Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Рассказ предка. Путешествие к заре жизни. - Ричард Докинз на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Как лучшее основание для предостережения, обширные области ДНК иногда выявляют загадочные сходства между сравнительно неродственными существами. Никто не сомневается, что птицы более близко связаны с черепахами, ящерицами, змеями и крокодилами, чем с млекопитающими (см. Свидание 16). Однако у последовательностей ДНК птиц и млекопитающих есть больше подобия, чем можно было бы ожидать, учитывая их отдаленные родственные отношения. У обоих есть избыток соединений G-C в их некодирующей ДНК. Соединение G-C химически более сильно, чем A-T, и может случиться так, что виды с теплой кровью (птицы и млекопитающие) нуждаются в более сильно связанной ДНК. Какой бы ни была причина, мы должны остерегаться позволять этому смещению G-C убедить нас в близких родственных связях между всеми животными с теплой кровью. ДНК, кажется, обещает утопию для биологических таксономистов, но мы должны знать о таких опасностях: есть многое, что мы все еще не понимаем в геномах.

Итак, произнеся необходимые предостерегающие заклинания, как мы можем использовать информационные подарки ДНК? Очаровательно, литературоведы используют те же методы, что и эволюционные биологи в рассмотрении родословных текстов. И едва ли не слишком хорошо, чтобы быть правдой – одним из лучших примеров оказалась работа над проектом «Кентерберийских рассказов». Члены этого международного синдиката литераторов использовали инструменты эволюционной биологии, чтобы проследить историю 85 различных версий рукописи «Кентерберийских рассказов». Эти древние рукописи, скопированные от руки до появления печати, являются нашей главной надеждой на восстановление потерянного оригинала Чосера. Как и в случае с ДНК, текст Чосера сохранился, пройдя через повторные копирования, со случайными изменениями, увековеченными в копиях. Придирчиво ведя подсчет накопленных различий, ученые могут восстановить историю копирования, эволюционное дерево этого воистину эволюционного процесса, состоящего из постепенного накопления ошибок в последовательных поколениях. Методы и трудности в эволюции ДНК и эволюции литературных текстов столь подобны, что каждая может использоваться для иллюстрации другой.

Итак, давайте временно обратимся от наших гиббонов к Чосеру, к четырем из 85 отдельным версиям рукописи «Кентерберийских рассказов»: «Британской Библиотеки», «Церкви Христа», «Эджертона», и версии «Хенгврт» (Манускрипт «Британской библиотеки» принадлежал Генри Дину, архиепископу Кентерберийскому в 1501 году, и вместе с манускриптом «Эджертона» и другими теперь хранится в Британской библиотеке в Лондоне. Манускрипт «Церкви Христа» теперь пребывает недалеко от того места, где я пишу, в библиотеке Церкви Христа в Оксфорде. Самое раннее упоминание о манускрипте «Хенгврта» обнаруживает его принадлежащим Флюку Даттону в 1537 году. Поврежденный крысами, грызущими овчину, на которой он написан, он находится теперь в Национальной библиотеке Уэльса.). Здесь – первые две строчки пролога:

БРИТАНСКАЯ БИБЛИОТЕКА:

                     Whan that Apiylle / wyth hys showres

                      The drowhte of Marche / hath pcede to the rote 

ЦЕРКОВЬ ХРИСТА: 

                      Whan that Auerell w’ his shoures soote

                      The droght f Marche hath peed to the roote

ЭДЖЕРТОН: 

                      Whan that Aprille with his showres soote

                      The drowte of marche hath peed to the roote

ХЕНГВРТ: 

                      Whan that Aueryll w’ his shoures soote

                      The droghte of March / hath peed to the roote

Первое, что мы должны сделать с ДНК или с литературными текстами, определить местонахождения сходств и различий. Для этого мы должны их «выровнять» – не всегда легкая задача, поскольку тексты могут быть фрагментарными или смешанными и неравной длины. Компьютер – большая помощь, когда приходится туго, но мы не нуждаемся в нем, чтобы выровнять первые две строчки пролога Чосера, в которых я выделил четырнадцать позиций, где источники расходятся.

У двух мест, второго и пятого, есть три варианта, а не два. Это составляет в общей сложности шестнадцать «значений». Собрав список различий, мы теперь решаем, какое дерево лучше всего их объясняет. Есть много способов сделать это, и все могут использоваться для животных так же, как для литературных текстов. Самый простой – сгруппировать тексты на основе полного подобия. Он обычно основывается на некоторых вариантах следующего метода. Сначала мы определяем местонахождение пары текстов, которые являются самыми подобными. Затем мы рассматриваем эту пару как единый усредненный текст, и ставим рядом с оставшимися текстами, потом мы ищем следующую самую подобную пару. И так далее, формируя последовательно вложенные группы, пока дерево отношений не будет создано. Методы такого типа – одни из самых часто используемых известны как «присоединение соседа» – быстры при вычислениях, но не включают логику эволюционного процесса. Они – просто меры подобия. Поэтому «кладистская» школа таксономии, которая очень эволюционна в своей основе (хотя не все ее участники понимают это) предпочитает другие методы, из которых ранее всех был разработан метод экономичности.

Экономичность, как мы заметили в «Рассказе Орангутана», здесь означает экономику объяснений. В эволюции животных или рукописей самое экономное объяснение то, которое постулирует наименьшее количество эволюционных изменений. Если два текста разделяют общую черту, экономное объяснение состоит в том, что они совместно унаследовали ее от общего предка, а не в том, что каждый развил ее независимо. Это далеко не неизменное правило, но оно, по крайней мере, с большей вероятностью будет оправдано, нежели его противоположность. Метод экономичности – во всяком случае, в принципе – просматривает все возможные деревья и выбирает то, которое минимизирует количество изменений.

Когда мы выбираем деревья, исходя из их экономичности, определенные типы различий не могут помочь нам. Различия, которые уникальны для единственной рукописи или единственного вида животного неинформативны. Метод присоединения соседа использует их, но метод экономичности игнорирует их полностью. Экономичность полагается на информативные изменения, которые отражены более чем в одной рукописи. Предпочтительное дерево – то, которое использует совместную родословную, чтобы объяснить столько информативных различий, сколько возможно. В наших чосеровских линиях есть пять таких информативных различий. Четыре из них разделяют рукописи на:

{Британская Библиотека плюс Эджертон} против {Церковь Христа плюс Хенгврт}.

Это различия, выделенные первой, третьей, седьмой и восьмой линиями. Пятое, делительная черта (косой штрих), выделенная двенадцатой линией, разделяет рукописи по-другому:

{Британская Библиотека плюс Хенгврт} против {Церковь Христа плюс Эджертон}.

Эти разделения противоречат друг другу. Мы не можем построить дерево, в котором каждое изменение случается только однажды. Лучшее дерево, которое мы можем создать, является следующим (отметьте, что это – бескорневое дерево). Оно минимизирует конфликт, требуя только, чтобы делительная черта появилась или исчезла дважды.

