Имитация жизни
Одна из стен Музея мировой культуры на набережной Бранли в Париже — живая в буквальном смысле слова, поскольку засажена травой и декоративными садовыми культурами. Жиль Клемент, Патрик Блан, 2006 год. Фото: RUSSIAN LOOK
Термин «биоархитектура» сами архитекторы не жалуют, считая его слишком неопределенным, любительским. И действительно, приставку «био» сейчас модно добавлять к названию любой отрасли науки, производства и вообще ко всякому действию или продукту, выражая таким образом приобщение к живой природе. Зачастую сами изобретатели неологизма не могут внятно объяснить его смысл, так произошло и в архитектуре: некоторые ее направления назвали «живыми», хотя в буквальном смысле оживить ее стремятся считанные архитекторы-утописты. Достижения же бионики (или биомиметики) — науки, которая собственно и занимается применением в технике различных особенностей живых организмов, — к сожалению, еще очень далеки от практического применения в архитектуре. Возможно, из-за подобной неточности в определениях того, что же представляет собой приближенная к живой природе архитектура и что именно она может у нее заимствовать, каждый талантливый архитектор создает свое собственное направление и дает ему уникальное название.
Создателем органической архитектуры стал американец Луис Салливен. Как и большинство творческих людей XIX века, он проникся эволюционным учением Дарвина и передовыми достижениями биологии. Салливен считал, что человек должен жить и работать в домах, которые гармонично вписываются в окружающий ландшафт. Хотя философия органической архитектуры звучала, скорее, как некий идеал, к которому надо стремиться, ее последователи, включая самого знаменитого из них — Фрэнка Ллойда Райта, творившего в конце XIX — первой половине XX века, создали прекрасные образцы. Поселившийся в Индии англичанин Лаури Бэйкер воплотил эти идеи в домах, вполне традиционных внешне, но так органично встроенных в зеленые заросли тропиков, что можно подумать, они сами выросли из земли, как грибы после дождя. Сходное впечатление производят сооружения австрийского художника и архитектора Фриденсрайха Хундертвассера. Отличительной чертой органической архитектуры стала приверженность к природным материалам: вместо стали, бетона и пластика используются камень, дерево и стекло.
1. Музей искусств выполнен в форме огромной расплывшейся капли желе. Чтобы реализовать такую криволинейную поверхность, архитекторы использовали плексиглас. Грац, Австрия. Питер Кук и Колин Фурнье, 2003 год . Фото: FOTOBANK.COM/GETTY IMAGES
2. Школа в Ауровилле, в Индии, построена из спрессованных земляных блоков, которые прочнее и экономичнее, чем обожженные кирпичи. Фото: THE COVER STORY/RUSSIAN LOOK
Есть страны, в которых почти вся национальная архитектура может быть отнесена к органической. Такова Финляндия с ее суровой, но великолепной природой. Дерево и камень — основные строительные материалы в этой стране, и именно их в большом количестве использовал Алвар Аалто, в том числе и для зарубежных проектов. Одно из его последних творений — реконструкция Оперного театра в Эссене (Германия), завершенная уже после смерти архитектора в 1988 году. Здание формой напоминает скалистый уступ, обработанный ледником, в точности как камни Финляндии.
Уже в наши дни французский архитектор Франсуа Рош создал дом-камуфляж, который удовлетворяет требованиям органической архитектуры — не противоречить расположенному неподалеку старинному замку и вписываться в холмистую местность. В результате форма дома оказалась ломанной, под рельеф местности, а само строение — задрапированным зеленой сеткой, которая маскирует дом и защищает людей от жары и насекомых. Другой его знаменитый проект 2005 года — музей города Лозанны, называемый Green Gorgon. Он выполнен в излюбленной манере Роша как нечто неотличимое от окружающей природы — зеленый лабиринт, напоминающий то ли поросшие лесом овраги, то ли застывшее насекомое, богомола. Сооружение столь запутано, что посетителям выдают GPS-навигаторы, чтобы не заблудиться и найти выход.
