, так что и нейтроны не эмиттируются). Шаровой слой темного цвета, скорее всего, предназначен для увеличения инерционности сборки и повышения тем самым времени протекания цепной реакции, а значит, и мощности взрыва. Он может быть изготовлен из вольфрама или природного урана. Нижний рисунок: окруженная сферическими сегментами взрывчатого вещества сборка, содержащая плутоний

Рис. 2.12

Элементы ядерного заряда американской авиабомбы Б-61

Рис. 2.13

Взрывная линза для формирования детонационной волны заданной формы. Состоит из двух различных по характеристикам, взрывчатых составов. Скорость детонации внешнего заряда выше, чем внутреннего

Монтаж сборки, блоков взрывчатого вещества и системы инициирования – сложная операция и для ее проведения могут применяться различные приспособления (рис. 2.14)

Рис. 2.14 Подобные приспособления доктор Дж. Кистяковский использовал при сборке имплозивных зарядов для первых образцов ядерного оружия США

 Имплозивное устройство на основе окиси плутония. Требует наличия 35 кг такой окиси, более безопасной в обращении, чем металлический плутоний. Энерговыделение оценить сложно, но, в любом случае, взрыв приведет к рассеиванию весьма опасных радиоактивных и ядовитых веществ, что создаст угрозу здоровью и вызовет панику среди населения.

 Элементы обеспечения подрыва СЯЗ. Для значительного энерговыделения необходимо, чтобы в момент, когда сборка стала сверхкритической, в ней появилось много нейтронов, с которых и начинается цепная реакция деления. Для этого могут применяться изотопные источники, но они недостаточно интенсивны, а в обращении – весьма опасны. В штатных образцах ядерного оружия для инициирования цепной реакции деления применяются нейтронные трубки, но меры их учета и охраны – такие же, как и для ядерных зарядов. Появление боевых трубок у террористов маловероятно, однако возможно применение ими нейтронных трубок и элементов их питания, демонтированных из медицинских или геофизических приборов (рис. 2.15)

Рис. 2.15

В нейтронной трубке (слева) происходит ионизация тяжелого водорода – дейтерия, а затем эти ионы ускоряются напряжением более 100 тысяч вольт к мишени, содержащей тритий. При реакции изотопов водорода образуется, в течение миллионных долей секунды, десятки миллионов нейтронов, облучающих заряд, цепная реакция зарождается в сверхкритической сборке сразу в миллионах точек и поэтому энерговыделение значительно. Схема питания нейтронной трубки – высоковольтная, в ней применяются специальные коммутаторы (справа), которые также могут быть использованы и в схеме инициирования детонаторов

2.3.2. Радиоактивные вещества (РВ)

Это оружие, в отличие от химического и биологического, не запрещенное международными соглашениями, оказывает психологическое воздействие, «загрязняя» людей, оборудование, окружающую среду. РВ могут служить и для поражения и для ограничения доступа в места их применения.

При применении РВ испускание радиации не сопровождается взрывом, она скорее действует как отравляющее вещество: может вызвать болезнь или смерть при приеме «загрязненной» пищи, ингаляторно, при внешнем облучении.

РВ могут быть доставлены ракетой, самолетом, боеприпасом, а диверсантами – на автотранспортном средстве или судне. Подобно материалам ХБО, РВ могут быть рассеяны в виде аэрозоля в системе вентиляции, водоснабжения, среди скопления людей или на продовольственных складах.

Потенциальные источники РВ

К ним относятся хранилища ядерного топлива, кабинеты лучевой терапии в больницах, лаборатории дефектоскопии, где имеются радиоактивные изотопы. Получение РВ из лабораторий или медицинских учреждений более вероятно, поскольку ядерное топливо весьма опасно в обращении, а его хранилища надежно охраняются. Радиоактивные отходы из медицинских или промышленных учреждений могут быть получены без особых усилий. Это – спецодежда, перчатки, оборудование, которые пришли в соприкосновение с радиоактивностью. Большинство содержащихся в них радиоактивных изотопов распадается в течение недель, месяцев или лет, но некоторые сохраняют активность в течение 500 лет и более [9] .