Фактически в этом случае у меня нет большой уверенности в нашем предположении. Конвергенции или реверсии распространены в текстах, особенно когда значение стиха не изменяется. У средневекового писца могло возникнуть небольшое раскаяние при изменении правописания, и даже меньшее при вставке или удалении знака препинания, такого как делительная черта. Лучшими индикаторами взаимоотношений были бы такие изменения, как перестановка слов. Генетические аналоги – «редкие геномные изменения»: такие события, как большие вставки, делеции или дупликации ДНК. Мы можем явно учесть их, присваивая больший или меньший вес различным типам изменений. Изменения, известные как общие или ненадежные, являются легковесными, и используются при подсчете дополнительных изменений. Изменениям, о которых известно, что они редкие или являются надежными индикаторами родства, придается надбавка в весе. Тяжелая надбавка к изменению означает, что мы вовсе не хотим посчитать ее дважды. Самое экономное дерево в этом случае то, у которого самый малый общий вес.

Метод экономичности широко используется для построения эволюционных деревьев. Но если конвергенции или реверсии распространены – как во многих последовательностях ДНК, а также в наших чосеровских текстах – экономичность может вводить в заблуждение. Это проблема, печально известная как «притяжение длинных ветвей». Вот, что она означает.

Кладограммы, корневые или бескорневые, передают только порядок перехода. Филограммы или филогенетические деревья (по-греческий phylon = раса/племя/класс), похожи на них, но используют также и длину ветвей для передачи информации. Обычно длина ветви обозначает эволюционное расстояние: длинные ветви представляют большие изменения, короткие – небольшие изменения. Первая строка «Кентерберийских рассказов» приводит к следующей филограмме:

В этой филограмме ветви не слишком отличаются по длине. Но вообразите, что случилось бы, если бы какие-либо две рукописи сильно изменились по сравнению с двумя другими. Ветви, ведущие к ним, протянулись бы очень далеко. Но пропорции изменений не стали бы уникальными. Они просто стали бы идентичными с изменениями в другом месте дерева, но (и в этом все дело), особенно с изменениями на другой длинной ветви. Это справедливо потому, что большинство изменений, так или иначе, сосредоточены на длинных ветвях. Достаточное количество эволюционных изменений ложно связывает две длинных ветви и заглушает истинный сигнал. Основанная на простом подсчете числа изменений, экономичность ложно группирует концы особенно длинных ветвей. Метод экономичности заставляет длинные ветви ошибочно «притягивать» друг друга.

Проблема «притяжения длинных ветвей» – главная головная боль биологических таксономистов. Она поднимает голову всякий раз, когда распространены конвергенции и реверсии, и, к сожалению, мы не можем надеяться избежать ее, рассматривая больше текста. Наоборот, чем больше текст, который мы рассматриваем, тем больше ошибочных общих черт мы находим и сильнее укрепляется наша убежденность в неправильном ответе. Такие деревья, как говорят, лежат в угрожающе звучащей «зоне Фельзенштайна», названной в честь выдающегося американского биолога Джо Фельзенштайна. К сожалению, информация ДНК особенно уязвима к притяжению длинных ветвей. Главная причина в том, что существует только четыре буквы в коде ДНК. Если большинство различий являются изменениями единственной буквы, независимая случайная мутация в той же букве особенно вероятна. Притяжение длинных ветвей создает для нас минное поле. Ясно, что в этих случаях мы нуждаемся в альтернативе экономичности. Она сводится к форме техники, известной как анализ вероятности, которая все больше и больше помогает в биологической таксономии.

Анализ вероятности использует даже больше компьютерной производительности, чем экономичность, потому что теперь важна длина ветвей. Таким образом, мы имеем дело с намного большими деревьями, потому что, в дополнение к рассмотрению всех возможных образцов ветвления, мы должны также рассматривать все возможные длины ветвей – Гераклова задача. Это означает, что, несмотря на умные сокращенные методы, сегодняшние компьютеры могут справиться с анализом вероятности, вовлекающим лишь небольшое число видов.

«Вероятность» не является неопределенным термином. Напротив, у нее есть точное значение. Для дерева специфической формы (не забываем включать длины ветвей) из всех возможных эволюционных путей, которые могли бы создать филогенетическое дерево такой же формы, только крошечное число образует точно те же тексты, которые мы теперь видим. «Вероятность» данного дерева – исчезающе маленькая вероятность окончиться фактическими существующими текстами, а не любыми другими текстами, которые могли быть созданы таким деревом. Хотя значение вероятности для дерева является крошечной, мы все еще можем использовать сравнение одного очень маленького значения с другим как способ оценки.

В анализе вероятностей есть различные альтернативные методы получения «лучшего» дерева. Самое простое – искать одно дерево с самой высокой вероятностью: наиболее вероятное дерево. Не безосновательно такой способ имеет название «максимальная вероятность», но только то, что это – единственное наиболее вероятное дерево, не означает, что другие возможные деревья намного менее вероятны. Позже было предложено, чтобы вместо того, чтобы доверять единственному наиболее вероятному дереву, мы рассматривали все возможные деревья, но оказывали пропорционально большее доверие более вероятным. Этот подход, альтернативный максимальной вероятности, известен как филогения Байеса (Bayesian phylogeny). Если много вероятных деревьев согласуются в специфической точке ветвления, то мы считаем, что у нее есть высокая вероятность того, чтобы быть правильной. Конечно, так же, как в максимальной вероятности, мы не можем рассмотреть все возможные деревья, но есть способы сокращенных вычислений, и они работают вполне прилично.

Наша уверенность в дереве, которое мы, наконец, выбираем, будет зависеть от нашей уверенности, что его различные ветви правильны, и мы обычно помещаем значения вероятностей около каждой точки ветвления. Вероятности вычисляем автоматически, используя метод Байеса, но для других способов, таких как экономичность или максимальная вероятность, мы нуждаемся в альтернативных мерах. Обычно используется метод «bootstrap», который неоднократно производит повторную выборку различных данных, чтобы выяснить, насколько большие отклонения создаются в окончательном дереве – другими словами, насколько дерево устойчиво к ошибке. Чем выше значение «bootstrap», тем больше заслуживает доверия точка разветвления, но даже эксперты бьются над тем, как точно истолковать, что говорит нам специфическая величина «bootstrap». Подобные методы – «складной нож» и «индекс распада». Все они – меры того, насколько мы должны доверять каждой точке ветвления дерева.

Прежде, чем мы оставим литературу и возвратимся к биологии, вот итоговая диаграмма эволюционных отношений между первыми 250 строчками 24 рукописей Чосера. Это филограмма, в которой не только схема ветвления, но и длины линий имеют значение. Вы можете непосредственно прочитать, какие рукописи незначительно отличаются друг от друга, а какие сильно отклонились. Филограмма бескорневая – в ней не зафиксировано, какая из этих 24 рукописей наиболее близка к «оригиналу».

