Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Необыкновенная жизнь обыкновенной капли - Марк Семёнович Волынский на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Течение в камере закручивания не сплошное, а по­лое, и мы уже видели через стеклянное дно форсунки столбик воздушного вихря. Поэтому струя на выходе из соплового отверстия превращается в кольцевую пелену, ограниченную двумя поверхностями гиперболоида тол­щиной несколько десятых миллиметра. При очень ма­лых давлениях подачи (порядка десятой доли атмосфе­ры), то есть малых скоростях истечения, капиллярные силы еще конкурируют с гидродинамическими и замы­кают пелену в полую эллипсообразную форму, что соот­ветствует так называемому режиму пузыря (рис. 9). Поверхностное натяжение силится вернуть жидкости каплеобразную форму шара — минимум поверхности при заданном объеме (известный принцип минимума по­верхностной энергии для равновесной формы жидкости).

С ростом давления подачи пузырь размыкается, и тече­ние становится обычным конусом распыливания, жидкая пелена постепенно укорачивается, сохраняя небольшой венчик у самого корня факела. В тонкой пелене секрет высокой дисперсности, мелкости капель.

Почему же во вращающейся жидкости появляется полость, воздушный вихрь, и что вообще там происхо­дит? Центробежная форсунка — хороший повод пригля­деться ближе к жидким и газовым потокам, кратко по­знакомиться с азбукой гидродинамики идеальной (без трения) несжимаемой жидкости. Нам станут тогда по­нятней события, происходящие в мире капель и струй.

Следить за пространственной картиной изменчивых жидких (и газообразных) сред удобно с помощью ли­ний тока, проведенных касательно к скоростям в раз­личных точках жидкости. Узор таких линий является как бы мгновенной фотографией всего происходящего на большом интервале потока. Этот метод часто более информативен, чем попытка следить за перемещением отдельных жидких частиц. Движение потока может быть установившимся, когда его картина в любом месте не меняется со временем, и неустановившимся, когда она изменчива.

Установившееся движение — это, например, река с постоянным течением, омывающая одну и ту же линию берегов, или течение в трубе при постоянном угле от­крытия крана. Неустановившееся — это море со сменой приливов и отливов, штилем и волнами или переменное истечение струйки из шприца под действием все уско­ряющегося поршня. Оказывается, в установившемся дви­жении линии тока совпадают с траекториями частиц.

Вращательное движение, или циркуляция, в жид­кости может происходить не обязательно по кругу, а по любому контуру и имеет обобщенный характер. Оно — основа многих важных явлений, в том числе подъемной силы крыла. Проведем любой замкнутый контур в поле линий тока. Можно построить проекции скоростей час­тиц жидкости на касательные к контуру в каждой его точке — линия окажется оперенной стрелочками. Сум­ма (или, точнее, интеграл по контуру) произведений таких проекций на длины малых отрезков дуг по всем точкам называется циркуляцией по контуру; она имеет знак «+» или «—» в зависимости от направления вра­щения: по ходу или против хода часовой стрелки. В жидкости все частицы могут не вращаться в привыч­ном смысле, а циркуляция будет существовать. Враще­ние здесь приобретает более общий кинематический смысл. Выделим в потоке элементарный «жидкий ку­бик» и проследим за его движением. Оно может склады­ваться только из трёх составляющих: поступательного (перемещение параллельно себе), вращательного (пово­рота как твердого тела), деформационного, когда гра­ни углов наклоняются одинаково, так что биссектрисы сохраняют свое положение. Поток, где отсутствует вра­щение, а «кубик» только перемещается и деформирует­ся, называется безвихревым, или потенциальным. Если присутствуют все три движения — поток вихревой, а вихревое течение всегда несет в себе циркуляцию. В гид­родинамике существует теорема У. Томсона: циркуля­ция в идеальной жидкости остается всегда постоянной; если ее в начале движения не было, она никогда и не появится, но, возникнув, сохраняется неизменной. В даль­нейшем мы еще вспомним об этой теореме.

