Недавно в сети появились результаты интереснейшего исследования, выполненного анонимным специалистом по безопасности. Случайно обнаружив, что огромное количество компьютеров практически никак не защищено (для доступа к ним достаточно было стандартных учетных данных, вроде логина admin и пустого пароля или «root» в качестве пароля к root), он объединил 420 тысяч подобных устройств в один гигантский ботнет Carna (названный по имени древнеримской богини). Получив контроль над этими компьютерами, хакер отслеживал их активность и сумел создать первую карту распространенности Интернета такой подробности.
Для внедрения, автор создал несколько небольших исполняемых файлов, а в дальнейшем фиксировал каждый IP-адрес, который отвечал хотя бы на один из 52 млрд отправляемых им пингов. К его удивлению, на пинги ответило почти полмиллиона устройств. «Это был уникальный шанс управления в масштабах всего интернета, 420 тысяч компьютеров слушались мою мышку, до меня этого еще никто не делал».
Полученная карта, хоть и впечатляюще красива, все же не является достоверным отображением мировой интернет-активности. Во-первых, потому, что в ботнет Carna вошли компьютеры лишь с адресами IPv4 (последний стандарт IPv6, но IPv4 все еще довольно распространены). Во-вторых, на карту не попали устройства на базе Linux, обладающие некоторым ограничением по производительности (какова именно эта отсечка, не уточняется). И, наконец, в-третьих, эта карта отображает довольно беспечных пользователей, не позаботившихся о должной безопасности своего компьютера. Тем не менее, выборка все равно репрезентативна.
Стоит так же отметить еще один интересный опыт визуализации Интернета — программу отображения его трехмерной структуры от провайдера Peer 1 (Компьютерра писала об этом совсем недавно). И если карта ботнета отображает активность пользователей, то карта от Peer 1 позволяет заглянуть за другую сторону монитора и позволяет наблюдать за прошлыми и настоящими связями между сетевыми узлами или веб-проектами. Для этого достаточно указать имя ресурса и временной интервал. Также можно прогнозировать внешний вид мировой сети в будущем.
Посмотрите на комплекс механических деревьев Gardens by the Bay в Сингапуре
Город-сад, о котором так долго мечтали большевики, построили, как ни странно, в Сингапуре. Ботанический комплекс Gardens by the Bay (прибрежные сады) общей площадью 101 гектар являет собой совокупность озёр, оранжерей и уникальных механических деревьев с собственной экосистемой. Последняя, третья часть парка открылась всего три месяца назад, но Gardens by the Bay уже признан основной достопримечательностью острова.
Благоустройство парка с самого начала было задачей непростой и, прежде всего, требовало решения вопросов экологии и поиска безвредного источника энергии. После огромного тендера, в котором приняло участие больше сотни архитектурных проектов, было решено остановится на варианте с использованием необычных механических деревьев – гигантских строений из бетона и стали от 25 до 50 метров высотой, напоминающих по форме пальмы. Эти деревья являются, по сути, большой солнечной батарейкой и умеют собирать дождевую воду. Помимо этого они представляют собой вертикальный сад: на их стволах высажено 226 тысяч самых разнообразных растений, от папоротников до орхидей.
Всего в Gardens by the Bay построено 18 таких деревьев. Собранная ими энергия идёт на поддержание работы теплиц всего парка – в восточной, западной и центральной частях, а также освещение самих деревьев по ночам. Для посетителей есть и ещё один сюрприз – высотный мост длиной 128 метров, соединяющий деревья и позволяющий прогуляться с видом 16-этажного дома, а на вершине одного из супердеревьев есть и ресторан.
Строительство Gardens by the Bay продолжалось 5 лет и обошлось в 784 миллиона долларов. Сейчас парк открыт для посещений с 5 утра до 2 часов ночи ежедневно, причём платить нужно лишь за вход в оранжереи — 28 долларов с человека.
Технологии
Естественное стремление к искусственным органам: печатаем живыми клетками
С технологией 3D-печати и биопринтерами в медицине связано много разработок, кажущихся фантастическими. Быстрое заживление обширных ран, воссоздание сосудов, клапанов, суставных поверхностей и в перспективе – послойная печать целых органов. Что возможно уже сейчас, и какие направления актуальны в медицинской 3D-печати?
Согласно тезисам Международной конференции 3B’09, биопечатью называется использование автоматизированных процессов при сборке из биологических материалов определённой плоской или объёмной структуры для нужд регенеративной медицины, фармакологических и цитобиологических исследований.