!. Проект частного жилого дома, похожего на жука. Российский последователь архитектурной бионики Борис Левинзон. Фото: БОРИС ЛЕВИНЗОН
2. Внешнее покрытие универмага «Селфриджиз» в Бирмингеме украшено 15 тысячами алюминиевых дисков, что придает ему сходство с фасеточным глазом насекомого. Ян Каплицки, 2003 год. Фото: ALAMY/PHOTAS
Иногда дом в буквальном смысле «встраивают» в ландшафт и маскируют под зеленый холм, совсем как жилище хоббитов. Зеленая трава на крыше и стенах защищает дома в швейцарской деревне, построенной по проекту Петера Феча, от дождя, ветра и перепадов температуры. Из-за хорошей теплоизоляции такие дома потребляют меньше электроэнергии. Первый «дом в холме» был придуман Фечем еще в 1970 году, и сейчас в стране можно найти около десятка небольших сказочных деревенек, по всей видимости, пришедшихся по вкусу жителям Швейцарии.
В больших городах зеленые островки ценятся на вес золота, и, казалось бы, строить что-то на их месте — просто кощунство. Тем не менее, американец Эмилио Амбаш построил в 1993 году в японском городе Фукуока здание культурного центра прямо на территории сквера. Оно выглядит как огромная зеленая лестница, спускающаяся в сад, каждая ступенька — длинный газон, на котором можно устроить пикник в центре города, да еще и осмотреть окрестности с высоты.
Существует и другое понимание органической архитектуры — подражание живой природе. Биоморфные элементы осваивали многие архитекторы. Достаточно вспомнить дом Константина Мельникова в Москве, форма и расположение окон которого напоминают пчелиные соты, или творения итальянца Антонио Гауди. Но жизнь не стоит на месте, и в середине XX века стал появляться серьезный интерес к бионике. Пионером в области бионической архитектуры был немецкий инженер Отто Фрай, собравший в 1961 году в Штутгарте единомышленников в группу под названием «Биология и строительство». Сам Фрай занимался легкими конструкциями. Вместе с биологами и инженерами из Политехнического института он хотел разобраться, как происходит строительство тканей и оболочек живых организмов, а потом соединить эти знания с существующими технологиями. Рассматривая скорлупки диатомей и паутину, исследователи обнаружили очевидное сходство с собственными разработками. Однако увидели они и важное отличие: живые объекты необычайно сложны и их конструкции не всегда оптимальны, поэтому точное воспроизведение их на практике чаще всего невозможно — такие проекты будут очень дорогими и тяжелыми.
Фрай прославился в 1960—1970-х годах созданием павильона ФРГ на Всемирной выставке в Монреале и Олимпийского стадиона в Мюнхене, где он использовал мембранные и эластичные конструкции, главное достоинство которых — легкость и прозрачность. Откликнувшись на экологическую тематику, ставшую главной на Всемирной выставке 2000 года в Ганновере, он вместе с японским коллегой Шигеру Баном придумал оригинальную конструкцию павильона Японии. Его стены и крыша сплетены из множества бумажных трубочек, а сверху этот похожий на гигантские соты полукруглый каркас покрыт светопропускаемой бумажной мембраной.