Пришло время возвращаться к нашим гиббонам. За эти годы многие люди пытались выяснить наши родственные отношения с гиббонами. Экономичность предсказала четыре группы гиббонов. На следующей странице – корневая кладограмма, основанная на физических особенностях.

Эта кладограмма убедительно показывает, что виды Hylobates образуют группу, также как Nomascus. У обеих групп относительно высокие значения bootstrap (числа на линиях). Но в нескольких местах не решен порядок перехода. Даже притом, что выглядит, как будто бы Hylobates и Bunopithecus формируют группу, значение bootstrap 63 неубедительно для тех, кто обучен читать подобные руны. Морфологических особенностей недостаточно, чтобы построить дерево.

Поэтому Кристиан Рос и Томас Гайсман (Christian Roos, Thomas Geissmann) из Германии обратились к молекулярной генетике, а именно к участку митохондриальной ДНК, названному «областью контроля». Используя ДНК шести гиббонов, они расшифровали последовательности, выровняли их буква к букве и выполнили для них исследования на присоединение соседа, экономичность и максимальную вероятность. Максимальная вероятность, лучший из этих трех методов при преодолении притяжения длинных ветвей, дал самый убедительный результат. Его заключительный вердикт относительно гиббонов показан выше, и Вы можете увидеть, что он разрешает вопрос отношений между этими четырьмя группами. Величины bootstrap были достаточно, чтобы убедить меня использовать полученное дерево для филогении в начале этой главы.

Гиббоны разделились на отдельные виды относительно недавно. Но поскольку мы рассматриваем все более отдаленно связанные виды, разделенные все более длинными ветвями, даже сложные методы максимальной вероятности и анализа Байеса начинают нас подводить. Может создаться ситуация, когда недопустимо большая пропорция общих черт окажется случайной. Различия, как говорят в таких случаях, насыщают ДНК. Никакие причудливые методы не могут восстановить информацию о родословной, потому что любые остатки родственных отношений были уничтожены разрушительным действием времени. Проблема становится особенно острой для нейтральных различий в ДНК. Сильный естественный отбор держит гены в точном, ограниченном диапазоне. В крайних случаях важные функциональные гены могут оставаться без преувеличения идентичными в течение сотен миллионов лет. Но, для псевдогена, который никогда ничего не делает, таких отрезков времени достаточно, чтобы привести к безнадежной насыщенности. В таких случаях нам нужны другие данные. Самая многообещающая идея состоит в том, чтобы использовать редкие геномные изменения, которые я упоминал прежде – изменения, которые вовлекают перестройку ДНК, а не только замену единственной буквы. Эти редкие, безусловно, обычно уникальные, совпадающие подобия создают намного меньше проблем. И однажды найденные, они могут замечательно выявлять родственные связи, как мы выясним, когда к нашей увеличивающейся группе странников присоединится гиппопотам, и мы будем шокированы его удивительным рассказом о ките.

А теперь, важная запоздалая мысль об эволюционных деревьях, которую мы извлекли из уроков в «Рассказе Евы» и «Рассказе Неандертальца». Мы могли бы назвать ее концом гиббонов и гибелью видового дерева. Мы обычно предполагаем, что можем нарисовать единое эволюционное дерево для нескольких видов. Но «Рассказ Евы» уверил нас, что у различных частей ДНК (и таким образом различных частей организма) могут быть различные деревья. Я думаю, что это формулирует характерную проблему самой идеи видовых деревьев. Виды – смеси ДНК из многих различных источников. Как мы заметили в «Рассказе Евы» и повторили в «Рассказе Неандертальца», каждый ген, фактически каждая буква ДНК идет своим собственным путем сквозь историю. У каждой части ДНК и каждого свойства организма могут быть различные эволюционные деревья.

Примеры этого возникают ежедневно, но хорошая осведомленность принуждают нас игнорировать смысл этой информации. У марсианского таксономиста, обнаружившего гениталии только у мужчины, женщины и самца гиббона не было бы никакого сомнения в классификации этих двух мужчин как более близко сродненных друг с другом, чем с любой женщиной. Действительно, ген, определяющий мужской пол (названный SRY), никогда не был в женском теле, по крайней мере, с тех пор, как мы и гиббоны отделились друг от друга. Традиционно морфологи признают особый случай для половых признаков, избегая «бессмысленных» классификаций. Но идентичные проблемы возникают и в других местах. Мы видели это раньше с группами крови АВО в «Рассказе Евы». Мой ген группы крови В более близко связывает меня с шимпанзе группы В, чем с человеком группы А. И это относится не только к половым генам или генам группы крови, но и ко всем генам и особенностям, которые подвержены такому воздействию при определенных обстоятельствах. Большинство молекулярных и морфологических особенностей указывают, что шимпанзе – наши самые близкие родственники. Но большое меньшинство свидетельствует, что это гориллы, или, что шимпанзе наиболее близко связаны с гориллами, и они оба одинаково близки к людям.

Это не должно нас удивлять. Различные гены наследуются, проходя различными маршрутами. Популяция, предковая ко всем трем видам, будет разнородна – каждый ген имеет множество различных линий. Ген у людей и горилл, вполне возможно, имеет одну родословную, в то время как шимпанзе он был передан от более отдаленного родственника. Все, что необходимо для ранее разошедшихся линий гена, пройти через раскол человек-шимпанзе, таким образом, у людей этот ген может происходить от одной из них, а у шимпанзе от другой (Чем  больше времени прошло между расколами видов (или чем меньший размер популяции), тем больший ущерб потерпели предковые линии от генетического дрейфа. Те аккуратные таксономисты, кто надеется, что деревья видов совпадут с  деревьями генов, обнаружат, что легче иметь дело с животными, расколы которых достаточно растянуты во времени, в отличие от африканских обезьян. Но всегда есть гены, такие как SRY, для которого отдельные линии систематически поддерживаются естественным отбором на огромных промежутках времени.).

Таким образом, мы должны признать, что единственное дерево – не вся история. Деревья видов могут быть построены, но их нужно считать упрощенным обобщением множества генных деревьев. Я могу предложить интерпретировать дерево вида двумя различными способами. Первый – обычная генеалогическая интерпретация. Один вид – самый близкий родственник другого, если из всех видов, которые мы рассматриваем, он разделяет последнего общего генеалогического предка. Второй, я подозреваю, способ будущего. Дерево вида может быть представлено как изображение отношений среди демократического большинства генома. Оно соответствует результату «решения большинством голосов» среди генных деревьев.

Демократическая идея – генное голосование – является той, которую я предпочитаю. В этой книге все отношения между видами должны интерпретироваться таким образом. Все филогенетические деревья, которые я представляю, должны быть рассмотрены в духе генетической демократии, от отношений между обезьянами до отношений между животными, растениями, грибами и бактериями. 