Другие источники, содержащие РВ:

• Измерительные приборы, источники – эталоны с америцием-241, цезием-137, кобальтом-60, иридием-92, радием-226, полонием-210, а также источники нейтронов. Активность изотопов в них иногда превышает 4ТБк.

• Стерилизаторы, ускорители частиц [10] (цезий-137, кобальт-60), активностью 4 – 40 ТБк.

• Изотопные источники электроэнергии: плутоний-238 (рис. 2.16), стронций-90, активностью 4ГБк для плутония и 1ТБк для стронция.

• Радиолюменисцентные материалы, использующиеся в светящихся шкалах приборов (прометий-147, тритий, радий-226), активностью до ЮТБк.

Рис. 2.16 Образец плутония – не оружейного, а изотопа с массовым числом 238. В Pu238 не может возникнуть цепная реакция деления, но другие самопроизвольные ядерные реакции протекают столь интенсивно, что металлический Pu238 всегда пребывает в раскаленном состоянии

Два основных используемых в промышленности изотопа – америций-241 и цезий-137. Америций-241 является в основном излучателями альфа-частиц и применяется при измерениях влажности, содержания примесей свинца в краске, в устройствах противопожарной тревоги, а также – в геологии для исследований почв, при производстве фольги и бумаги – чтобы определять их толщину. Цезий-137 – бета и гамма излучатель – используется в различных датчиках уровня при управлении производственным процессом, а также – в медицинских целях.

Медицинские источники излучений, как и промышленные, могут представлять опасность при индивидуальном облучении или рассеивании содержащихся в них РВ: кобальта-60 и цезия-137 используемых для терапии рака, а также многих других изотопов: иода-125, иридия-192, фосфора-32, радия-226 и стронция-90. Радиоактивные медицинские препараты могут также включать иод-123, иод-131, таллий-201, ксенон-133, и технеций-99ш. Некоторые примеры РВ и медицинских источников на их основе:

 Иод-125 широко используется в радиотерапии. Источники, содержащие этот изотоп, представляют цилиндрические капсулы из титана, размерами 4.5 х 0.8 мм.

 Кобальт-60, бета и гамма излучатель, используемый для терапии рака. Источник обычно представляет либо цилиндр размером 1–2 см, либо «гамма-скальпель», который содержит сотни источников, помещенных в двойные капсулы из нержавеющей стали.

 Радий также используется в терапии. В источниках применяется его хлорид или сульфат, смешанный с инертным наполнителем и помещенный капсулы размером 1х 10 мм из золотой фольги толщиной. Другие источники капсулированы в иглах, трубочках или контейнерах иных форм. В Соединенных Штатах радий, где возможно, заменяют на цезий-137.

Применение террористами СЯЗ не слишком вероятно в ближайшем будущем, применение же более доступных РВ вполне возможно. Правоохранительные органы должны знать, где располагаются источники РВ и учитывать вероятность их применения при террористических актах.

2.4. Признаки применения террористами отравляющих, болезнетворных и радиоактивных веществ

Распознать эти признаки сложно, поскольку различно действие таких веществ. Особенно трудно распознать биологическое нападение, так как заболеванию обычно предшествует инкубационный период.

Признаки применения химических веществ

Проявляются через минуты – часы…

• Необычно выглядящие мертвые или умирающие люди, животные, отсутствие насекомых.

• Странный внешний вид пострадавших, металлический налет на их зубах, тяжелое состояние, симптомы рвоты, дезориентации, затруднения дыхания, конвульсии.

• Необычно выглядящие жидкости, аэрозоли, капельки, маслянистые пленки, необычный запах, туман не связанный с погодными условиями.

• Подозрительные пакеты, устройства для распыления, необычные боеприпасы.

Признаки применения биологических веществ

Проявляются через часы – дни…

• Необычно выглядящие мертвые или умирающие животные, люди, рыба.

• Нехарактерная для данной местности картина развития болезни.

• Необычно выглядящие жидкости, аэрозоли, подозрительные емкости и упаковки.

• Необычное роение насекомых

• Подозрительная вспышка болезни

Признаки применения радиоактивных веществ

Отсроченное проявление симптомов…

• Значительное число людей или животных с признаками радиационного поражения.

