Утром следующего дня началось оперативное совещание. Пришли соседи из КБ. Докладчик, подтянутый, серьезный, с чуть утомленными, покрасневшими глазами, стоял около кульмана. Он картинным жестом сорвал прикрывающий лист, и на доске открылась красиво вычерченная схема ПВРД.
«Когда только успел? Значит, работал ночью». Я следил за четким, без вчерашних одесских словечек, докладом. Картину за. картиной я постепенно и отчетливо представил все сложное сплетение явлений в двигателе. На входе в камеру стоит коллектор из центробежных форсунок. Они выбрасывают «бутоны» топливных конусов, которые мгновенно выворачивает «наизнанку» поток воздуха. Еще не зная законов распыливания, мы интуитивно понимали: встречное расположение струй улучшает обдув и дробление капель.
— Пусть скорость воздуха 80 м/с и давление подачи керосина приличное — 50 атмосфер. Это значит, скорость истечения около 100 м/с. Но если впрыск по потоку, скорости вычитаются и относительная скорость близка к арифметической разности 20 м/с. Если же впрыск противоточный, скорость обдува близка к сумме, то есть к 180 м/с. В этом случае поток сразу раздробит струю на мелкие капельки.
Докладчик переносит указку в нижний левый угол кульмана — узнаю свою прикнопленную фотографию, моментальный снимок с большим увеличением фрагмента факела распыла в пяти сантиметрах от точки впрыска, на самом развороте жидкости. Факел напоминает разрыв снаряда на рой осколков: черное пятно — недра зоны переобогащенной смеси, там концентрация жидкости максимальна, а воздуха мало. Далее смесеобразование развивается в «холодном» участке камеры (см. рис. 2), где еще нет горения. Капли летят и «худеют», отдавая пар в окружающий поток. Следовало бы рассчитать интервал испарения жидкости и установить коллектор нужного сечения, но пока это нам не под силу: размер капель неизвестен, да неизвестна и скорость парообразования, и потому интервал выбирается эмпирически. Газ с еще недоиспаренными каплями должен влететь в зону поджигания и стабилизации пламени.
Вот тут цепь рвется. Оказывается, совсем не просто поджечь поток и удержать устойчивое горение на ветру со скоростью под 100 м/с. Докладчик делает интригующую паузу, смотрит в окно - потом четко формулирует свое предложение:
— Нужно сделать «дежурный огонек», небольшую камеру в камере. Короче, форкамеру, со своей отдельной малорасходной форсункой и электросвечой. Зажатый вход с завихрителем едва-едва пропустит сюда слабую струйку по аналогии с тем, как ладони курильщика, сложенные лодочкой, заслоняют огонек спички от ветра.
«Так,— соображал я,— здесь всегда будет штиль, малые скорости, мелкие вихри высокой турбулентности — короче, тепличные условия для произрастания пламени. Вот оно, блестящее решение задачи. Вчера Д. только морочил голову намеками на каких-то курильщиков, а сегодня дал-таки всем прикурить!»
(Теперь устройство такого рода описано в учебниках и кажется простым и естественным. В разных исследовательских центрах, у нас и на Западе, пришли почти одновременно к идее форкамеры — огневого якоря спасения от шторма газового потока.)
— Дальше,— продолжал докладчик,— дежурный поджигающий огонь из форкамеры перекидывается в топливовоздушную смесь. Однако здесь он снова открыт всем ветрам, и его без страховки мгновенно сорвет. Но у нас уже есть опыт: выручают плохо обтекаемые тела.— Указка касается схемы (см. рис. 3).— Это конические кольцевые стабилизаторы,— указка сначала тычется в схему, изображенную на рис. 2, затем перескакивает на рис. 3.— За ними тянется аэродинамическая тень — зона относительно малых скоростей. Здесь крутятся крупные спирали кольцевых вихрей, создавая разрежение и питая зону мелкими вихорьками. Горючая смесь с каплями засасывается в этот круговорот и сгорает, давая высокий жар. За него-то и цепляется пламя. Напитавшись теплом, окрепший фронт пламени рвется в набегающую горючую смесь по ступенькам стабилизаторов.