СВИДАНИЕ 5. ОБЕЗЬЯНЫ СТАРОГО СВЕТА

 Поскольку мы достигли этого свидания и готовы приветствовать Копредка 5, нашего прародителя в приблизительно 1.5-милионном поколении, мы пересекаем важную (хотя и несколько произвольную) границу. Впервые в нашем путешествии мы покидаем один геологический период, неоген, чтобы войти в более ранний, палеоген. В следующий раз, когда мы сделаем это, мы должны будем внезапно оказаться в Меловом мире динозавров. Свидание 5 назначено приблизительно на 25 миллионов лет назад, в палеогене. Более конкретно оно происходит в олигоценовую эпоху этого периода, последняя наша остановка в поездке в прошлое, когда климат и растительность на Земле узнаваемо подобны сегодняшним. Далее в прошлое мы не встретим признаков открытых лугов, которые так символизируют наш период неогена, или блуждающих стад травоядных, которые сопровождали их распространение. Двадцать пять миллионов лет назад Африка была полностью изолирована от остальной части мира, отделена от самой близкой части суши, Испании, морем, столь же широким как то, что отделяет ее от Мадагаскара сегодня. Именно на этом гигантском острове Африка нашему путешествию собирается придать силу приток новых энергичных и находчивых новичков, обезьян Старого Света – первых странников, имеющих хвосты.

[Графика удалена]

*КОПРЕДОК 5. В значительной степени взят за основу олигоценовый проплиопитековый примат Aegyptopithecus. Стоит упомянуть плотоядную диету, умеренно длинную морду с крутым профилем и высокими щеками, направленные вниз ноздри, собачий половой диморфизм и хвост. Вероятно, жил в социальных группах.

Сегодня число обезьян Старого света насчитывает почти 100 видов, некоторые из которых мигрировали из их родного континента в Азию (см. «Рассказ Орангутана»). Они разделены на две главных группы: с одной стороны обезьяны колобусы в Африке вместе с лангурами и носачами в Азии; с другой стороны главным образом азиатские макаки плюс бабуины, мартышки и т.д. Африки.

Последний общий предок всех живущих обезьян Старого света жил приблизительно на 11 миллионов лет позже, чем Копредок 5, вероятно, около 14 миллионов лет назад. Из ископаемых самым полезным для того, чтобы осветить тот период, является род Victoriapithecus, который сейчас известен благодаря более чем тысячи фрагментам, включая роскошный череп с острова Мабоко на озере Виктория. Все путешествующие обезьяны Старого света объединяются 14 миллионов лет назад, чтобы приветствовать своего собственного копредка, возможно самого викториапитека, или кого-то похожего. Затем они идут далее, чтобы 25 миллионов лет назад присоединиться к путешествующим обезьянам в лице нашего собственного Копредка 5.

И на кого был похож Копредок 5? Возможно, немного на ископаемый род Aegyptopithecus, который действительно жил приблизительно 7 миллионами лет ранее. Сам Копредок 5, согласно нашему обычному эмпирическому правилу, наиболее вероятно, не разделял характерных признаков своих потомков, узконосых обезьян, которые включают человекообразных обезьян и обезьян Старого света. Например (эта особенность дает узконосым обезьянам их название), Копредок 5, вероятно, имел узкие, направленные вниз ноздри, в отличие от широких, направленных в стороны ноздрей у обезьян Нового света, широконосых обезьян. Для самок, вероятно, была характерна полная менструация, которая распространена среди человекообразных обезьян и обезьян Старого света, но не среди обезьян Нового Света. У них, вероятно, слуховая труба была сформирована барабанной костью, в отличие от обезьян Нового света, в ухе которых отсутствует костистая труба.

Этот филогенез приблизительно 100 видов обезьян Старого Света является общепринятым. Круги, теперь видимые на концах ветвей, указывают порядок количества известных видов в каждой группе: отсутствие круга означает 1–9 известных видов, маленький круг означает 10–99 видов, большой – 100–999, и т.д.; каждая из приведенных здесь четырех групп содержит от 10 до 99 видов.

Был ли у него хвост? Почти наверняка, да. Учитывая, что самое очевидное различие между человекообразными (ape) и другими обезьянами (monkey) – наличие или отсутствие хвоста, мы склоняемся к нелогичному заключению, что разделение 25 миллионов лет назад соответствует моменту, когда был потерян хвост. Фактически Копредок 5 был, по-видимому, хвостатым, как практически все другие млекопитающие, а Копредок 4 был бесхвостым, как и все его потомки – современные человекообразные обезьяны. Но мы не знаем, в какой момент по дороге, ведущей от Копредка 5 к Копредку 4, был потерян хвост. И при этом нет никакой особой причины для нас вдруг начинать использовать слово «ape», чтобы выразить потерю хвоста. Африканский ископаемый род проконсул, например, можно скорее назвать «ape», а не «monkey», потому что на развилке Свидания 5 он находился на стороне человекообразных обезьян. Но факт, что на этой развилке он находился на стороне человекообразных обезьян, ничего не говорит нам о том, был ли у него хвост. Между прочим, соотношение этих фактов свидетельствует, что, цитируя название недавней авторитетной статьи, «У проконсула не было хвоста». Но это никоим образом не следует из факта, что проконсул находился на стороне человекообразных обезьян при разделении.

Кого тогда мы могли бы назвать промежуточным звеном между Копредком 5 и проконсулами, прежде чем те потеряли свой хвост? Строгий кладист назвал бы их «ape», потому что при разделении они находились на стороне человекообразных обезьян. Различные таксономисты назвали бы их «monkey», потому что они были хвостаты. Я не впервые говорю, что глупо слишком разжигать страсти в связи с названиями.

Обезьяны Старого света, Cercopithecidae – истинная филогенетическая ветвь, группа, которая включает всех потомков единого общего предка. Чего, однако, нельзя сказать обо всех «monkey», так как они включают обезьян Нового света, Platyrrhini. Обезьяны Старого света являются более близкими кузенами человекообразных обезьян, с которыми они объединены в Catarrhini, чем обезьян Нового света. Все обезьяны вместе составляют естественную филогенетическую ветвь, Anthropoidea. «Monkey» составляют искусственную (формально «парафилетическую») группу, потому что она включает всех platyrrhines плюс некоторых из catarrhines, но исключает человекообразную часть catarrhines. Возможно, лучше было бы называть обезьян Старого света хвостатыми apes. «Catarrhine», как я упоминал ранее, обозначает «нос вниз»: ноздри направлены вниз; в этом отношении мы – идеальные catarrhines. Вольтеровский доктор Панглосс заметил, что «нос создан для очков, поэтому мы рождаемся, чтобы носить очки». Он, возможно, добавил, что ноздри наших узконосых превосходно приспособлены, чтобы препятствовать попаданию дождя. «Platyrrhine» означает плоский или широкий нос. Нос – не единственное диагностическое различие между этими двумя большими группами приматов, но он дает им их названия. Давайте поспешим на Свидание 6 и встретим широконосых. 