• Необычные металлические предметы, устройства, иногда выглядящие, как боеприпасы.

• Контейнеры со знаками радиационной опасности (рис. 2.17).

• Нагретые, в условиях отсутствия подвода к ним тепла, предметы.

• Голубоватое свечение окружающего некоторые предметы воздуха.

Рис. 2.17 Знаки радиационной опасности, используемые в разных странах

2.5. Управляемое оружие

Террористические группы не оставляют попыток самостоятельного изготовления такого оружия. Примером могут служить радиоуправляемые (рис. 2.18) фугасы, которые применяются чеченскими боевиками в значительных масштабах. Время от времени к террористам попадают и высокотехнологичные образцы управляемого оружия, похищенные с армейских складов или полученные от производителей как по внешне законным, так и по криминальным каналам.

Рис. 2.18

Самодельный радиоуправляемый фугас, в котором для подрыва используется полевая радиостанция. В других самодельных минах для той же цели применяются устройства управления детских игрушек, автомобильная сигнализация

2.5.1. Переносные зенитно-ракетные комплексы (ПЗРК, рис. 2.19)

Общее количество произведенных бывшим Советским Союзом, Соединенными Штатами, Францией, Швецией и Великобританией ПЗРК превысило двести тысяч. Кроме того, Китай, Северная Корея, и Пакистан также производят копии разработанных в этих странах ПЗРК.

Применение ПЗРК требует обучения. Учитывая их рыночную стоимость (от полусотни тысяч до нескольких миллионов долларов), можно ожидать, что террористы пройдут его. На высотах более 7,5 км самолеты неуязвимы для ПЗРК, самые опасные операции – взлетно-посадочные. Ежегодно, начиная с 1985 года, происходит одно – два нападения с использованием ПЗРК, обычно в местностях, где идут конфликты малой интенсивности.

Рис. 2.19 Пуск ракеты британского переносного зенитно-ракетного комплекса «Блоупайп»

Более десятка террористических организаций имеют ПЗРК. У финансируемых или поддерживаемых государствами есть доступ к современным их образцам. Мусульманские экстремисты в Ливане в 1986 г. сбили вертолет ООН, получив ПЗРК из Сирии или Ирана. Получили 750 «Стингеров» от США и афганские муджахеды, которые все еще обладают несколькими сотнями из них и направили свою террористическую активность против страны-производителя (рис. 2.20).

Рис. 2.20 Афганские муджахеды готовятся к пуску ракеты ПЗРК «Стингер»

Пассивные меры защиты против ракет «земля-воздух»: снижение сигнатуры самолета в инфракрасных лучах, отстрел ложных целей, протектирование баков горючего и дублирование систем управления. Активные меры включают постановку помех и подавление приемников инфракрасного излучения.

2.5.2. Противотанковые ракетные комплексы (ПТРК)

Пока распространены среди террористических групп не так широко, как ПЗРК. Отмечены случаи применения ПТРК против бронетанковых сил израильской армии мусульманскими экстремистами, получившими их от стран, в которых терроризм является элементом государственной политики. Среди использованных в террористических целях:

– ПТРК второго поколения АТ-13 «Метис-М» (рис. 2.21), с диапазоном дальности стрельбы от 80 до 5500 м. Вес пусковой установки и ракеты – 23.8 кг;

Рис. 2.21 Противотанковый ракетный комплекс «Метис М1», тепповизионный прицел 1ПН86-ВИ к нему и ракета 9М131М

– ПТРК третьего поколения АТ-Х-14, «Корнет» (рис. 2.22), с диапазоном дальности от 100 до 5500 м. Общий вес пусковой установки и теплового прицела – 36.5 кг.

Рис. 2.22 Противотанковый ракетный комплекс «Корнет-Э» и ракета 9М133-1

Помимо кумулятивных боевых частей, эти ПТРК могут комплектоваться также и термобарическими, что превращает их в мощное оружие уличных боев.