Вспоминаю камеру ТРД (рис. 4). Там пламя распространяется в чуть более спокойных условиях. Сначала оно цепко держится у входного завихрителя-решетки; потом вторичный воздух подмешивается к разгоревшемуся огню через отверстия рубашки. Дальнейшие опыты показали: чем богаче набор капель по размерам, тем устойчивее пламя за стабилизатором, а чем они в среднем мельче, тем полнее сгорание.
Процесс горения основной массы топлива развивается на довольно протяженном участке камеры, где протекает химическая реакция окисления. Топливовоздушная смесь не сгорает во фронте пламени полностью, зона догорания простирается далеко за ним.
Доклад еще длился, но я слушал плохо. Мысль отцепилась, как вагон от состава, и пошла по своей, ответвленной колее. Я думал о привычном: как измерить эту каплю?
Миллиарды капель и космический старт
Те же «капельные», но совсем не малые проблемы встали и перед создателями ЖРД. Здесь камеры особенно прожорливые: рабочий процесс должен «переварить» огромные массы топлива, обеспечить высокие мощности, необходимые, чтобы вывести ракету в космическое пространство. Но сначала немного истории.
Созданная упорным и вдохновенным трудом ученых, инженеров, конструкторов ракета с ЖРД свершила техническое чудо и проложила человеку путь в космос. Основы этой гигантской победы человеческого разума были заложены на рубеже XIX и XX веков. Основоположником современной космонавтики и реактивной техники был, как известно, Константин Эдуардович Циолковский (1857—1935). Школьный учитель физики из Калуги первый увидел реальные очертания будущих космических аппаратов. В своей замечательной работе «Исследование мировых пространств реактивными приборами» (1903) он дал законы движения ракеты и впервые в мире предложил и обосновал новый тип двигателя — ЖРД. Этим же путем позднее пошли и другие ученые: Р. Эно-Пельтри во Франции (1913), Р. Годдард в США (1919), Г. Оберт в Германии (1923). Интересно, что Оберт, имя которого для многих наших специалистов звучало лишь вехой ушедших лет, неожиданно «ожил» и в 1982 году прибыл, достаточно бодрый для своих 88 лет, в числе почетных гостей к нам в страну, когда мы отмечали 125-летие со дня рождения Циолковского и 25 лет с начала космической эры.
В беседе с академиком Б. В. Раушенбахом, нашим известным ученым, соратником С. П. Королева, Оберт с гордостью напомнил собеседнику, как одним из первых понял и высоко оценил труды Циолковского.
Не все ученые того времени были столь прозорливы, отчасти из-за своеобразия формы публикаций Константина Эдуардовича, заменявшего часто в формулах алгебраические символы словами. Оберта повезли в Центр подготовки космонавтов и среди прочего показали специальный бассейн, где удельные веса жидкости и плавающего тела одинаковы. Космонавты в скафандрах демонстрировали тренировку в условиях невесомости. Борис Викторович Раушенбах рассказывал: Оберту все очень понравилось, и он ко всеобщему веселью сделал вдруг заявку на приоритет:
— О да, интересно! Но я сам проделал это еще в 1916 году. Погружался с головой в свою ванну, держа трубочку во рту. Мне очень хотелось почувствовать, что есть невесомость...
Прошли годы. Вот-вот станет явью мечта Циолковского, говорившего, что Земля — колыбель человечества, но нельзя все время жить в колыбели. По обе стороны океана уже шли к космическим стартам. Но первым взлетел в космос 12 апреля 1961 года наш Юрий Гагарин на корабле «Восток», и одним из решающих факторов успеха были мощные и надежные ЖРД.