Без сомнения к биоархитектуре можно отнести и био-тек, возникший как альтернатива хай-теку. Согласно его идеологии, на смену квадратным, неестественным формам зданий должны прийти мягкие, повторяющие плавные линии живого формы. Пока это течение существует в большей степени как идеология, разделяемая несколькими ведущими архитекторами. Начало ему положил англичанин Норманн Фостер, создавший в лондонском Сити в 2004 году башню по адресу: 30, Сент Мэри Экс. Абсолютно круглая в плане башня высотой 180 метров свечой тянется в небо, но знающим людям она больше напомнила огурец, что и решило ее судьбу — башню причислили к классике биотека. В его рамках также творят такие знаменитые личности, как Сантьяго Калатрава, Николас Гримшоу, Ян Каплицки, Грег Линн. Последнему принадлежит идея блоб-архитектуры, когда здание напоминает формой что-то округлое и мягкое, некий сгусток инопланетной живой субстанции, готовый разрастись и поглотить все вокруг. Амебоподобный, висящий в воздухе пластиковый Дом искусств в Граце (Австрия) — типичный пример блоб-архитектуры. Линн же придумал и дом-эмбрион. Структуру, которая самостоятельно развивалась бы из некоего примитивного жилища, подстраиваясь под условия окружающей среды. Это, конечно, только утопия, так же как и дом-коммуна, периодически захватывающий умы архитекторов. На первый взгляд кажется, что такое обустройство, когда огромная масса народа присутствует в одном месте, как это происходит сейчас в мегаполисах, противоречит сути живой природы. Но это не так, достаточно взглянуть на муравейник. Насекомые живут и трудятся в тесном пространстве, помогают друг другу, роль и место каждого муравья предельно ясны. Создать такой небоскреб-муравейник, где бы людям было комфортно жить, — несбывшаяся мечта многих. Воплотить ее пытаются в проектах небоскребов с развитой инфраструктурой и множеством технологических решений, позволяющих использовать альтернативную энергетику и другие чудеса техники. Как, например, пирамида Shimizu TRY 2004 Mega-City, придуманная для перенаселенного Токио. Теоретически 750 тысячам обитателей пирамиды даже не нужно будет покидать ее — внутри они найдут все необходимое для жизни.
1. «Дом для одиночек» польской фирмы Front Architects (2007 год) больше напоминает скворечник, чем человеческое жилище. Фото: RUSSIAN LOOK
2. Музей фруктов состоит из отдельных зданий и теплиц, которые копируют формы разных плодов. Яманаси, Япония. Итсуко Насегава, 1996 год. Фото: JOHN EDWARD LINDEN/ARCAID/CORBIS/RPG
В 2006 году по проекту мексиканского архитектора Хавьера Сеносьяна был построен дом, напоминающий раковину моллюска наутилуса. Черты наутилуса повторяются не только во внешней форме дома, но также в его спиралеобразном внутреннем устройстве. А в 2007 году под его же руководством в Мехико был закончен дом «Змея» (Quetzalcoatl Nest) — здание в виде длинной трубы, плавно огибающей неровности ландшафта. Свои профессиональные взгляды Сеносьян изложил в книге «Биоархитектура». Он считает, что нужно строить небольшие соразмерные человеку дома в местах с красивой природой, используя при этом природные материалы местного происхождения.
Несмотря на то что биоархитектура (и все, что понимается под этим термином) возникла отчасти как дань моде на все живое, органичное и экологическое, у нее просматриваются прекрасные перспективы. Вряд ли в скором времени следует ожидать противоположных тенденций в мире архитектуры, отдаляющих нас от естественной среды. В городах появляется все больше биоморфных зданий, где каждый элемент создан для комфорта посетителей, все чаще в конструкциях жилых домов и общественных зданий используются солнечные батареи и другие источники альтернативной энергии, снижающие нагрузку на экологию. Возможно, когда-нибудь наши жилища будут походить на живые существа не только формами, но и функциональными возможностями. И мы наконец заживем в гармонии с природой и самими собой.
Межпланетная эквилибристика
В начале XX века, когда принципиальная выполнимость космических полетов была научно обоснована, появились первые соображения об их возможных траекториях. Прямолинейный полет от Земли к другой планете энергетически крайне невыгоден. В 1925 году немецкий инженер Вальтер Гоман (Walter Hohmann) показал, что минимальные затраты энергии на перелет между двумя круговыми орбитами обеспечиваются, когда траектория представляет собой «половинку» эллипса, касающегося исходной и конечной орбит. При этом двигатель космического аппарата должен выдать всего два импульса: в перигее и апогее (если речь идет об околоземном пространстве) переходного эллипса. Данная схема широко используется, например, при выведении на геостационарную орбиту. В межпланетных полетах задача несколько осложняется необходимостью учитывать притяжение Земли и планеты назначения соответственно на начальном и конечном участках траектории. Тем не менее полеты к Венере и Марсу выполняются по орбитам, близким к гомановским.