2.5.3. Мины с элементами искусственного интеллекта

Советская противопехотная система НВУ-П (рис. 2.23), более известная как «Охота», охраняет территорию радиусом около 30 м, распоряжаясь пятью минами. Как только сейсмический датчик зарегистрирует движение человека, включится обрабатывающий блок, определит местонахождение нарушителя, и если тот окажется в зоне поражения одной из мин – к ней по проводам пройдет подрывной импульс тока. В запасе останутся еще четыре мины – любого типа. Это могут быть и гранаты РГД-5 или Ф-1, вместо запалов снабженные электродетонаторами или даже ямы, в которых шашки ВВ с электродетонаторами завалены камнями. Взводится «Охота» при помощи взрывателя-замедлителя МУВ-4: после того, как из него вытянут чеку и время замедления (3–6 минут – чтобы от нее успел удалиться сапер) истечет, он выбросит металлический боек, который и замкнет контакт, подавая питание на электронную схему. Обрабатывающие блоки могут быть объединены в минную позицию. Их можно приводить в боевое или безопасное положение с пульта управления, подключенного к ним опять же проводами. Поставив минное поле «на паузу», саперы могут без опаски устанавливать новые мины взамен подорванных. Когда «Охота» израсходует последнюю мину или начнет иссякать энергия батарей питания – она подорвет сама себя: пошлет импульс на детонатор, помещенный в прикрепленную изолентой к корпусу обрабатывающего блока толовую шашку. Считается, что безнаказанно приблизиться к взведенному блоку невозможно.

Рис. 2.23

В нижней части рисунка – позиция противопехотной минной системы НВУ-П «Охота». Вверху слева – обрабатывающий блок «Охоты», с сейсмическим датчиком 1 и ликвидационной толовой шашкой 2, справа (3) – замедлитель МУВ-4, при срабатывании которого подается питание на схему изделия

Американские противотанковые мины М93 (рис. 2.24) предназначены для применения армейской авиацией в составе кассет. Рассеянные, они могут долго оставаться в невзведенном состоянии, но по радиосигналу – раскрывают до того момента сложенные опорные поверхности, принимая боевое (вертикальное) положение на грунте, и начинают «слушать», что происходит вокруг, а также – регистрировать колебания почвы. Если, проанализировав акустические и сейсмические сигналы, мина «решает», что от нее не далее чем в сотне метров появилась бронецель – запускается пороховой двигатель боевого блока (прицеливающегося в полете) и машина поражается в крышу башни ударным ядром.

Рис. 2.24

Слева – выпрыгивающая противотанковая мина М93 – в служебном и боевом состоянии. Справа – противовертолетная мина ПВМ

Советская противовертолетная мина ПВМ по принципу действия сходна с М-93: она также анализирует акустическую обстановку, реагируя на звук подлетающего вертолета и поражает его ударным ядром, размещенном в узле, напоминающем танковую башню.

Случаи применения террористами мин с элементами искусственного интеллекта пока не известны, но такой вероятностью нельзя пренебрегать.

Раздел 3 Высокотехнологичное оружие и связанные с его применением угрозы

3.1. Лазеры

Дэн Линдси, Роберт Дж. Банкер

Слово «лазер» – аббревиатура: «Light Amplification by Stimulated Emission of Radiation» (усиление света вынужденным излучением). В лазере возбуждается активная среда (рис. 3.1) расположенная в резонаторе, где пучки света отражаются от зеркал, набирая энергию, а выведенный из резонатора пучок фокусируется линзой. Лазеры могут излучать непрерывно или в импульсном режиме, а пучок излучения имеет малую расходимость и потому сохраняет поражающее действие на значительных дистанциях. Наиболее часто встречаются лазеры, излучающие в видимых частях спектра – красной или зеленой.

Национальный стандарт безопасности США подразделяет лазеры гражданского назначения на пять классов. К классам I, II и IIIа отнесены лазеры мощностью менее 5 мВт – недостаточной, чтобы нанести поражение глазу, защищаемому рефлекторным миганием век. Оружием террористов могут стать более мощные лазеры, отнесенные к классам IIIЬ и IV. Излучение мощностью от 5 мВт до 5 Вт повреждает человеческий глаз, а устройства, отнесенные к IV классу, наносят поражения не только глазам, но и причиняют ожоги коже.