Вспомним рациональный, поразительно простой и эффективный принцип действия ЖРД (см. рис. 5). Горючее и окислитель из баков подаются центробежными насосами в камеру сгорания: окислитель — непосредственно к своим форсункам, а горючее — к своим, но через узкую полость между двойными стенками камеры сгорания и сопла. Только так, используя большой поток горючего в качестве охладителя, можно защитить камеру и сопло (конструктивно они представляют одно целое) от чудовищного (выше вулканического) жара, развиваемого внутри этого химического двигателя. Горючее, подогреваемое между стенками, готовится к процессу смесеобразования. В реальных двигателях вспомогательный насос подает его из отдельного бака в газогенератор — специальную меньшую камеру, работающую при более низкой температуре. Здесь оно газифицируется и идет как рабочее тело на колесо турбины. Турбина вращает соосно расположенные основной и вспомогательный насосы — все в целом образует ТНА (турбонасосный агрегат), компактный сгусток современной технической мысли; перед запуском ЖРД его раскручивает специальный стартовый движок. Автоматика регулирует режим работы, поддерживает заданную пропорцию жидких компонентов.
Камера сгорания ЖРД — подлинное царство капель, они владеют всем пространством на начальном ее участке — там нет никакой металлической начинки, как в ВРД (форкамеры, стабилизаторы). Здесь оба компонента реакции — и горючее, и окислитель — используются в виде жидкости, например керосин и сжиженный кислород (или спирт с азотной кислотой, отдающей кислород при разложении). В этом заключается отличие от ВРД, для которого возят с собой только жидкое горючее, а окислитель даровой — из воздуха атмосферы.
Все ВРД — проточные каналы, ЖРД — глухой горшок, дно его плотно усажено сотнями форсунок — форсуночная головка должна за секунду пропускать многие килограммы жидкости. В форсуночной головке распылители обоих компонентов расположены в определенном порядке, чтобы каждый факел горючего равномерно по возможности насытить окислителем. Часто используют сотовое расположение, подсказанное архитектурой пчелиного улья.
В адском горшке ЖРД приготовляется более калорийное варево, чем в камере ВРД. Температура газов на выходе из двигателя достигает 3500 К и более. Однако набор процессов смесеобразования здесь в принципе тот же, что и в воздушных камерах: распыливание, движение и испарение капель, смешение паров до горючей концентрации, только организованы они сложнее во времени и в пространстве. Все явления протекают почти рядом, бок о бок друг с другом и горением. Исследователи нарисовали картину рабочего процесса в ЖРД. Плотное облако капель в факелах форсунок увлекает за собой слои окружающего газа, на их место обратно засасываются встречные струи горячего газа — продукты полного и неполного сгорания из начальной зоны пламени. Образуются обратные токи — вблизи форсуночной головки крутятся колечки интенсивных вихрей. Только жидкие розетки, и густое облако капель спасают сами форсунки от выгорания.
Химическая реакция горения протекает бурно и идет преимущественно в газовой фазе; сквозь газ движутся горящие капли — давление в камере высокое: 50 и более атмосфер. Температура быстро нарастает от задней стенки к выходу камеры. Продукты сгорания поступают в реактивное сопло, где поток разгоняется до высоких сверхзвуковых скоростей, и таким образом тепловая энергия преобразуется в кинетическую. Мы помним счетверенные слепящие блики на теле- или киноэкране, когда показывают запуск космического корабля,— это огненные выхлопные струи из сопел связки двигателей, ими оснащена космическая ракета, идущая в зенит.
Мощность и тяга современных ЖРД очень велики. Пять двигателей первой ступени американской ракеты «Сатурн», забросившей «Аполлоны» на Луну, имели тягу около 600 тонн каждый.
Приведем некоторые цифры для характеристики таких мастодонтов современной ракетно-космической техники, как «Сатурн-V» (двигатель F-1). Мощность одного двигателя первой ступени оценим по параметрам реактивной струи. Массовый расход компонентов
Таким образом, двигатель диаметром около метра развивает мощность примерно 10 Днепрогэсов!
Оценим число капель, вылетающих в секунду из форсунок такого двигателя. Секундный расход жидкости равен произведению числа капель
Если принять средний диаметр капли в спектре распыливания равным 100 мкм, а среднюю плотность равной 1 г/см3, то получим, что
Упомянем еще один класс двигателей—РДТТ: ракетные двигатели твердого топлива — дальнейшее развитие древней пороховой техники. Главные части здесь — тоже камера сгорания и сопло, но в камеру заложен заряд твердого топлива сравнительно медленного горения. Заряд содержит оба компонента — горючее и окислитель. Наша знаменитая «Катюша» — пример твердотопливной ракеты.