Биэллиптические траектории
Пожалуй, первым примером более сложного космонавигационного приема могут служить биэллиптические траектории. Как доказал один из первых теоретиков космонавники Ари Абрамович Штернфельд, они оптимальны для перевода спутника между круговыми орбитами с разным наклонением. Изменение плоскости орбиты — одна из самых дорогих операций в космонавтике. Например, для поворота на 60 градусов аппарату надо добавить такую же скорость, с какой он уже движется по орбите. Однако можно поступить иначе: сначала выдать разгонный импульс, с помощью которого аппарат перейдет на сильно вытянутую орбиту с высоким апогеем. В ее верхней точке скорость будет совсем невелика, и направление движения меняется ценой относительно небольших затрат топлива. Одновременно можно скорректировать и высоту перигея, немного изменив скорость по величине. Наконец, в нижней точке вытянутого эллипса дается тормозной импульс, который переводит аппарат на новую круговую орбиту.
Этот маневр, называемый «межорбитальным перелетом с высоким апогеем», особенно актуален при запуске геостационарных спутников, которые первоначально выводятся на низкую орбиту с наклонением к экватору, равным широте космодрома, а потом переводятся на геостационарную орбиту (с нулевым наклонением). Использование биэллиптической траектории позволяет заметно сэкономить на топливе.
Гравитационные маневры
Многие межпланетные миссии при современных технических возможностях просто неосуществимы без обращения к экзотическим навигационным приемам. Дело в том, что скорость истечения рабочего тела из химических ракетных двигателей составляет около 3 км/с. При этом по формуле Циолковского каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической системы. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться к Марсу по гомановской траектории, надо набрать около 3,5 км/с, к Юпитеру — 6 км/с, к Плутону — 8—9 км/с. Получается, что полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. Вот почему 700-килограммовые «Вояджеры» (Voyager) запускались к Юпитеру 600-тонной ракетой «Титан» (Titan IIIE). А если ставится цель выйти на орбиту вокруг планеты, то возникает необходимость брать с собой запас топлива для торможения, и стартовая масса возрастает еще больше.
Но баллистики не сдаются — для экономии топлива они приспособили ту самую гравитацию, на преодоление которой при старте уходит значительная часть энергии. Гравитационные, или на профессиональном языке пертурбационные маневры практически не требуют расхода топлива. Все что нужно — это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящим для целей миссии положением. Подлетая к небесному телу, космический аппарат под действием его поля тяготения ускоряется или замедляется.
Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве «гравитационной пращи», не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца . Таким способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный маневр используется для разгона, а при миссиях к внутренним планетам — напротив, для гашения гелиоцентрической скорости.
Впервые идею гравитационного маневра высказали Фридрих Артурович Цандер и Юрий Васильевич Кондратюк еще в 1920—1930-х годах. Официально считается, что впервые подобный маневр выполнила в 1974 году американская станция «Маринер-10» (Mariner 10), которая, пролетев вблизи Венеры, направилась к Меркурию . Впрочем, первенство американцев оспаривают российские историки космонавтики, считающие первым гравитационным маневром облет Луны, который в 1959 году осуществила советская станция «Луна-3», впервые сфотографировавшая обратную сторону нашего естественного спутника.
Возмущения и коррекции
Александр Сергеев
Юпитер нам поможет
Многие межпланетные зонды использовали для разгона тяготение Юпитера. Первыми были аппараты «Пионер-10» и «Пионер-11» (Pioneer), а вслед за ними «Вояджер-1» и «Вояджер-2». В 1992 году Юпитер помог выйти из плоскости эклиптики «Улиссу» (Ulysses) — зонду, исследующему полярные области Солнца, вокруг которого он обращается по орбите, почти перпендикулярной земной. Другим способом вывести аппарат на такую орбиту при современном уровне развития космической техники просто невозможно. Выполнил пертурбационный маневр у Юпитера и зонд «Новые горизонты» (New Horizons), запущенный Соединенными Штатами к Плутону 19 января 2006 года. Увеличив скорость на 4 км/с и на 2,5 градуса отклонившись от плоскости эклиптики, он сможет прибыть к цели в 2015 году, прежде чем на Плутоне (который в этом столетии удаляется от Солнца) станет замерзать атмосфера, снижая тем самым ценность будущих исследований.