Выделим элементарную струйку жидкости, или «трубку тока». Ее поверхность образована траектория­ми жидких частиц. Струйку берут тонкой, почти одно­мерной, так что параметры изменяются лишь вдоль ее течения, а поперек они постоянны. Течет она в общем потоке, вместе с ним сужаясь, расширяясь, вращаясь, и меняет свои параметры: площадь поперечного сече­ния f , скорость w , давление Р. Ходом многих явлений в мире гидродинамики, включая и малую струйку тока в ее изменчивом течении, управляют основные законы со­хранения, которые диктуют постоянство трех главных физических параметров: расхода вещества, вращения, энергии (о четвертом законе — законе сохранения им­пульсов, или количества движения, речь будет несколь­ко позже).

Тут иной читатель, пусть еще не очень много знаю­щий в нашей науке, но желающий полной ясности, пытливый, внимательный, дотошный (автор особенно расположен к такому), скажет: «Ну хорошо, мы догово­рились в самом начале, что жидкость условно принима­ется идеальной, то есть без трения, а почему ее назвали несжимаемой, ведь она течет, сужается, изгибается, при­нимает форму канала, камеры закручивания форсун­ки?» Здесь необходима точность определений: не следу­ет смешивать любую деформацию со сжатием. Пред­ставьте себе опять-таки некий жидкий кубик в потоке. Поток непременно вытянет его в длинный столбик, то есть изменит его форму, но объем останется преж­ним. Это и есть несжимаемость, свойственная практиче­ски всем жидкостям при не очень больших давлениях (не выше сотен атмосфер). В газе эффект сжимаемости (изменение объема «кубика») начинает сказываться, лишь когда скорость потока приближается к звуко­вой. При меньших скоростях удельный вес и плотность в различных точках потока остаются близкими к по­стоянным.

Первый закон — закон сохранения расхода: количе­ство жидкости, прошедшей через площадь f в секунду, то есть массовый расход, остается постоянным по всей трубке потока:

Уравнение (1) является гидродинамической формой закона сохранения вещества. 

Частицы жидкости или газа ведут себя куда разум­нее людской толпы, они не замедляются, не толкутся в узких проходах, а, наоборот, если канал сужается (f падает), жидкость протекает быстрее, при расшире­нии тракта (f возрастает) скорость ее падает.

Второй закон — закон неизменности момента количе­ства движения: произведение скорости вращения и на радиус r сохраняется постоянным от одной струйки жидкости к другой. Применительно к форсунке это условие запишется так:

где vвх — скорость жидкости на входе в форсунку (на­чальная скорость закрутки), R — радиус камеры закру­чивания.

Вращающаяся жидкость — это «антикарусель»: чем меньше радиус вращения, тем больше скорость.

Третий закон — это закон сохранения энергии едини­цы объема жидкости (уравнение Бернулли): в уста­новившемся движении идеальной жидкости сумма по­тенциальной энергии единицы объема, то есть давления и кинетической энергии, обусловленной скоростью, со­храняется постоянной вдоль всей струйки тока, в нашем случае — от исходного давления Р0 в резервуаре (балло­не) до выхода из канала. Уравнение Бернулли, связы­вающее параметры струйки, текущей сквозь форсунку, в различных поперечных сечениях имеет вид:

Здесь суммарная кинетическая энергия жидкости в сложном движении через сопло форсунки (где она идет по винтовым линиям) складывается из энергии по­ступательного движения со скоростью до и вращатель­ного — со скоростью и.

Удельная кинетическая энергия рv2/2 по аналогии с первым слагаемым Р называется скоростным или дина­мическим напором Рg — эта энергия может перейти в давление. Если текущую жидкость остановить ладонью, то вы почувствуете суммарное давление Р+Рg , которое называется полным напором (с точностью до потерь на трение; эта сумма равна давлению в баллоне).