Рис. 3.1 Лабораторный образец рубинового лазера мощностью 10 кВт и его рабочее тело

На лазеры, предназначенные для военного применения (рис. 3.2) не распространяются требования гражданских стандартов. Например, целеуказатели (устройства, предназначенные для подсветки мишени) могут уместиться в ладони, но их излучение инфракрасного диапазона (мощность – около 350 мВт) опасно для глаз: оно невидимо и человек встревожится только тогда, когда симптомы поражения уже проявятся. Танковые дальномеры устаревших образцов могут вызывать поражения сетчатки на дальностях в несколько километров.

Хотя международное право [11] запрещает применение специально предназначенных для ослепления лазеров (даззлеров), подобный образец – китайский ZM-87 – был предложен для продажи на международной оружейной выставке.

Рис. 3.2

Слева – снайперская пара, оснащенная лазерным целеуказателем и приемником излучения ANYPSQ-23, смонтированным на винтовке.

Справа – другой образец лазерного целеуказателя

Симптомы поражения глаз излучением – от формирования «пятна-послеобраза», напоминающего радужное пятно, долго «видимое» после взгляда на Солнце и сопровождаемого слезотечением и краткосрочным расстройством зрения, до ожогов сетчатки и кровоизлияний. Пораженные отворачиваются и стараются прикрыть глаза – как при взгляде на прямые солнечные лучи. Причиной поражений является образование плазменных пузырьков, а также термический нагрев тканей глазного яблока.

Когерентный свет, направленный на остекление кабины, рассеивается, создавая впечатление диффузного облучения, более интенсивного, чем некогерентный свет той же интенсивности (рис. 3.3). Если облучение достаточно интенсивно или осуществляется несколькими лазерами, множественными отражениями создается эффект «оптической стены», что может угрожать безопасности, понижая качество выполнения команд экипажем, делая возможными его отказ от миссии и аварию. Воздействие излучения некоторых лазеров, из-за стробоскопического эффекта, вызывает, помимо ослепления, потерю ориентации.

Рис. 3.3 Пример эффекта лазерного облучения остекления кабины

Для лазерного облучения характерно психологическое воздействие, порождаемое риском ослепления. Возможности современной медицины не позволяют восстановить тяжелые повреждения глаз, вызванные им.

Лазер как оружие обладает многими преимуществами. Во-первых, снаряду необходимо существенное время для достижения цели, а для излучения лазера, распространяющегося с максимально возможной скоростью, это время пренебрежимо. Во-вторых, в высокоскоростную цель снарядом попасть труднее, чем лучом. В-третьих, лазеры могут стрелять, пока обеспечиваются электроэнергией, в отличие от снарядов, которые могут быть выпущены по цели в ограниченном числе. В-четвертых, лазеры не наносят смертельные поражения. В-пятых, коммерческие лазеры сравнительно дешевы.

Недостатки у лазеров тоже есть. Во-первых, до настоящего времени зарегистрирован лишь один успешный случай их применения: для принуждения к посадке: трех аргентинских самолетов в ходе войны за Фолклендские острова, после облучения даззлерами мощностью 20 Вт, установленными на двух британских фрегатах. Во-вторых, биологические эффекты облучения по-разному проявляются в разное время суток. В-третьих, дым, пыль, облака ослабляют лазерный луч. Учитывая баланс преимуществ и недостатков, следует все же признать за лазерами террористический потенциал.

Даззлеры использовались российскими кораблями, например – разведывательным судном «Капитан Ман» против канадского патрульного вертолета вблизи Сиэтла в апреле 1997 г. В октябре 1998 г. в Боснии имели место облучения лазерами вертолетов армейской авиации США. Террористами облучались полицейские вертолеты в Южной Калифорнии в 1998 и 1999 г.г. и гражданские самолеты (на высотах от 1500 до 4000 м) близ Лос-Энджелеса в 1996 и 1997 г.г. Существенных последствий во всех этих случаях облучение не имело.

3.1.1. Контрмеры против лазерных угроз

Мэтт Бегерт

Методы отклонения, ослабления или рассеивания луча разработаны для противодействия системам наведения высокоточного оружия (ВТО), в которых лазеры используются для определения дистанции и относительного расположения цели. Если лазеры предназначены для нанесения механических поражений (рис. 3.4), такие методы малополезны.