Разумеется, для выполнения гравитационных маневров дата старта должна быть выдержана весьма точно. Баллистики оперируют понятием «окно запуска» — это интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна. Ближе к краям «окна» эффект становится меньше, а потребности в топливе — больше. Если же выйти за его границы, то носитель просто не сможет вывести аппарат на нужную орбиту, что приведет к срыву полета или недопустимому возрастанию его длительности. Например, запуск «Новых горизонтов» неоднократно переносился по погодным и техническим причинам. Задержись старт еще на несколько дней, и зонд отправился бы в полет уже без расчета на «гравитационную помощь» Юпитера и с меньшими шансами на успех.
Выполнять маневры у планет-гигантов удобнее всего. Благодаря их большой массе поворачивать возле них можно по широкой плавной дуге и требования к точности навигации остаются довольно мягкими. Однако нередко в качестве «пращи» используют Венеру, Землю, Марс и даже Луну. Тут уже ошибаться нельзя, в противном случае аппарат уйдет от планеты совсем не в том направлении, как было запланировано.
Зонд ISEE-3/ICE четыре года (1978—1982) изучал Солнце с орбиты вокруг точки Лагранжа L1, а затем путем сложных гравитационных маневров у Земли и Луны он был направлен на встречу с кометами Джакобини — Циннера (1985) и Галлея (1986). В 2012-м зонд вернется к Земле. Рис. NASA
Автор «скафандра» и «космонавтики»
Космический гравсерфинг
Наиболее сложны — но тем и интересны! — траектории с пертурбационными маневрами не у одного, а у нескольких небесных тел. К примеру, станция «Галилео» (Galileo), чтобы добраться до Юпитера, осуществила гравитационный маневр в поле тяготения Венеры, а потом еще два возле Земли. Такие полеты возможны не всегда, а лишь при определенном расположении планет. Самый знаменитый подобный «большой тур» совершил «Вояджер-2», который последовательно пролетел вблизи Юпитера, Сатурна, Урана и Нептуна. Его близнец «Вояджер-1» тоже мог бы пройти подобным маршрутом, однако ученые предпочли поближе рассмотреть загадочный спутник Сатурна Титан, и его тяготение необратимо отклонило траекторию станции от направления на Уран. Это было трудное, но верное решение. Именно данные «Вояджера-2» позволили спустя 24 года осуществить посадку на Титан зонда «Гюйгенс» (Huygens).
В наши дни еще более сложный полет выполняет станция «Мессенджер» (MESSENGER). Ее основная задача — выход на орбиту вокруг Меркурия для детального изучения его характеристик. Миссия, рассчитанная на семь лет пути, в январе 2008 года вышла на заключительный этап. Аппарат уже выполнил четыре гравитационных маневра: один около Земли, два возле Венеры и один у самого Меркурия, а между ними производились маневры двигателями, чтобы каждый раз правильно входить в гравитационную «воронку» планеты. «Мессенджеру» предстоит совершить еще пять маневров (два гравитационных и три — двигателями), прежде чем он станет спутником ближайшей к Солнцу планеты. За это время он «намотает» вокруг Солнца 8 миллиардов километров — больше, чем до Плутона! Однако, не будь траектория столь сложной, при современном состоянии ракетно-космической техники этот полет вообще не мог бы состояться.