Параллельно в русскоязычной печати прижился и другой термин (калька с английского) – биопринтинг. Процесс действительно напоминает струйную печать, в которой вместо пигментов используются живые клетки. Это может быть монокультура клеток с конечной функцией (например, клетки внутренней оболочки сосудов) или взвесь плюрипотентных стволовых клеток, способных сформировать любую ткань.
Послойная печать тканей и органов создаёт базу для развития трансплантологии. Это направление способно решить множество актуальных медицинских проблем. В первую очередь снимаются вопросы долгого ожидания донорских органов, риск их отторжения и осложнений в связи с подавлением иммунитета.
Идея использовать клеточные культуры вместо чернил и создавать биологические ткани методами модифицированной струйной печати зародилась в конце прошлого века. Одной из первых публикаций о её успешном освоении можно считать статью Владимира Миронова и соавторов, вышедшую в апреле 2003 года в журнале Trends in Biotechnology.
Приставка 3D была использована в ней скорее как указание на перспективы работы, поскольку на тот момент в самом исследовании удалось создать один слой эндотелиальных клеток и полученную структуру нельзя было назвать объёмной. Главным достижением проведённого исследования была демонстрация самой возможности прецизионно размещать живые клетки методами струйной печати с сохранением их жизнеспособности.
На протяжении последующих лет каждая группа исследователей использовала свой вариант биопринтера и различные вариации методики распределения клеток. Первый серийно выпускаемый биопринтер появился в конце 2009 года. Он был изготовлен австралийской компанией Invetech по заказу американской Organovo. Последняя фирма была основана в 2007 году и уже спустя пять лет упоминалась в обзоре MIT среди наиболее инновационных компаний. Взгляните на следующий ролик.
Недавно Organovo заключила контракт с Autodesk. В известных системах автоматизированного проектирования органы будут чертить примерно так же, как детали для автомобилей и роботов.
С этапом проектирования особых вопросов не возникает, однако сам процесс печати при этом имеет важное отличие. «Биологические чернила» состоят из нескольких компонентов, которые надо точно дозировать так, чтобы «печатающие головки» не мешали друг другу. Над развитием многокомпонентной печати активно работает компания AMTecH.
Сейчас технология печати живыми клетками сдерживается массой факторов. Наивно полагать, что через год-два начнут печатать органы, а службу по заготовке донорских образцов можно будет упразднить. Помимо специфических сложностей в самой процедуре 3D-печати разными клетками есть целый ряд общих проблем.
Например, каждый орган требует «подключения» к нервной системе и разветвлённой сети кровеносных сосудов. Если проблема реиннервации ещё как-то решается современной трансплантологией, то питающая сеть сосудов нужна уже на этапе формирования органа. Кровеносная система даже на отдельных участках буквально пронизана хитросплетениями. Собственные сосуды есть и во внешних оболочках артерий и вен, а порядок ветвлений внутри органа часто превышает десять уровней.
Напечатать кровеносный сосуд пока ещё сложно даже на уровне концепции. Это не эластичная трубка заданного диаметра, как представляется большинству людей с техническим образованием. У сосудов каждого типа есть важные особенности, которые необходимо уметь воспроизвести.
Артерии и вены состоят из слоёв разных клеток, которые образуют специфическую пространственную структуру. Она позволяет каждому сосуду взаимодействовать с другими и с организмом в целом. Даже диаметр пор в стенках и локальный тонус регулируются очень непросто.
Сейчас в рамках исследований уровня доказательства концепции удаётся напечатать лишь единичные мелкие сосуды и отдельные фрагменты крупных. Пока не решится проблема полноценной васкуляризации органов в процессе объёмной печати, пытаться создать их бесполезно.
Говоря о более реалистичных задачах, часто упоминают кожу. Иной раз её приводят как пример перспективного направления двумерной биопечати, но кожа кажется простой тканью только до тех пор, пока не попытаешься её воссоздать. Один только эпидермис состоит из пяти слоёв. Их структура разная, как и морфология кератиноцитов. Нельзя просто взять, напечатать и приживить лоскут кожи, хотя вы найдёте множество статей, описывающих «успешные эксперименты». Почему же так получается?
Одна из причин заключается в том, что клеточная культура в биопринтере смешивается с гидрогелем. В последнее время именно с гидрогелями связаны определённые успехи. Им научились придавать множество интересных свойств, в том числе физических, антибактериальных и фунгицидных.
Попадая на раневую поверхность, гидрогель выполняет ту же функцию, что и в клеточной культуре из биопринтера. Он создаёт объёмную пористую микроструктуру для миграции клеток и служит для них опорой. Регенерация происходит эффективнее, а рана внешне заживает гораздо быстрее и аккуратнее.