В медицине, например, используется полный напор струи для безыгольной инъекции вакцины. Специальный импульсный шприц подает кратковременную струю высокого давления. Это «жидкая игла» безболезненно про­калывает, точнее даже, пробивает кожу.

А вот новинка хирургии — «выстрел клеем»: специ­альный биологический клей вводят из пневмопистолета струей в зону операционного разреза. Механизм дей­ствия этого целебного пистолета таков. Клей, поданный под большим динамическим напором Рg в межклеточ­ное пространство живых тканей, сдавливает сосуды, останавливая кровотечение. Оставшийся на поверхности разреза клей образует корочку, способствующую зажив­лению. В обоих устройствах потенциальная энергия на­чального давления переходит сначала в кинетическую энергию, а потом, при ударе о поверхность, снова в дав­ление.

Из уравнения Бернулли видно, что давление и ско­рость — «антагонисты»: если вдоль потока v растет, то Р падает, и наоборот — с замедлением потока повыша­ется давление. На этом явлении основан, в частности, самый простой и экономичный распылитель — парик­махерский пульверизатор, дающий широкий факел с очень тонким распыливанием при малом расходе пар­фюмерии, что вполне устраивает и парикмахера, и кли­ента. Т-образная трубочка с перекладиной наверху опу­щена во флакон с жидкостью. Воздух из резиновой гру­ши под давлением поступает в трубку, где его скорость (согласно закону сохранения расхода) резко возра­стает: ведь трубочка намного уже, чем груша. Сле­довательно, давление, согласно уравнению Бернулли, упадет, и возникшее в перекладине разрежение по вертикальной трубочке будет засасывать жидкость вверх. Там быстрый поток воздуха погонит ее к вы­ходу на другом конце перекладины, распыливая на ка­пельки.

Уравнение Бернулли позволяет просто получить при­ближенные формулы для скорости истечения и расхода жидкости из отверстия распылителя в атмосферу. За­пишем уравнение сохранения энергии (3) между на­чальным сечением в баллоне, где давление равно Ро, а скорость течения жидкости почти нулевая (баллон очень широк сравнительно с отверстием), и сечением выхода в атмосферу с давлением Ра:

Для форсуночных и капельных нужд нам хватило трех уравнений сохранения, но мы упоминали еще о четвертом. Оно знаменательно, в частности, тем, что приводит к формуле для реактивной тяги двигателя, ле­жащей в основе всей ракетной техники. Вспомним про­стой и общеизвестный пример. Вы стоите в неподвиж­ной лодке на озере и бросаете тяжелый камень с кор­мы — лодка двинулась в противоположную сторону. Объяснение дает закон сохранения количества движе­ния (или импульса), из которого вытекает важное след­ствие: положение центра тяжести (или центра масс) системы под действием внутренних сил остается неиз­менным. До броска центр тяжести лодки со всем содер­жимым покоился в некоторой точке. Когда мы выброси» ли камень, часть массы системы ушла назад, распреде­ление масс изменилось, но центр тяжести «не имеет права» перемещаться. Чтобы сохранилось его прежнее положение в пространстве, лодка должна ‘была двинуть­ся вперед. То же и с ракетой: до запуска она была не­подвижной, но когда массы газа стали вытекать из со­пел, ракета, подчиняясь общему закону, полетела в противоположную сторону. Мощные струи газа будут вытекать из ракеты, сама она унесется далеко в космос, а центр тяжести системы «газы—ракета» останется по- прежнему в своей исходной точке, на земле. Закон ко­личества движения гласит: импульс сил — произведение сил на время их действия — равен изменению количе­ства движения всех тел в системе.

Если этот закон применить к ракете, получим фор­мулу тяги:

 P = Gwc    (7)

Здесь Р — тяга двигателя; в правой части уравне­ния — количество движения газов, вылетающих из сопла (G — массовый расход газов, wс— их скорость на срезе сопла).