Лестница Лагранжа
Александр Сергеев
С малой тягой к малым телам
Но гравитационные маневры — не единственный способ сэкономить топливо. Еще в 1930-х годах один из пионеров отечественного ракетного двигателестроения Валентин Петрович Глушко предложил использовать электроракетные двигатели (ЭРД). По сравнению с традиционными жидкостными ракетными двигателями (ЖРД) скорость истечения рабочего тела у них на порядок выше, а значит, топлива требуется в сотни раз меньше. К сожалению, тяга ЭРД исчисляется величинами порядка нескольких граммов-силы, так что для вывода аппаратов на орбиту они не годятся. Это «двигатели открытого космоса», предназначенные для медленного, но непрерывного ускорения, длящегося месяцы, а при межпланетных полетах и годы. «Миссии с малой тягой» стали популярны лишь тогда, когда электроника, сделав гигантский скачок, позволила увеличить срок службы космических аппаратов с нескольких месяцев до нескольких лет, а то и десятилетий.
Трасса полета с малой тягой совсем не похожа на классический эллипс, она представляет собой медленно разворачивающуюся спираль Архимеда. Переход с низкой околоземной орбиты на геостационарную по такой траектории затягивается на полгода. Это поистине пытка для владельца спутника, продающего услуги космической связи: каждый день ожидания обходится в десятки тысяч долларов. Приходится учитывать и такое неприятное обстоятельство, как многократный пролет через радиационные пояса Земли. Тонкая электроника очень не любит космических излучений. Но зато спутник, оснащенный ЭРД, можно запустить на геостационарную орбиту ракетой «Союз» (300 тонн), а для аппарата с обычным ЖРД уже нужен могучий «Протон» (700 тонн). Разница в стоимости запуска — в два-три раза. Вот и ломает голову заказчик космического аппарата: какой вариант выбрать? Обычно все же останавливаются на том, что быстрее: современные спутники связи начинают «отбивать» затраченные на их запуск деньги уже через пару недель после выведения на целевую орбиту. Так что в околоземном пространстве двигатели малой тяги применяют в основном для небольших коррекций орбиты.
Другое дело — полеты, скажем, к астероидам. ЭРД позволят относительно легко перекидывать межпланетную станцию с одного объекта к другому, причем не просто пролетать мимо, а подолгу задерживаться у каждого. По причине своей ничтожной (по сравнению с планетами) массы астероиды обладают мизерной гравитацией. Их облет мало похож на обычное орбитальное движение вокруг больших планет. Орбитальные скорости здесь измеряются сантиметрами в секунду, а периоды — многими сутками. Чтобы облететь астероид быстрее, приходится почти постоянно «работать двигателями». Стоит их выключить, и аппарат просто улетит от планетоида. Но зато практически полное отсутствие гравитации позволяет садиться на поверхность астероида и взлетать с него при минимальных затратах топлива.
По большому счету слово «посадка» здесь можно употреблять лишь условно: причаливание межпланетного зонда к астероиду больше напоминает стыковку двух космических кораблей, нежели классическую посадку на поверхность планеты. Этот фокус проделывали японцы со своим зондом «Хаябуса», который дважды опускался на поверхность астероида Итокава и поднимался с нее. Кстати, этот же полет показал, насколько непросто управлять аппаратом вблизи поверхности астероида. Обмен сигналами с аппаратом занимает десятки минут, так что отдавать ему команды в реальном времени невозможно, несмотря на небольшие скорости. Поэтому отработка автономной навигации вблизи неровной поверхности астероида была одной из основных задач «Хаябусы».
Стартовавший в сентябре 2007 года к астероидам Церере и Весте американский зонд «Заря» (Dawn) оснащен ионными двигателями с тягой меньше одной десятой Ньютона (вес 10-гранного груза). За сутки работы они ускоряют аппарат массой около тонны на 25 км/ч. Это не так мало, как может показаться: за год подобными темпами можно набрать 2,5 км/с. Полного же запаса топлива на борту (425 килограммов) хватит для изменения скорости аппарата на 10 км/с — никаким межпланетным аппаратам с химическими двигателями подобное недоступно.