Рис. 3.4 Экспериментальный образец лазера, созданный по заказу ВМС США для изучения возможностей противоракетной обороны кораблей

Контрмеры должны включать уклонение от облучения быстрым маневром или уничтожение лазера, а также ослабление его излучения. Защитные очки (рис. 3.5) могут ослабить, излучение в определенном диапазоне длин волн, но не всегда исключают поражение глаз.

Рис. 5.5 Защитные очки, ослабляющие лазерное излучение в диапазоне длин волн 600–700 нм

Весьма полезен также приемник, предупреждающий о лазерном облучении.

3.2. Радиочастотное оружие (РЧО)

Лэрри Л. Альтджильберс, Айра В. Меррит, Хауард Сегуайн

Поражающий фактор такого оружия – радиочастотное электромагнитное излучение (РЧЭМИ), которое выводит из строя электронику или биообъекты, если плотность его мощности достаточна. До 1970-х годов, источники РЧЭМИ было принято называть «неядерными», чтобы подчеркнуть отличия характеристик генерируемого ими излучения от электромагнитного импульса ядерного взрыва (ЭМИ ЯВ). Такие источники излучения в частотном диапазоне от мегагерц до сотни гигагерц, начали создаваться в Соединенных Штатах и бывшем Советском Союзе в 1960-ых годах. Затем технологию РЧО переняли многие страны, создавая оружие, способное излучать РЧЭМИ мощностью от мегаватт до гигаватт.

В вооруженных силах РЧО может быть применено:

• в противовоздушной обороне;

• для обороны кораблей от ракетных атак;

• для нарушения коммуникаций противника;

• для отражения ракетных атак в воздушном бою;

• против космических объектов;

• против радиолокационной техники;

• против системы управления войсками.

Насколько известно, пока ни один образец РЧО пока на вооружение не поступил – в основном из-за нежелания военных принять концепцию достаточности функционального поражения целей, а не их уничтожения.

Миниатюризация полупроводниковых элементов электроники и зависимость от них всех современных систем приводит к возрастанию уязвимости и повышает вероятность применения РЧО террористами против:

• объектов инфраструктуы;

• средств связи и вычислительных центров;

• аэропортов, энергосетей, центров банковских услуг;

• правительственных учреждений;

• правоохранительных органов;

• для остановки их автомобилей и моторных лодок;

• создания помех и выведения из строя связи;

• создания сбоев в работе компьютеров.

Важным обстоятельством для террористов является то, что необходимые для создания РЧО компоненты доступны и их распространение не контролируется.

Применение РЧО в террористических целях характеризуется:

• скрытностью;

• повторяющимися атаками мощными, но короткими импульсами РЧЭМИ, что делает сложным установления месторасположения их источника;

• воздействием на неэкранированные электронные приборы;

• сложностью обнаружения нанесенных РЧЭМИ повреждений;

• отсутствием, в большинстве случаев, признаков поражения людей РЧЭМИ;

• отсутствием следов и улик на объекте, подвергшемся облучению РЧЭМИ.

3.2.1. Классификация

Бенфорд и Сведжль указывают на такое преимущество РЧО, как воздействие поражающего фактора со скоростью света, что делает невозможным для цели уклонение от атаки маневром. Существенная расходимость пучка РЧЭМИ выступает при этом преимуществом, поскольку не требуется его точного наведения на цель, в то время как лазерам, с их узкими световыми пучками, такое наведение необходимо.

Образцы радиочастотного оружия могут отличаться друг от друга:

• источниками первичной энергии: в боеприпасах таким источником служит взрывчатое вещество, в источниках многократного действия – емкостные, индукционные инерционные и другие неразрушаемые накопители;

• базированием: стационарным, мобильным, на борту самолета или автомобиля;

• эффектами воздействия на цель (помехи, выведение из строя – кратковременное или на неограниченное время);

• «полосным» или «внеполосным» воздействием РЧЭМИ на цель (рис. 3.6): «полосное» реализуется по тем каналам, которые и предназначены для приема излучения данного частотного диапазона; в случае «внеполосного» воздействия, РЧЭМИ проникает также и в каналы, которые для его приема не предназначены;

• предназначением – для открытого или тайного применения, в военных или террористических целях.