Если в наносимой смеси была ещё и какая-то часть размноженных клеток, возможно, они тоже сыграют некоторую положительную роль. Впрочем, на сегодня более вероятно, что они замедлят регенерацию и чистый гидрогель окажется предпочтительнее. Печать заплаток для раневых поверхностей – дело будущего, но пока ещё не настоящего.
Решать озвученные проблемы планируется в первую очередь за счёт использования свойства самоорганизации живой материи и усиления регенеративных возможностей. Гидрогель и другие соединения сейчас выполняют важную функцию опоры, но в будущем от этих костылей надо постепенно избавляться. Считается, что достаточно воссоздать базовую структуру органа, а более специфические детали в нём сформируются самостоятельно. Основной вопрос заключается в том, как заставить искусственный орган правильно «дозревать» вне организма.
Существующие достижения – это не просто задел на будущее. Помимо перспективной задачи изготовления органов, у биопечати есть и другие применения. Основное направление, уже дающее плоды сегодня, – токсикологические исследования различных веществ и новых фармацевтических препаратов без использования лабораторных животных.
Дело здесь не столько в этике, сколько в целесообразности. Токсикологические эксперименты на лабораторных животных характеризуются относительно низким показателем воспроизводимости результатов. Вдобавок они требуют эмпирических методов пересчёта для учёта отличий в строении человека.
Концептуально сходный исследовательский приём – моделирование патологических процессов с целью изучения ключевых механизмов их развития. На животных это делать непродуктивно, а идентичная ткань будет практически идеальной моделью. Упомянутая Organovo в 2013 году начала сотрудничать в этом направлении с Институтом проблем рака при университете штата Орегон.
В целом биопечать позволяет оценить многие аспекты влияния различных веществ и процессов непосредственно на тех клетках, которые являются основными мишенями для новых препаратов. Наиболее полноценно это можно сделать в рамках концепции «лаборатория-на-чипе», о которой «Компьютерра» уже писала.
Наибольший интерес проявляется к грантам на послойное создание из живых клеток работающей и пригодной для трансплантации почки. На втором месте стоит задача биопечати печени и поджелудочной железы. Эти тему в последние годы относительно щедро финансируют NASA, DARPA, другие крупные агентства и неправительственные организации. Однако сначала всё же попытаются создать простые полые органы, и только затем придёт очередь более сложных – паренхиматозных. В настоящее время исследователи отмечают, что при существующих темпах развития отрасли доли первых органов можно будет напечатать не ранее чем к 2030 году. Берегите себя! Менять запчасти по гарантии нам будут ещё не скоро.
Потоки игр, или Почему графическая революция с облаков не спустится
Если в середине 1990-х компьютерные игры с завышенными системными требованиями могли провалиться в продажах, то уже в начале 2000-х именно игры повышенной требовательности сделались основным локомотивом продаж нового компьютерного «железа». Исходя из той здравой, казалось бы, мысли, что далеко не все готовы покупать топ-модели, производители начали «диверсификацию» своей продукции, и вот сейчас на рынке — огромное количество похожих по заявленным характеристикам процессоров (обычных и графических), и надо иметь усердие зоолога или ботаника, чтобы разбираться, чем они отличаются друг от друга при практическом использовании. Производители игр тоже, мягко говоря, не в восторге от такой фрагментированности платформы PC: слишком много ресурсов уходит на то, чтобы обеспечивать совместимость со всеми разновидностями процессоров и графических карт. В результате и для разработчиков игр, и для геймеров, которые не могут себе позволить топовые игровые платформы, очень соблазнительной выглядит идея вывести все вычисления, связанные с графикой (и даже, возможно, с игровой логикой), за пределы пользовательской платформы. Например, на «облако».
Преимущества подобного подхода, казалось бы, налицо: на сервере можно рендерить всё что угодно, так что в теории становится возможным видеореализм, подлинная трассировка лучей в реальном времени, неограниченное количество полигонов и так далее. Но только в теории.
На пользовательское устройство передаётся уже только видеосигнал, а для его отображения гипермощного видеопроцессора не требуется. Для разработчиков и издателей плюсы тоже очевидны: поскольку на стороне пользователя будет только «тонкий клиент», а сам игровой контент останется на сервере, проблема пиратства либо снимается вовсе, либо её острота значительно снижается. Но слишком много появляется и проблем. Главная из них — это толщина канала связи и количество других факторов, влияющих на скорость соединения между пользовательским устройством и «облаком».
Тем не менее попытки реализовать что-то подобное предпринимались раньше и, вероятно, будут предприниматься и впредь.