Формула (7) показывает: конструктор имеет два ре­сурса для увеличения тяги — расход G и скорость wс вытекающего вещества. Но топливо и так составляет львиную долю массы всей ракеты, выше определенного запаса его не возьмешь. Вот почему поток газов в сопле (где тепловая энергия переходит в кинетическую) раз­гоняют до огромных скоростей, в несколько раз пре­вышающих скорость звука.

Четыре основных уравнения сохранения только в первом приближении — в идеальном случае установив­шегося течения невязкой, несжимаемой жидкости — за­меняют более общие законы движения жидких сред и взаимодействия их с твердыми телами. Эти сложные дифференциальные уравнения содержат время и коор­динаты перемещающихся частиц и способны дать более полную картину трехмерного мира жидкостей и газов с учетом всех действующих сил. В них входят физические константы среды: вязкость, плотность и другие, найден­ные из опыта. В них (совместно с граничными условия­ми) заложена вся информация о течении — они могут ответить на вопрос: куда и в какое время придет любая частица жидкости, предсказать все явления и факты. Многочисленные опыты и практика подтвердили их пра­во называться фундаментальными законами природы. Однако решение этих уравнений является очень слож­ным делом и не всегда возможно, даже при современ­ных ЭВМ.

Гидромеханика, как и другие естественные науки, веками поднималась к вершинам познания «в связке альпинистов»: опыт — теория. Первый шаг делает опыт, это наблюдение, установленный факт (еще не полностью понятый), использование в практике каких-то явлений. Опыт ставит задачи, подтягивает за собой теорию. Она делает следующий шаг: как правило, бросок выше по­ставленного рубежа, к математическим обобщениям. Теория многое объяснила, но теперь возникли новые задачи для опыта, в которых теория выступает уже за­казчиком: нужно проверить в эксперименте решения ее уравнений, правильность гипотез. Снова включается опыт — уже на следующей ступени, вооруженный новой приборной техникой. Так, выполняя заказ времени, из­вестный американский физик А. Майкельсон (1852— 1931) ставит в 1881 году свой знаменитый опыт по из­мерению скорости света. Он использует для этого точ­ные дифракционные решетки Роуленда. И вот резуль­тат: гибнет старая гипотеза эфира, рождается теория относительности — «связка» преодолевает величайший барьер в истории науки.

Так попеременно вырубая ступени в упорной породе, обгоняя и подтягивая друг друга, непрерывно движутся в единой связке опыт и теория. Общие дифференциаль­ные уравнения гидромеханики — одна из самых высо­ких вершин этого восхождения: с нее далеко видно.

Катаклизмы внутри форсунки

Теперь со знанием дела, слегка подкованные по части гидродинамики, обратимся снова к форсунке: интерес­но, как там работает связка «опыт—теория»? Вблизи горизонтальной оси форсунки, где радиус r мал, скорость вращения жидкости и велика, это диктуется уравнени­ем (2). Велика и кинетическая энергия — слагаемое в законе Бернулли pu2/2. Следовательно, другое слагае­мое— давление Р — мало. Двигаясь все ближе к оси, при r ->0 получаем — согласно уравнениям (2) и (3) — нечто странное: и-> , Р-> —∞.

Это называется особой точкой решения. Математика начинает «чудить», приводит к противоречию с физи­кой, к невозможному результату: бесконечная скорость, бесконечное, да еще отрицательное давление.

Но часто математический парадокс как бы подает сигнал: здесь не разрыв со здравым смыслом, а разрыв в самой картине явления — ищите резкого изменения формы течения. А происходит вот что: когда давление у самой оси упадет ниже уровня давления среды, воз­дух из атмосферы засосётся внутрь форсунки через соп­ловое отверстие и образуется полость — воздушный вихрь радиуса rm , подобие воронки в ванне при сливе воды. Математическое зеркало, даже искривляясь, как бы продолжает своей кривизной отражать реаль­ность.