РЧО можно классифицировать и по другим признакам, например:

• по механизмам генерации РЧЭМИ: при ускоренном движении электронов либо в ходе прямого преобразования энергии;

• по режимам излучения (единственный импульс, частотный режим формирования импульсов или непрерывная генерация);

• по спектру формируемого РЧЭМИ.

Рис. 3.6 Зависимость эффективности приема излучения характеризуется диаграммой направленности – длина ординаты, проведенной из центра диаграммы, пропорциональна эффективности приема. У любого устройства есть не только главный лепесток приема, но и нежелательные боковые, от которых полностью избавиться нельзя. При отклонении частоты воздействующего РЧЭМИ от рабочей, эффективность приема в пределах главного лепестка снижается, а по боковым лепесткам – растет. На рисунке – диаграмма излучения\приема, типичная для радиолокатора: а) остронаправленная, для рабочей частоты; б) для частот, на порядок отличающихся от рабочей

По спектральным характеристикам источники разделяют на два класса: излучающие РЧЭМИ в узкой полосе частот (УПИ) и сверх-широко полосные излучатели (СШИ). Для УПИ характерны высокие значения спектральной плотности мощности и энергии РЧЭМИ, в то время как энергия импульса СШИ распределена в протяженном частотном диапазоне и потому обычно на рабочей частоте цели плотность мощности невелика (рис. 3.7).

Эксперименты свидетельствуют, что поражение электронных систем при воздействии последовательности импульсов РЧЭМИ происходит при меньших значениях суммарной их энергии, чем повреждение того же уровня – при однократном воздействии. Такой режим генерации характерен для источников многократного действия, но и некоторые взрывные источники формируют короткие (длящиеся микросекунды) последовательности импульсов РЧЭМИ.

Рис. 3.7 Спектральные плотности мощности электромагнитного излучения, генерируемого источниками различных классов в радиочастотном диапазоне

Для наиболее эффективного «полосного» воздействия необходима информация об уязвимых для цели частотах и направлениях. Для применения СШИ такие данные не требуются: в протяженном диапазоне наиболее «чувствительные» для цели частоты присутствуют наверняка, но, с другой стороны, энергия импульса РЧЭМИ рассредоточена и на долю таких частот ее приходится не очень много.

РЧО требует для своего создания многих технологий. Ограничимся описанием типов РЧО, представляющих опасность в качестве потенциального оружия террористов.

3.2.2. Электромагнитные боеприпасы (ЭМБП)

В 1994 году доктор А.Б. Прищепенко представил доклад на конференции в Бордо. Им были описаны устройства, в которых осуществлялось прямое преобразование химической энергии, содержащейся во взрывчатом веществе (ВВ), в энергию РЧЭМИ. Такие источники (собственно, и положившие начало классу СШИ) теперь называют «устройствами Прищепенко» (рис. 3.8, 3.9, 3.10). Доклад привел к изменению классификации РЧО, в зависимости от применяемых источников РЧЭМИ (рис. 3.11): прямого преобразования, в которых импульс тока поступает непосредственно на антенну, или таких, в которых УПИ генерируется при ускоренном движении электронов в электровакуумных приборах.

Рис. 3.8

105-мм реактивная граната со сферическим ударно-волновым источником РЧЭМИ: 1 – рабочее тело – монокристалл; 2 – детонационная разводка; 3 – магнитопроводы; 4 – постоянные магниты

Рис. 3.9

125-мм реактивная граната, снаряженная кассетными элементами на основе виткового генератора частоты: 1 – электроды, образующие неполный виток; 2 – металлическая труба, заполненная взрывчатым веществом и установленная с эксцентриситетом относительно электродов; 3 – пьезоэлемент (источник первичного энергообеспечения); 4 – малоемкостной конденсатор