СВИДАНИЕ 6. ОБЕЗЬЯНЫ НОВОГО СВЕТА

 Свидание 6, где широконосые обезьяны Нового света встречают нас и нашего прародителя в приблизительно 3-миллионном поколении, Копредка 6, первого антропоида, происходит около 40 миллионов лет назад. Это было время пышных тропических лесов – даже Антарктида была, по крайней мере, частично зеленой в те дни. Хотя все широконосые обезьяны теперь живут в Южной или Центральной Америке, само свидание почти наверняка было не там. Я предполагаю, что Свидание 6 происходило где-то в Африке. Группа африканских приматов с плоскими носами, которые не оставили живых африканских потомков, каким-то образом стояла у основания широконосых обезьян в форме маленькой популяции, достигшей Южной Америки. Мы не знаем когда это случилось, но это было до 25 миллионов лет назад (когда первые ископаемые обезьяны появляются в Южной Америке), и после 40 миллионов лет назад (Свидание 6). Южная Америка и Африка были ближе друг к другу, чем теперь, и уровень моря ниже, что, возможно, обнажало цепь островов на промежутке до Западной Африки, удобных для перемещения с острова на остров. Обезьяны, вероятно, переправлялись на обломках мангровых лесов, которые, как плавучие острова, могли поддерживать жизнь в течение короткого времени. Течения имели направления, подходящие для случайной переправы на плотах. Другая крупная группа животных, дикобразовые грызуны, вероятно, прибыла в Южную Америку приблизительно в то же время. Снова вероятно, что они прибыли из Африки, и действительно их называют в честь африканского дикобраза, Hystrix. Вероятно, обезьяны переправлялись через ту же цепь островов, что и грызуны, используя те же благоприятные течения, хотя, по-видимому, не одни и те же плоты.

Действительно ли все приматы Нового света произошли от единственного иммигранта? Или был коридор для перемещения с острова на остров, неоднократно используемый приматами («Используемый», конечно, неудачное выражение, если оно означает нечто большее, чем непреднамеренность. Как мы увидим в «Рассказе Дронта», ни одно животное никогда не пытается колонизировать совершенно новую территорию. Но когда это случайно происходит, эволюционные последствия могут быть серьезными.)? Что могло бы представить прямое доказательство двойной иммиграции? В случае с грызунами, в Африке все еще существуют грызуны семейства дикобразовых, включая африканских дикобразов, кротовых крыс, скальных крыс и тростниковых крыс. Если бы оказалось, что некоторые из южноамериканских грызунов – близкие кузены некоторых африканских (скажем, дикобразов), в то время как другие южноамериканские грызуны – более близкие кузены других африканских (скажем, кротовых крыс), то это было бы хорошим доказательством того, что грызуны не раз дрейфовали в Южную Америку. Имеющиеся аргументы несовместимы с представлением, что грызуны распространились по Южной Америке только однажды, хотя это не убедительные доказательства. Все южноамериканские приматы также являются более близкими кузенами друг другу, чем любому африканскому примату. Снова же, это совместимо с гипотезой единственного случая распространения, и снова доказательства не убедительны.

Филогенез приблизительно 100 видов обезьян Нового света несколько оспариваем, но здесь мы следуем нынешнему консенсусу.

Это – удобный случай, чтобы повторить, что неправдоподобность переправы на плотах вовсе не является причиной, чтобы сомневаться в том, что это случилось. Это звучит удивительно. Обычно, в повседневной жизни, внушительное неправдоподобие – серьезное основание считать, что что-то не может случиться. Проблема с межконтинентальной переправой на плотах обезьян, или грызунов, или кого-нибудь еще в том, что это должно было случиться всего однажды, и времени для этого было достаточно, чтобы иметь важные последствия – это находится за пределами того, что мы можем воспринять интуитивно. Шансы против плавающего мангрового дерева с находящейся на нем беременной самкой обезьяны, достигшего берега в любом году, могут быть десять тысяч к одному. Это кажется равносильно невозможному в свете человеческого опыта. Но, учитывая 10 миллионов лет, это становится почти неизбежным. Как только это случилось, остальное было просто. Удачливая самка родила семью, которая, в конечном счете, стала династией, которая, в конечном счете, разрослась, чтобы стать всеми видами обезьян Нового света. Однажды это должно было случиться: маленькое дало начало великому.

Так или иначе, случайные переправы на плотах не столь уж редки, как Вам могло бы показаться. Маленькие животные часто бывали замечены на плавающих обломках. И животные не всегда были маленькими. Зеленая игуана, как правило, бывает один метр длиной, и может быть до двух метров. Я цитирую заметку в «Nature» Эллен Ченски (Ellen J. Censky) и др.:

4 октября 1995 года, по крайней мере, 15 особей зеленой игуаны, Iguana iguana, появились на восточных берегах Ангильи в Карибском море. Этот вид ранее не встречался на острове. Они приплыли на спутанных бревнах и корнях деревьев, некоторые из которых были более 30 футов длиной и имели большие корневые скопления. Местные рыбаки говорят, что переплетение деревьев было обширно и заняло два дня, чтобы нагромоздиться на берегу. Они сообщили, что видели игуан и на берегу и на бревнах в заливе.

Игуаны, по-видимому, на каком-то другом острове устроились на ночлег в деревьях, которые были выкорчеваны и унесены в море ураганом: или Льюисом, который бушевал над Восточными Карибами 4-5 сентября, или Мэрилин две недели спустя. Ни один ураган не достиг Ангильи. Ченски и ее коллеги впоследствии поймали или видели зеленых игуан на Ангилье и на островке в половине километра от берега. Популяция все еще сохранилась на Ангилье в 1998 году и включала, по крайней мере, одну репродуктивно активную самку (Игуаны и родственные им ящерицы особенно хороши при колонизации островов повсюду в мире. Игуаны даже встречаются на Фиджи и Тонге, намного более отдаленных, чем острова Вест-Индии.).

Не могу удержаться от замечания, насколько приводит в уныние этот вид логики «однажды это должно было случиться», когда Вы применяете ее в отношении более близкого случая. Принцип ядерного сдерживания и единственное отдаленно напоминающее оборонительное объяснение стремления обладать ядерным оружием – что никто не посмеет рискнуть ударить первым из страха крупного возмездия. Каковы шансы ошибочного ракетного запуска: диктатор, который сходит с ума; компьютерная система, работающая со сбоями; возрастание угроз, которые выходят из-под контроля? Нынешний лидер наибольшей ядерной державы в мире (я пишу в 2003 году) думает, что слово «ядерный» (nuclear) пишется «nucular». И он никогда не давал повода предположить, что его мудрость или его интеллект превосходят его грамотность. Он продемонстрировал склонность к «упреждающим» первым ударам. Каковы шансы ужасной ошибки, начинающей Армагеддон? Один против ста в течение любого года? Я был бы более пессимистичным. Мы подошли ужасно близко в 1963 году, и это было при интеллектуальном президенте. В любом случае, что могло бы случиться в Кашмире? Израиле? Корее? Даже если ежегодные шансы настолько же низки, как одна сотая, столетие – очень короткое время, учитывая масштабы бедствия, о котором мы говорим. Однажды это должно было случиться.