— Но капель в РДТТ нет? — может спросить внимательный читатель.
Представьте, есть, но это особые, «железные» капли. Для повышения тяги ракеты иногда увеличивают калорийность топлива, закладывая в него мелкие частицы алюминия. Сгорая, они выделяют много тепла и превращаются в мельчайшие капельки окисла — Аl2О3. Сделав свое полезное дело, они потом становятся балластом. Хотя общая выгода получена, потоку газов приходится возвращать «сдачу» — часть своей энергии— на разгон и вынос частиц из сопла. Такие потери называются двухфазными (первая фаза— газ, вторая фаза — твердые или жидкие частицы); их надо уметь рассчитывать, а для этого надо знать диаметры частиц. И вот мы снова пришли к спектру капелек, только из окисла металла, которые обычно меньше, чем капли в ВРД. Механизм образования спектра здесь другой. Капли жидкого горючего — результат распада струй, капли окислов — продукт конденсации в жидкость из газообразного состояния, и поэтому их называют конденсатом.
Архитектура из света и капель
Между тем затянувшаяся охота за каплей продолжалась, но шла пока без особого успеха. Оказалось совсем не просто измерить мелкую, иногда микронных размеров, частицу, летящую со скоростями 50—100 м/с. Дело усугублялось широтой спектра диаметров частиц. Имевшиеся в литературе способы измерений в двигателях внутреннего сгорания нам не подходили.
Обычно рабочий день начинался с открытия. Кто-нибудь приносил очередную «блестящую идею», она представлялась дома такой обещающей, к обеду ее обычно «закрывали» под аккомпанемент беспощадной критики.
В те годы еще не родился метод «мозгового штурма», метод психической мобилизации творческой мысли в коллективе. Но мы, начинающие исследователи, нащупывали его интуитивно. Из шутки, смеха, «всеобщего трепа» постепенно вырастал серьезный разговор. Как-то сам собой возник обычай свободно высказывать любые безумные или смехотворные предположения и идеи. Поначалу слушатели не без труда воздерживались от зубастых, ехидных замечаний, на которые все были горазды. Но наш руководитель установил правило — отбор и строгая критика отодвигались на последующую дискуссию, когда набирался запас предложений (теперь психологи так и поступают).
— Надо ловить каплю на излете в какую-то мягкую подушку, чтобы не дробилась. Я думаю, подойдет паутина...
— Отлично, берем проволочные рамки и айда на чердак.
— Нет, так нельзя... нужно по плану. Рамки пока раздаем уборщицам... а нам всем оформить командировку на завтра в Серебряный бор, там в лесу паутина — залюбуешься.
— Заведем казенного паука, будет новое лабораторное оборудование; использование пауков в технике — авторское свидетельство. Пусть завхоз ставит его на довольствие, как нашу серую Мурку...
Возникала атмосфера раскованности; шутка, игра помогали ломать жесткий стереотип привычной мысли. Нам тогда не грозила опасность впасть в бездумную болтовню. Всех будоражили, тонизировали каждодневные сообщения о новых технических идеях, конструкциях, полетах, об успешных действиях наших Илов, штурмовиков с кинжальными эрэсами (ракетными снарядами), наших реактивных «Катюш», явно превосходивших немецкие шестиствольные минометы, о наших новых типах пороховых ракет, которые иногда запускались прямо с деревянной тарой («Русские бросаются сараями!»— вопили фашисты).
В издававшемся тогда журнале «Британский союзник» появились эффективные чертежи-рисунки первых турбореактивных двигателей. Но старые опытные цаговцы предостерегающе качали головами:
— Не очень доверяйтесь, здесь поработало бюро искажений.
Мы всматривались в них квадрат за квадратом, как в загадочные картинки — «найти взломщика», но так и не находили. Позже, когда мы работали уже в другом институте, появились первые трофейные немецкие ТРД и огромные, как нам тогда казалось, марсианского вида ФАУ-2...
Мы сбились с ног в поисках материалов для улавливания капель. Пробовались новые по тем временам пластики и полимеры, пористый пенопласт, желеобразные среды (гели), смолы, различные пасты вплоть до гуталина, который был тогда дефицитом.