Теория центробежной форсунки создавалась у нас на глазах, и многие помнят, как возникла неожиданная, трудность: число уравнений в задаче оказалось меньше числа неизвестных — радиус вихря rm стал «лишним», для него не хватило одного уравнения. Проблема зашла в тупик, поскольку было неясно, как вычислить главную величину — расход жидкости. В уравнении

Тогда Г. Н. Абрамович решил: посмотрим структуру неизвестного, и построил зависимость расхода от радиу­са rm или, что равносильно, от коэффициента φc (при постоянном давлении подачи). Обнаружилась характер­ная особенность: при малых rm (толстое колечко) сече­ние выхода хорошо заполнено жидкостью, зато осевая скорость потока мала и их произведение (расход) мало; при больших rm (тонкое колечко) выходное сечение за­полнено плохо, и, хотя скорость велика, расход опять мал. На кривой при каком-то промежуточном значении rm обнаружился четкий максимум: природа как бы сама обращала внимание исследователя на одну особенную точку графика. Интуиция исследователя подсказала Генриху Наумовичу смелый «принцип максимума рас­хода», отбирающий одно-единственное в целом мире ре­шение; из всех возможных вихрей форсунка избирает такой, что расход жидкости получается наибольшим. Этот принцип позволил замкнуть теорию — интуиция заменила недостающее уравнение.

Опыт подтвердил красивую гипотезу в определенном диапазоне режимов. Был достигнут существенный про­гресс. В дальнейшем теория уточнялась и развивалась советскими учеными Л. А. Клячко, В. И. Скобелкиным, В. Б. Тихоновым и другими. Она нашла самое широкое применение в инженерной практике, поскольку позволя­ет просто вычислять расход жидкости и угол распыли­вания. Массовый расход в соответствии с уравнени­ем (5) запишется так:

характеристика форсунки, r и п — соответственно ра­диус и число каналов камеры закручивания.

Геометрическая характеристика оказалась фактором подобия: самые разные форсунки, имеющие одинаковую комбинацию основных размеров А, имеют одинаковые коэффициенты расхода μ и углы распыливания. Теперь общая картина течения в форсунке выглядит так. По­ток, попадая из широкой камеры закручивания в узкое сопло, ускоряется — работает уравнение сохранения расхода. Убыстряется и вращение, как у фигуриста, мгновенно сложившего на груди до этого раскинутые руки (уравнение сохранения момента количества дви­жения). Давление жидкости, вышедшей в открытое про­странство, должно упасть до атмосферного, центробеж­ное давление — исчезнуть. Но энергия не исчезает. По уравнению Бернулли потенциальная энергия переходит в кинетическую, то есть возрастает скорость истекаю­щей пелены, и она на самом выходе утоньшается. Итак, остроумная догадка о максимуме расхода разрешила трудности и дала законченную теорию явления.

Однако возникает вопрос: как же получилось, что не хватило уравнений и строгую логику пришлось заме­нить гипотезой? Победителей не судят, но если бы пред­положение ученого не оправдалось? Быть может, какой-то фактор выпал из рассмотрения, какие-то связи не были учтены? Вопрос законный, серьезный. Для ответа мобилизуем все ту же испытанную связку «опыт—тео­рия». Вглядимся внимательней в явление, вернувшись опять к форсунке. Но теперь приделаем к ней, продол­жая выходной канал, длинную прозрачную трубку — сопло из плексигласа. Раньше мы видели поток всегда с тыла или на выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеет­ся крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря rm (рис. 10). Сразу появляется информация к размышлению: что за скачок? Где такое бывает? По­ищем аналогии — путь в науке очень полезный. Карто­тека памяти выдает необычный, запомнившийся образ: ведь это гидравлический прыжок, и возникает он дей­ствительно в потоках, сходных с нашим.

Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).