Давайте вернемся к более веселой теме, обезьянам Нового света. Передвигаясь вдоль ветвей на четырех ногах, как обезьяны Старого света, некоторые обезьяны Нового света висят, как гиббоны, и даже используют брахиацию. Хвост выделяется у всех обезьян Нового света, у паукообразных обезьян, шерстистых обезьян и ревунов; он цепкий и используется как дополнительная рука. Обезьяны могут счастливо висеть на одном только хвосте или любой комбинации рук, ног и хвоста. У хвоста нет руки на конце, но Вы почти верите, что есть, когда наблюдаете за паукообразной обезьяной (Хвосты, позволяющие цепляться за ветки, также обнаружены у некоторых других южноамериканских групп, включая кинкажу (хищники), дикобразов (грызуны), древесных муравьедов (неполнозубые), опоссумов (сумчатые), и даже саламандр Bolitoglossa. Может быть, есть что-то особенное в Южной Америке? Но хвосты, позволяющие цепляться за ветки, также встречаются у панголинов, некоторых древесных крыс, некоторых сцинков и хамелеонов не из Южной Америки!).

Обезьяны Нового света также включают некоторых эффектных акробатичных прыгунов, а также единственных ночных антропоидов, совиных обезьян. Как у сов и кошек, у совиных обезьян большие глаза – самые большие из всех обезьян, включая человекообразных. Карликовые игрунки размером с соню меньше, чем любой другой антропоид. Самые большие – обезьяны-ревуны, однако они всего лишь столь же большие, как крупный гиббон. Ревуны также напоминают гиббонов в обладании способностью висеть и раскачиваться на руках, и тем, что являются очень шумными – но если гиббоны похожи на нью-йоркские полицейские сирены в бешеной погоне, отряд обезьян-ревунов с их резонирующими полыми костистыми голосовыми коробками больше напоминает мне призрачный эскадрон реактивных самолетов, устрашающе ревущий в верхушках деревьев. Как оказалось, у обезьян-ревунов есть свой рассказ для нас, обезьян Старого света – о способах, позволяющих нам видеть цвета, поскольку они независимо нашли такое же решение.

Пятая рука

 

Черная обезьяна-ревун (Alouatta caraya) демонстрирует свой цепкий хвост.

[Иллюстрации добавлены переводчиком.] 

Рассказ Обезьяны-Ревуна

 Новые гены не добавляются к геному из ничего. Они возникают как дубликаты старых генов. Затем в течение эволюционного времени они идут своими собственными путями, благодаря мутации, отбору и дрейфу. Мы обычно не видим этого, но, как детективы, появляющиеся на сцене после преступления, мы можем, сложив части вместе, выяснить, что могло случиться, используя оставленные улики. Гены, вовлеченные в цветовое зрение, представляют поразительный пример. По причинам, которые вскоре станут понятны, обезьяна-ревун имеет все возможности рассказать эту историю.

В течение мегалет своего формирования млекопитающие были ночными существами. День принадлежал динозаврам, у которых, вероятно, если ориентироваться на их современных родственников, было превосходное цветовое зрение. Такое же, как мы можем обоснованно предположить, было и у отдаленных предков млекопитающих, млекопитающеподобных рептилий, наполнявших дни до расцвета динозавров. Но во время длинного ночного изгнания млекопитающих их глаза должны были улавливать любые фотоны, которые были доступны, независимо от цвета. Не удивительно, что по причинам, которые мы исследуем в «Рассказе Слепой Пещерной Рыбы», способность различать цвета ухудшилась. По сей день у большинства млекопитающих, даже у тех, кто вернулся к дневному образу жизни, довольно плохое цветовое зрение, со всего двухцветной системой («дихроматическое»). Это объясняется количеством различного типа чувствительных к цвету клеток – «колбочек» – в сетчатке. Мы, узконосые обезьяны и обезьяны Старого света, имеем три типа: красные, зеленые и синие, и поэтому наше зрение трихроматическое, но факты свидетельствуют, что мы вернули третий тип колбочек после того, как наши ночные предки потеряли его. Большинство других позвоночных животных, таких как рыбы и рептилии, но не млекопитающие, имеют зрение с тремя типами колбочек (трихроматическое) или с четырьмя (тетрахроматическое), а птицы и черепахи могут быть еще более искушенными. Мы рассмотрим особый случай с обезьянами Нового света и даже еще более особый случай с обезьянами-ревунами через мгновение.

Есть любопытные данные, что австралийские сумчатые отличаются от большинства млекопитающих наличием хорошего трихроматического цветового зрения. Кэтрин Арресе (Catherine Arrese) и ее коллеги, которые обнаружили его у медовых опоссумов и сумчатых тушканчиков (оно было также продемонстрировано у кенгуру-валлаби), предполагают, что австралийские (но не американские) сумчатые сохранили наследственный зрительный пигмент рептилий, который потеряли остальные млекопитающие. Но у млекопитающих вообще, вероятно, самое плохое цветовое зрение среди позвоночных животных. Большинство млекопитающих видит цвета, если вообще видит, лишь так же, как дальтоники. Характерные исключения были обнаружены среди приматов, и не случайно, что они больше, чем любая другая группа млекопитающих, использовали яркие цвета в половых демонстрациях.

В отличие от австралийских сумчатых, которые, возможно, никогда не теряли его, мы можем сказать, глядя на наших родственников среди млекопитающих, что мы, приматы, не сохранили трихроматическое зрение наших рептильных предков, но открыли его вновь – не однажды, но дважды независимо: сначала у обезьян Старого света и человекообразных обезьян, и второй раз в Новом свете у обезьяны-ревуна, хотя и не у обезьян Нового света вообще. Цветовое зрение обезьяны-ревуна похоже на зрение человекообразных обезьян, но достаточно отличается, чтобы приписывать ему независимое происхождение.

Почему хорошее цветовое зрение было настолько важно, что трихроматизм развился независимо в Новом свете и у обезьян Старого света? Основное предположение – что это имеет отношение к питанию фруктами. В преимущественно зеленом лесу фрукты выделяются своими цветами. Это, в свою очередь, вероятно, не является случайностью. Фрукты, возможно, развили яркие цвета, чтобы привлечь плодоядных животных, таких как обезьяны, кто играет жизненно важную роль в распространении и удобрении их семян. Трихроматическое зрение также помогает в обнаружении молодых, более сочных листьев (часто светло-зеленого цвета, иногда даже красного), на фоне более темных зеленых цветов – но это, по-видимому, не выгодно растениям.

Цвет поражает наше сознание. Слова, обозначающие цвет – среди первых прилагательных, которые изучают младенцы, и которые они наиболее нетерпеливо связывают с любым употребляемым существительным. Трудно представить, что оттенки, которые мы воспринимаем, являются обозначениями электромагнитных излучений, лишь немного отличающихся длиной волны. У красного света длина волны – приблизительно 700-миллиардная доля метра, у фиолетового – приблизительно 420-миллиардная доля метра, но вся гамма видимого электромагнитного излучения, которая находится в этих пределах, является лишь смехотворно узким окном, крошечной частью полного спектра, длины волн которого колеблются от километров (некоторые радиоволны) до долей нанометра (гамма-лучи).