Рис. 3.10

Схема взрывомагнитного генератор частоты (ВМГЧ) и фотография 122-мм боевой части неуправляемой ракеты на его основе. Медная труба 1 заполнена ВВ 2, и расположена соосно спирали 3. Между трубой и спиралью включен заряженный высоковольтный малоемкостной конденсатор 4. Расширяемая взрывом труба замыкает контур, далее точка контакта на основании конуса движется по виткам спирали, продавливая их изоляцию и закорачивая виток за витком, усиливая при этом ток, который осциллирует, так как емкость контура существенна. Период электрических колебаний уменьшается по мере сокращения индуктивности контура, но не становится меньше сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны – не основные в излучении: компрессия поля трубой, усиливая ток тем больше, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник. Антенной служат еще не закороченные трубой витки обмотки

Рис. 3.11 Развитие источников радиочастотного электромагнитного излучения

Источники, в которых используется ВВ, срабатывают однократно. Источники же невзрывного типа могут долго излучать в частотном или непрерывном режиме, но, поскольку их схемы включают множество таких элементов, как индуктивные и емкостные накопители, плотность электромагнитной энергии в которых много ниже, чем химической во в ВВ (до 10000 Дж/куб. см), невзывные источники большой мощности представляют собой громоздкие и тяжелые устройства (рис. 3.12). УПИ меньшей мощности были применены в крупных авиабомбах.

Рис. 3.12 Излучатель гигаваттной мощности Техасского технологического университета

В отличие от УПИ на основе электровакуумного прибора, взрывной источник генерирует не луч, а поток РЧЭМИ во всех направлениях, но зато СШИ компактны, могут быть размещены в боеприпасах малых (рис. 3.13) и средних калибров, и, помимо поражений электроники, наносят повреждения осколками.

Источники всех типов нуждаются для своей работы в обеспечении электроэнергией. Сообщалось, что в ходе операции «Буря в пустыне» крылатые ракеты, несущие электровакуумные излучатели, прорывали иракскую ПВО. Энергия для питания УПИ отбиралась от двигателя ракеты. Маршевый полет при этом невозможен: ракета падала, как только начинал работать источник, зато он успевал «выдать» несколько десятков импульсов излучения.

Рис. 3.13 Общий вид 42-мм электромагнитной реактивной гранаты «Атропус» с боевой частью на основе пьезоэлектрического генератора частоты и пример эффекта временного ослепления автоматической миллиметровой РЛС наведения системы активной защиты танка при перехвате ракеты. Левая осциллограмма – нормальный сигнал от блока определения дальности до цели. Правая осциллограмма – после разрыва ЭМБП в нескольких метрах от РЛС под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент разрыва ЭМБП «Атропус» показан стрелкой

Для боеприпасов небольших калибров требуются автономные и значительно более компактные системы энергообеспечения. Первичный импульс тока или напряжения может быть получен от ферромагнитного или пьезоэлектрического генератора (рис. 3.14), при размагничивании или деполяризации его рабочего тела ударной волной, формируемой взрывом ВВ. Величина энергии может составить при этом единицы – десятки Джоулей, чего в ряде случаев бывает недостаточно и требует применения усилителя – взрывомагнитного генератора (ВМГ, рис. 3.15).

Рис. 3.14

Слева: схема ферромагнитного генератора. Формируемая взрывом мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей рабочее тело (магнит 2). К обмотке подключена нагрузка 3.

Справа: схема пьезоэлектрического генератора. Заряд взрывчатого вещества (ВВ) 1 состоит из двух конусов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись (иначе – произойдет пробой), переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток протекает через конденсатор, образованный металлизованными поверхностями на РТ и нагрузку 4, подсоединенные к обмотке 5. Взрыв используется лишь как спусковой механизм, но его энергия на пять порядков превышает заключенную в веществе рабочего тела

Рис. 3.15

Вверху: схема спирального взрывомагнитного генератора. Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. В обмотке первичным источником энергии создается начальный магнитный поток, далее подрывается ВВ и газы взрыва растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. Химическая энергия, содержащаяся в ВВ, при этом преобразуется в энергию импульса тока, величина которого в нагрузке может достигать десятков миллионов ампер

Ниже – произведенный фирмой WMTD имитатор ВМГ (иногда используется также название «магнитокумулятивный генератор», МКГ)



Поделиться книгой:

На главную
Назад