Жидкость там течет под действием силы тяжести — аналог потока с центробежным давлением в форсунке (оно тоже зависит от массы). Интересное это явление — гидравлический прыжок. Плавно ускоряясь, течет под уклон вода в канале по совершенно гладкому дну, уро­вень меняется медленно, равномерно. Но вот, разогнав­шись до какой-то предельной скорости, поток скачком меняет свою высоту, прыгает иногда почти отвесной стенкой, образуя один или несколько горбов-порогов. Потом на уменьшенном уклоне течение снова идет плав­но, но уже на другом уровне. Гидравлический прыжок возникает как раз в сечении, где скорость потока w до­стигает скорости с распространения поверхностных так называемых тяжелых волн *.

* Предположение о равенстве скорости течения жидкости в сопле форсунки скорости распространения тяжелых (центробежных) волн впервые было высказано И. И. Новиковым.

 Из теории волнового дви­жения известна простая формула определения скорости распространения волн: c =gh, здесь g— ускорение под действием силы тяжести, h — высота уровня жид­кости.

Перенесем на форсунку это уравнение прыжка. Теперь система уравнений замыкается без каких-либо дополнительных гипотез, поскольку появилось новое со­отношение, определяющее радиус вихря, а именно ра­венство w  и с:

Вот оно, потерянное уравнение. Вместе со старыми уравнениями вся система приводит к принципу максимума расхода — теперь он уже не гипотеза, а следствие теории течения в форсунке.

В чем физический смысл условия w = c ? Скорость тяжелых волн с — это скорость передачи импульсов в разгоняющемся потоке. Они передают информацию сверху вниз по течению с помощью бегущей волны жидкости малой амплитуды: «Поток ускоряется, изда­ли меняйте форму течения, постепенно подстраивайте уровень жидкости на всем протяжении пути». Пока сиг­налы проходят по трассе, движение идет плавно, уро­вень меняется постепенно. Но вот жидкость к некоторо­му сечению разогналась до скорости волн — информа­ция уже не опережает потока жидкости, а движется параллельно с потоком, не оставляя времени для пере­стройки. Потому тесно, «задние напирают на перед­них», возникает так называемый кризис течения. И вот поток «взбунтовался», встает отвесной стеной, резким уступом, нарушив монотонность процесса. Произошел, естественно, и прыжок скорости, поскольку резко изме­нилось проходное сечение. Потом, на ином уровне подъ­ема, жидкость успокаивается, и снова течение стано­вится плавным. Значит, в крутящемся потоке нашей форсунки есть критическое сечение, где скорость равна критической, и это сечение в самом начале сопла. Даль­ше вниз по потоку, что ни делай, расход, формирующий­ся в истоке, уже не увеличишь, поток перед критическим сечением не перестроишь — туда просто не дойдут ника­кие импульсы-сигналы.

Итак, догадка Г. Н. Абрамовича о существовании максимума расхода подтвердилась экспериментом, экс­перимент помог найти аналогию между гидравлическим прыжком жидкости в открытом русле и режимом мак­симального расхода в форсунке с центробежным дав­лением.

Но, если мы взялись докапываться до самой сути, можно поставить новый вопрос: «А где же всеобщность исходных фундаментальных уравнений, о которых гово­рилось раньше? Они ведь должны предсказать все яв­ления, все опытные факты. Нельзя ли из самих исход­ных уравнений вывести гидравлический прыжок?»

Чтобы ответить на этот вопрос, вновь приходится возвратиться к истории этой проблемы, начиная с того периода, когда практика настойчиво потянула нашу связку «опыт—теория» на новый уровень.

Обычные виды топлива обладают заметной вяз­костью. Новые (для того времени) реактивные двигате­ли космических ракет и больших авиалайнеров, где чис­ло и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсун­ки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точ­ность.

Исследователи приняли эстафету дальнейшего дви­жения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Ин­женер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в фор­сунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удив­лению, показали парадоксальный результат: для керо­сина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент ме­ханику:

— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплот­нили форсунку, и керосин где-то подтекал.

— Форсунка собрана правильно, герметичность я га­рантирую,— с достоинством ответил опытный механик.



Поделиться книгой:

На главную
Назад