Все глаза на нашей планете настроены таким образом, чтобы использовать длины волн электромагнитного излучения, в котором наша местная звезда сияет наиболее ярко, и которые проходят сквозь окно нашей атмосферы. На глаз как биохимическое оборудование, соответствующее этому конечному диапазону длин волн, законы физики налагают определенные ограничения к области электромагнитного спектра, который может быть виден при использовании этого средства. Ни одно животное не может видеть далеко в инфракрасной части спектра. Лучше других это делает ямкоголовая гадюка, имеющая на голове ямки, которые как никакие другие органы чувств сосредотачивают инфракрасные лучи в точное изображение, позволяя этим змеям достигать некоторой направленной чувствительности к высокой температуре, производимой их добычей. И ни одно животное не может видеть далеко в ультрафиолетовой области, хотя некоторые из них, пчелы например, могут видеть немного дальше, чем мы. Но с другой стороны, пчелы не могут видеть наш красный: для них он инфракрасный. Все животные сходятся на том, что «свет» является узким диапазоном длин электромагнитных волн, лежащим где-то между ультрафиолетовым в коротковолновом конце и инфракрасным в длинноволновом. Пчелы, люди и змеи отличаются только слегка в том, где они проводят границы в каждом конце «света».

Еще более узкое поле зрения получает каждая из различного рода светочувствительных клеток в сетчатке. Некоторые колбочки немного более чувствительны к красной области спектра, другие – к синей. В этом состоит отличие между колбочками, которое делает возможным цветовое зрение, и качество цветового зрения зависит в значительной степени от того, сколько различных классов колбочек сравниваются. Дихроматичные животные имеют лишь два класса колбочек, вперемежку друг с другом. Трихроматичные имеют три, тетрахроматичные – четыре. У каждой колбочки есть кривая чувствительности, которая достигает максимума где-нибудь в середине спектра и угасает не очень симметрично с обеих сторон от пика. За пределами своей кривой чувствительности клетка, как говорят, является слепой.

Предположим, пики чувствительности колбочки лежат в зеленой части спектра. Означает ли это, что клетка посылает импульсы в мозг, когда тот смотрит на зеленый объект, как трава или бильярдный стол? Решительно нет. Это означает, что клетка нуждается в большем количестве, (скажем), красного света, чтобы достигнуть того же уровня возбуждения, как при данном количестве зеленого света. Такая клетка вела бы себя одинаково при ярком красном свете или более тусклом зеленом свете (Сравнивается чувствительность трех типов колбочек к различным длинам волн. Хотя колбочки называются синими, зелеными и красными, их пиковые чувствительности лежат в фиолетовой, зеленой и оранжевом конце желтой области. Ответные реакции трех видов колбочек объединяются мозгом, чтобы создать разнообразие оттенков, которые мы видим.). Нервная система может различить цвет объекта, только сравнивая одновременно уровни возбуждения (по крайней мере) двух клеток, предпочитающих различные цвета. Каждая служит «контролем» для другой. Вы можете получить еще лучшее представление о цвете объекта, сравнивая уровень возбуждения трех клеток с различными кривыми чувствительности.

Цветные телевизоры и компьютерные экраны из-за того, что они разработаны для наших трихроматичных глаз, также используют трехцветную систему. На нормальном компьютерном мониторе каждый «пиксел» состоит из трех точек, помещенных слишком близко друг к другу, чтобы глаз мог это заметить. Каждая точка всегда горит одним и тем же цветом: если Вы посмотрите на экран при достаточном увеличении, Вы всегда увидите одни и те же три цвета, обычно красный, зеленый и синий, хотя и при других комбинациях можно достичь того же эффекта. Телесный тон, едва различимая тень – любой оттенок, который Вы пожелаете – можно достичь, варьируя интенсивностью, с которой горят эти три основных цвета (Это дает интригующую возможность. Представьте себе, что нейробиолог вставляет крошечный зонд, скажем, в зеленую колбочку и электрически ее стимулирует. Зеленая клетка теперь докладывает: «свет», в то время как все другие клетки молчат. Будет ли мозг «видеть» «супер зеленый» оттенок, который не может быть достигнут никаким реальным светом? Реальный свет, независимо от того, насколько чистый, всегда стимулировал бы все три класса колбочек в различной степени. Хотя тетра-хроматические черепахи, например, могли бы быть больше всех разочарованы нереалистичными (для них) картинами на нашем телевидении и киноэкранах.).

Точно так же, сравнивая уровни возбуждения только трех видов колбочек, наш мозг может воспринимать огромный диапазон оттенков. Но большинство плацентарных млекопитающих, как уже сказано, является не трихроматами, а дихроматами, лишь с двумя классами колбочек в их сетчатках. Один класс достигает максимума в фиолетовой области (или, в некоторых случаях, ультрафиолетовой), пики других классов лежат где-то между зеленым и красным. У нас, трихроматов, колбочки с короткой длиной волны достигают максимума между фиолетовой и синей областями, и их обычно называют синими колбочками. Другие два класса наших колбочек можно назвать зелеными и красными колбочками. Это сбивает с толку, но даже «красные» колбочки достигают максимума при длине волны, которая является фактически желтоватой. Но их кривая чувствительности в целом простирается в красный конец спектра. Даже если кривая достигает максимума в желтой области, они все еще сильно возбуждаются в ответ на красный свет. Это означает, что, если Вы вычитаете уровень возбуждения «зеленой» колбочки из уровня «красной», Вы получите особенно сильный эффект, глядя на красный свет. С этого момента я забуду о пиковой чувствительности (фиолетовой, зеленой и желтой) и обращусь к трем классам колбочек – синим, зеленым и красным. В дополнение к колбочкам есть также палочки: светочувствительные клетки отличной от колбочек формы, которые особенно полезны ночью, и которые не используются в цветовом зрении вообще. Они не будут играть роли в дальнейшей нашей истории.

Химия и генетика цветового зрения довольно хорошо изучены. Главные молекулярные актеры в истории – опсины: белковые молекулы, которые служат оптическими пигментами, находящимися в колбочках (и палочках). Каждая молекула опсина работает, будучи упакованной и присоединенной к единственной молекуле ретинола: химическому соединению, полученному из витамина A (Морковь богата бета-каротином, из которого может быть образован витамин А: отсюда и слух — слухи могут быть правдивыми — что морковь улучшает зрение.). Молекула ретинола была предварительно сильно изогнута, чтобы соответствовать молекуле опсина. При попадании единственного фотона соответствующего цвета петля распрямляется. Это – сигнал для клетки, чтобы запустить нервный импульс, который говорит мозгу: «свет моего типа здесь». Затем молекула опсина перезаряжается другой изогнутой молекулой ретинола из магазина в клетке.