Год назад в беседе с корреспондентом «Компьютерры» директор по продажам подразделения AMD Component Channel в регионе EMEA Бертран Кокар заметил, что лично для него следующая веха в ИТ-мире наступит, «когда весь рендеринг будет осуществляться на сервере, а не на вашем компьютере»:
- Всё упирается в алгоритмы сжатия информации. Не в 2012 году, но в последующие годы что-то подобное произойдёт непременно. Сегодня всё больше люди играют через интернет, а не индивидуально на своих десктопах.
Как ни странно, наступления этой «новой вехи» ждут уже более десятилетия: ещё в 2000 году компания G-Cluster представила на Е3 свою технологию, где весь рендеринг и расчёты проводились на сервере, после чего графика перебрасывалась на ручные консоли через беспроводные соединения. В конце февраля 2013 года G-Cluster и Konami объявили о заключении партнёрского соглашения, в рамках которого в игры Konami можно будет играть на любом телевизоре, подключённом к широкополосному каналу связи.
«G-Cluster превращает телевизор в эквивалент игровой консоли, при этом необходимость в приобретении дорогостоящего оборудования отсутствует», — указывается в пресс-релизе обеих компаний. Там же говорится, что первые «облачные» игры будут объявлены уже этой весной. Ждём-с.
В свою очередь, Crytek ещё в 2005 году начала изыскания в области «облачного гейминга» для игры Crysis, но в 2007 году приостановила разработки, сославшись на то, что существующая сетевая инфраструктура, мягко говоря, не совсем готова.
В 2010 и 2011 годах были запущены сразу несколько сервисов, предоставлявших (и предоставляющих) услуги облачного гейминга. Это, во-первых, Onlive, во-вторых, Jeuxvideo a la demande, базирующийся на технологии вышеупомянутых G-Cluster, в-третьих, Gaikai, в четвёртых, китайский сервис Cloud Union, который к июлю 2012 года набрал 300 тысяч пользователей. Впрочем, для Китая это капля в море.
В том же июле 2012 года Sony выкупила за 380 млн долларов сервис-провайдер Gaikai, к тому моменту уже крупнейший в мире. К моменту покупки сервис предлагал более 200 игровых наименований, а аудитория составляла порядка 50 млн человек.
Ну а в августе 2012 года стало известно, что OnLive уволил большую часть персонала, а в октябре был продан некоей венчурной фирме за вшивые, простите, 4,8 млн долларов, притом что даже тогда ещё капитализация сервиса оценивалась в несколько сотен миллионов долларов. В общем, печальная и вряд ли красивая история.
В 2012 году на выставке GPU Technology conference NVidia представила свою концепцию «виртуализации GPU», а также технологию, которая позволяет использовать графические процессоры в качестве основы для крупных дата-центров («облаков», собственно).
«Облачные GPU-технологии основываются на новой архитектуре Nvidia Kepler GPU Architecture, предназначенной для использования в крупномасштабных дата-центрах. Её виртуализационные возможности позволяют одновременно использовать одни и те же GPU сразу несколькими пользователями. Её сверхскоростная передача потоковых данных устраняет все задержки, так что складывается впечатление, будто удалённый дата-центр находится за соседней дверью. А её высочайшая энергоэффективность и плотность обработки данных снижают стоимость владения таким дата-центром», — говорится в пресс-релизе.
Реализация архитектуры Kepler сразу же пошла в двух направлениях — платформа VGX для виртуализации десктопов для корпоративного сектора и GeForce GRID для облачного гейминга.
Если говорить о технике, то основу системы Grid составляет, собственно, игровой сервер размером 2U, в котором располагаются 12 GPU Nvidia. Каждый из этих GPU способен обслуживать одновременно двух пользователей (таким образом, каждый сервер обслуживает до 24 человек одновременно). Если нужно больше пользователей, потребуется больше серверов. Серверный рэк с 20 серверами способен, соответственно, обслуживать 480 пользователей, потребляя при этом 800-900 Вт энергии в нагруженном состоянии.
Главной проблемой для всех подобных затей, однако, остаётся задержка в интерактивности. Особенно это касается шутеров, где доли секунды решают всё. Одна из причин провала OnLive заключается как раз в том, что они толком не смогли победить эту задержку. Да и невозможно её победить в настоящее время. Сказываются географическое расстояние от пользовательского устройства до физического размещения дата-центра, в котором располагается игровое «облако», количество сетей разных провайдеров, по которым идёт сигнал, состояние этих сетей и задержки в них. В общем, неизвестных очень много.