Пока же опыты ставились на модельной установке, капли распыленной воды улавливались в касторовое масло. Каждую пробу, приходилось утомительно и кропотливо обрабатывать под микроскопом. Способ годился для условного сопоставления форсунок по качеству распыливания, но не для измерения частиц реального топлива в камерах. Кто-то однажды предложил:
— Хватит ловить капли, как мух на липкую бумагу. Применим метод моментальной, искровой фотографии.
Он уже тогда был достаточно усовершенствован. Время экспозиции, то есть вспышки искры, составляло 10-5—10-6 с. Экспериментатор, жаждавший остановить мчащуюся каплю, мог скомандовать: «Остановись, мгновение, ты прекрасно!» Метод позволил впоследствии многое разглядеть и понять в самом явлении распада, но для систематических измерений не пошел. Вступили в противоречие два главных требования — точность замеров и массовость объектов. Для хороших измерений нужен увеличенный портрет капли. По законам оптики укрупнение масштабов изображения оплачивается уменьшением глубины резкости и сужением поля зрения. Из массы летящих капель объектив фотоаппарата выберет несколько резко сфокусированных, остальные получатся размытыми пятнами — не напасешься дефицитной мелкозернистой пленки.
Тут как раз и подоспело мое предложение использовать радугу. В литературе по метеорологической оптике я отыскал теорию радуги, ее создал известный английский астроном и физик Эри (1801—1892).
Простой принцип этой дивной архитектуры из солнечного света и капель совсем нетрудно понять. Наблюдатель видит радугу, стоя спиной к солнцу (рис. 6). Лучи солнца претерпевают в каплях полное внутреннее отражение и возвращаются обратно к зрителю под определенным углом. Это сопровождается дисперсией — капли «работают» как миниатюрные призмы, разлагая свет на цвета исходного спектра, от красного до фиолетового. На рис. 6 одна из капель и ход лучей в ней показаны крупным планом.
Вследствие интерференции световых волн интенсивность возвращенного света имеет для каждого цвета ряд максимумов, которые соответствуют определенным углам наблюдения. Только эти максимумы и может видеть глаз, слабые лучи всех других направлений не дают зрительного восприятия. Но максимумы — от первого к последующим — в каждом цветовом ряду резко слабеют, и различать вторые, третьи и т. д. глазу становится трудно. Поэтому мы обычно видим одну арку, так называемую главную радугу — это сомкнутые полосы, соответствующие первым максимумам всех цветов; она всегда наблюдается под углом примерно 42°.
Изредка в очень чистом небе видна и вторая многоцветная арка — от капель, где свет прошел двойное внутреннее отражение.
Такая интерференционная картина обладает особенностью — стоящий в данном месте наблюдатель видит радугу только от определенной группы частиц. Глаз служит вершиной конуса с углом 42°, а все «избираемые глазом» капли дождя образуют круг в основании конуса.
Первым дал объяснение радуги знаменитый французский философ, математик, физик и физиолог Рене Декарт в 1631 году. Не зная еще явления дифракции, он имел терпение и трудолюбие построить чисто геометрически ход 10 000 лучей, прошедших через каплю. Обнаружилось, что только небольшая группа лучей под номерами от 8500 до 8600 выходит из капли компактным пучком, давая примерно одинаковый угол отклонения, порядка 42°, все остальные расходятся широким веером, то есть рассеиваются.
Земной зритель не может видеть всю окружность, а только ее верхнюю часть. На самолете другие геометрические условия обзора: они позволяют объять глазом весь круг (одно из бесплатных преимуществ авиапассажира, которое Аэрофлот забыл указать в своих проспектах и рекламе).
Радуга принадлежит к «призракам, идущим за тобой». Вы отходите — она перемещается за вами на другой Слой капель, строго соблюдая постоянство угла зрения. Солнечные и лунные дорожки на воде «из той же компании»: помните, они тоже всегда следуют за вами; причины аналогичные — максимум интенсивности света, отраженного от ряби волн, соответствует определенному углу зрения.