Планетарные двигатели
Попробуем пофантазировать и представим, что наконец-то решено отправить экипаж, состоящий из людей, скажем, в систему Сатурна. Можно выбрать быстрый перелет с большой тягой: собрать межпланетный корабль на околоземной орбите, выдать при помощи ЖРД мощный разгонный импульс и по гиперболе отправиться в путешествие. Лететь все равно придется долго — несколько лет. Масса топлива нужна огромная. А значит, для снаряжения гигантского корабля потребуется не один десяток сверхтяжелых ракет. Запасы кислорода, воды, пищи и всего, что нужно в межпланетном полете, теряются на фоне огромной массы топлива, необходимого не только для разгона у Земли, но и для торможения у цели путешествия, и для возвращения к родной планете…
А что если попробовать малую тягу? Безумное количество топлива существенно сократится, а срок путешествия, как ни странно, может остаться прежним! Ведь двигатели корабля будут работать всю дорогу — полпути на разгон, а полпути — на торможение. Правда, тягу электрореактивных двигателей придется увеличить в сотни раз по сравнению с теми, что стоят на зонде «Заря». Но во-первых, такие разработки уже ведутся, а во-вторых, двигателей может быть много.
Для питания ЭРД понадобится несколько мегаватт энергии. Вблизи Земли ее можно было бы получать даром — от огромных солнечных батарей площадью тысячи, если не десятки тысяч квадратных метров. Но с удалением от Солнца их эффективность быстро падает: у Марса — на 60%, у Юпитера — в 30 раз. Так что для полетов к планетам-гигантам придется использовать ядерный реактор. И еще, скорее всего, ЖРД все-таки понадобятся для того, чтобы быстрее пройти опасные радиационные пояса вблизи Земли. Видимо, именно комбинированные двигательные установки будут применяться в межпланетных пилотируемых миссиях будущего.
Межпланетный суперхайвей
Станция «Кассини» и траектория ее движения в системе Сатурна. Рис. NASA/ESA
Не только гравитация
Дальний космос таит в себе немало загадок. Казалось бы, что может быть точнее баллистических расчетов, в основе которых лежат законы небесной механики? Не тут-то было! На космический зонд действует множество сил, которые трудно учесть заранее. Давление солнечного излучения и солнечный ветер, магнитные поля планет и истечение газа из самого аппарата — все это сказывается на скорости его движения. Даже тепловое излучение зонда и радиосигнал, посылаемый на Землю узконаправленной антенной, вызывают отдачу, которую приходится учитывать при точной навигации. А то что происходило с уже упоминавшимися «Пионерами», вообще не получило пока должного объяснения. Работающий в NASA российский астрофизик Вячеслав Турышев обнаружил около 10 лет назад, что зонды испытывают очень небольшое аномальное торможение. За 20 лет полета аномалия «Пионеров» привела к тому, что, подлетая к границам Солнечной системы, космические аппараты отклонились от расчетного положения на 400 тысяч километров! Какие только гипотезы не выдвигались для объяснения аномалии. От уже упомянутых магнитных полей и испарения остатков топлива из топливных магистралей до наличия на границах Солнечной системы массивных невидимых объектов. Некоторые физики считают аномалию указанием на неточность современной теории гравитации, другие видят в ней проявление космологических факторов вроде темной материи и темной энергии. Исчерпывающего объяснения пока нет, а группа Турышева продолжает обрабатывать данные о полете «Пионеров». Как бы то ни было, при проектировании новых траекторий межпланетных полетов придется учитывать возможность подобных неожиданных явлений.
В общем, работа космического баллистика балансирует на грани искусства и точных наук. Ему всегда приходится решать задачу со многими неизвестными, усугубленную стремлением заказчика сделать все «быстрее и дешевле», не выходя за рамки физических законов. Так что, несомненно, мы еще станем свидетелями рождения многих новых нетривиальных космических траекторий.
Братчина святой Софии
Городская хроника
859 г.
862 г.
882 г.
990 г.
1015 г.
1136 г.
22 февраля 1170 г.
1259 г.
1323 г.
1418 г.
1471 г.
1478 г.
1570 г.