Теперь – важный момент: не все молекулы опсина одинаковы. Опсины, как и все белки, создаются под влиянием генов. Различия в ДНК способствуют производству опсинов, которые чувствительны к различным цветам, и это является генетической основой двухцветных или трехцветных систем, о которых мы говорили. Конечно, поскольку все гены присутствуют во всех клетках, различие между красной и синей колбочкой не в том, какими генами они обладают, а в том, какие гены они запускают. И есть своего рода правило, которое говорит, что любая колбочка запускает ген только одной категории.

Гены, которые создают наши зеленые и красные опсины, очень похожи друг на друга; они находятся на X хромосомах (половых хромосомах, которые у женщин имеются в двух копиях, а у мужчин - только в одной). Ген, который делает синий опсин, немного отличается, и лежит не на половой хромосоме, а на одной из обычных, неполовых хромосом, названных аутосомами (в нашем случае это хромосома 7). Наши зеленые и красные клетки были, очевидно, получены в результате недавнего случая дупликации гена, а намного раньше они, должно быть, отделились от гена синего опсина в другом случае дупликации. Обладает ли человек дихроматичным или трихроматичным зрением зависит от того, сколько генов различных опсинов он имеет в своем геноме. Если у него будут, скажем, опсины, чувствительные к синему и зеленому свету, но не красному, то он будет дихроматом.

Это объясняет, как цветовое зрение работает вообще. Теперь, прежде чем мы непосредственно рассмотрим особый случай обезьяны-ревуна, и как он стал трихроматом, мы должны понять странную двуцветовую систему остальных обезьян Нового света (между прочим, она имеется также у некоторых лемуров, но не у всех обезьян Нового света – например, ночные обезьяны обладают монохроматическим зрением). В целях данного обсуждения мы временно исключим обезьяну-ревуна и другие необычные виды из «обезьян Нового света». Мы дойдем до обезьяны-ревуна позже.

Во-первых, оставим в стороне синий ген как постоянно закрепленный на аутосоме, присутствующей у всех особей, самцов или самок. Красные и зеленые гены на X хромосомах более сложны и привлекут наше внимание. В каждой X хромосоме есть только один локус, где мог бы находиться красный или зеленый аллель (Фактически  красный и зеленый — только два из ряда возможных в этом локусе, но мы имеем достаточно много сложностей для начала. В целях этого рассказа они будут твердо «красным» и «зеленым».). Так как самка имеет две X хромосомы, у нее есть две возможности обладать красным или зеленым геном. Но у самца со всего одной X хромосомой имеется или красный, или зеленый ген, но не оба. Таким образом, типичный самец обезьяны Нового света должен быть дихроматичным. У него имеются только два вида конусов: синий плюс либо красный, либо зеленый. По нашим стандартам все самцы дальтоники, но они дальтоники двух различных типов; некоторые самцы в популяции не имеют зеленого опсина, у других нет красного. Все они имеют синий.

Самкам потенциально повезло больше. Имея две X хромосомы, они могли бы быть достаточно удачливыми, чтобы обладать красным геном на одной из них, а зеленым - на другой (плюс синий цвет, который снова сам собой разумеется). Такая самка была бы трихроматом (Что касается того, чтобы обеспечить в любой колбочке включение только красного или зеленого гена опсина, но не обоих, это оказалось нетрудным для самок. У них уже есть механизм, чтобы отключить всю систему  X-хромосомы в любой клетке. Случайно выбранная половина клеток дезактивирует одну из двух  X-хромосом, другая половина — другую. Это важно, потому что все гены в  X-хромосоме настроены, чтобы работать, если активна всего одна – что необходимо, потому что у самцов есть только одна X-хромосома.). Но невезучая самка может иметь два красных или два зеленых гена, и поэтому будет дихроматом. По нашим стандартам такие самки дальтоники, и двух типов, точно так же как самцы.

Популяции обезьян Нового света, таких как игрунки или беличьи обезьяны, поэтому являются странной сложной смесью. Все самцы и некоторые самки являются дихроматами: дальтониками по нашим стандартам, но двух альтернативных типов. Некоторые самки, но не самцы, являются трихроматами с настоящим цветовым зрением, которое, по-видимому, похоже на наше. Экспериментальные данные с игрунками, ищущими пищу в закамуфлированных коробках, показали, что трихроматичные особи были более успешны, чем дихроматы. Возможно, добывающие пропитание группы обезьян Нового света полагаются на своих удачливых трихроматичных самок, чтобы найти пищу, которую иначе пропустило бы большинство из них. С другой стороны, есть возможность, что у дихромата, одного или в сговоре с дихроматом другого типа, могли бы быть странные преимущества. Есть анекдоты про экипаж бомбардировщика во Второй Мировой войне, нарочно принимавший в свой состав одного дальтоника, потому что он мог выявить определенные типы камуфляжа лучше, чем его более удачливые трихроматичные товарищи. Экспериментальные данные подтверждают, что человек-дихромат может действительно распознать определенные формы камуфляжа, которые обманывают трихромата. Действительно ли возможно, что отряд обезьян, состоящий из трихроматов и двух видов дихроматов, мог бы совместно найти больше разнообразных фруктов, чем отряд чисто трихроматов? Это могло бы показаться неправдоподобным, но это не глупо.

Гены красного и зеленого опсина у обезьян Нового света являются примером «полиморфизма». Полиморфизм – одновременное существование в популяции двух или больше альтернативных версий гена, где ни один из них не является достаточно редким, чтобы быть просто недавним мутантом. Существует известный принцип эволюционной генетики, что полиморфизмы, подобные этому, не возникают без серьезного основания. Если не случится ничего особенного, обезьяны с красным геном будут или более удачливы, или окажутся в более затруднительном положении, чем обезьяны с зеленым геном. Мы не знаем, какой именно, но очень маловероятно, что они оба были бы строго одинаково хороши. И худшая разновидность должна исчезнуть.

Устойчивый полиморфизм в популяции указывает на нечто особое. На что именно? Два основных предположения были сделаны для полиморфизмов вообще, и любое из них могло бы быть применимо в данном случае: частотно-зависимый отбор и преимущество гетерозигот. Частотно-зависимый отбор имеет место, когда более редкий тип имеет преимущество просто на основании того, что он более редок. Итак, поскольку тип, о котором мы думали как о «худшем», начинает исчезать, он перестает быть худшим и приходит в норму. Как такое может быть? Что ж, предположим, что «красные» обезьяны способны особенно хорошо видеть красные фрукты, в то время как «зеленые» обезьяны – зеленые фрукты. В популяции, где преобладают красные обезьяны, будет уже сорвано большинство красных фруктов, и единственная зеленая обезьяна, способная видеть зеленые фрукты, могла бы обладать преимуществом – и наоборот. Даже если это не особенно правдоподобно, это является примером особых условий, которые могут сохранить оба типа в популяции без вымирания одного из них. Легко заметить, что некоторые параллели нашей «теории» экипажа бомбардировщика могли бы быть разновидностью особых условий, которые поддерживают полиморфизм.



Поделиться книгой:

На главную
Назад