Теория Эри мне очень понравилась. Все было так красиво и просто, а главное, подтвердилась моя надежда: теория давала нужную зависимость. Это была связь углового расстояния между соседними максимумами световых интенсивностей (для каждого цвета) и диаметром капли. «Теперь ясно, как ставить опыт,— мне необходима монохроматическая (одноцветная) радуга».
Я работал все дни до 10 вечера, и в неделю мы собрали простую оптическую установку в темной комнате на пятом этаже. Всем не терпелось проверить правильность идеи. «Солнцем» служил межэлектродный промежуток вольтовой дуги, помещенный в фокусе большого конденсора. Красный светофильтр (иных не нашлось) отсекал все другие цвета, потому и требовался очень яркий источник. Под форсункой стояло устройство с улавливателем капель в касторовое масло для контрольного измерения. Все было готово. Мы застыли в полной темноте и тишине ожидания. Сердце у меня колотилось, казалось, о стены комнатки — выйдет или не выйдет этот первый в жизни самостоятельный эксперимент?
— Давай давление воды... держи десять атмосфер, включай рубильник...
На бисерных нитях конуса распыливания небольшой центробежной форсунки повисли бледные, но ясно различимые красные дуги комнатной радуги, разделенные темным промежутком, как и предписывала теория. Мне самодельная радуга показалась прекрасней многоцветной, естественной.
Все были довольны — «момент истины», когда реальность совпадает с предсказанием теории, доставляет какую-то детскую радость. Дескать, фокус удался, хотя вы читали о нем и знаете, как это делается. На другой день я вычислил диаметры капель по формуле радуги, через измеренное угловое расстояние между ее первым и вторым кольцом. Потом мы обработали пробу капель, уловленных в касторовое масло,— данные обоих измерений неплохо согласовывались.
Итак, мои радужные надежды оправдались. Метод давал величину, близкую к среднеарифметической величине диаметров капель в спектре распыливания.
Природа образует радугу не на любой жидкости — все зависит от величины коэффициента преломления. Но керосиновая радуга оказалась в числе «разрешенных». Это уже сулило практический результат, так как керосин применялся в ТРД. (Правда, запротестовали пожарники, требуя для опытов более сложной взрывобезопасной установки.) Конечно, до решения всей капельной проблемы было еще очень далеко. Для понимания физики распыливания и создания расчета смесеобразования требовалось определение всего спектра частиц. Но теперь хоть можно было определять и довольно просто средние значения диаметров капель спектра.
Глава II
ОХОТА ЗА КАПЛЕЙ
В поисках уравнений
Начальник одной из лабораторий ЦАГИ и наш научный руководитель Генрих Наумович Абрамович предложил мне написать статью. Я писал ее в состоянии внутреннего подъема. Мне нравилась радуга, ее теория, мир капель и вообще весь мир. Статья содержала такой перл: «Теория Эри по своей красоте и изяществу может соперничать с явлением, ею описываемым». Мой товарищ по работе инженер Л. А. Клячко, острослов, не без ехидства выдернул эту фразу из текста, как смешную редиску из грядки, и бегал с нею по всем комнатам, потешая сотрудников. Через несколько лет мы поквитались. Отыскался в его статье соответствующий перл: «Кривая концентраций топлива для форсунки имеет двугорбый характер» (автор имел в виду наличие двух максимумов).
Нам, начинающим, повезло на начальников и научных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследователем и автором известных работ по теории свободной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассоциации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, актуальные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавязчиво, требуя от нас лишь инициативы и самостоятельности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, поясняя образование ударной волны в сверхзвуковом течении. Его книга «Прикладная газовая динамика» стала настольной для поколений студентов и инженеров.
В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без форсунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.
Есть в инженерной практике человечества счастливые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде раструба на выходе реактивного двигателя, где газ разгоняется до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геометрических форм. Кстати, древние греки могли бы получить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подобрав эмпирически сопло — раструб с определенной площадью горловины, меньшей площади выхода.
Центробежная форсунка — младшая сестра в уникальном семействе устройств, которые скупыми средствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко расходящимся конусом мелких капель, чтобы полнее насытить некий объем? Проще всего подать ее тангенциально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой закрыт, другой — сужен до малого отверстия (рис. 7). Получится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», образовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной формы: однополостной гиперболоид (рис. 8).