Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Необыкновенная жизнь обыкновенной капли - Марк Семёнович Волынский на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Утром следующего дня началось оперативное сове­щание. Пришли соседи из КБ. Докладчик, подтянутый, серьезный, с чуть утомленными, покрасневшими глазами, стоял около кульмана. Он картинным жестом со­рвал прикрывающий лист, и на доске открылась краси­во вычерченная схема ПВРД.

«Когда только успел? Значит, работал ночью». Я следил за четким, без вчерашних одесских словечек, докладом. Картину за. картиной я постепенно и отчет­ливо представил все сложное сплетение явлений в двигателе. На входе в камеру стоит коллектор из цен­тробежных форсунок. Они выбрасывают «бутоны» топ­ливных конусов, которые мгновенно выворачивает «на­изнанку» поток воздуха. Еще не зная законов распыливания, мы интуитивно понимали: встречное расположение струй улучшает обдув и дробление капель.

— Пусть скорость воздуха 80 м/с и давление пода­чи керосина приличное — 50 атмосфер. Это значит, ско­рость истечения около 100 м/с. Но если впрыск по по­току, скорости вычитаются и относительная скорость близка к арифметической разности 20 м/с. Если же впрыск противоточный, скорость обдува близка к сум­ме, то есть к 180 м/с. В этом случае поток сразу раз­дробит струю на мелкие капельки.

Докладчик переносит указку в нижний левый угол кульмана — узнаю свою прикнопленную фотографию, моментальный снимок с большим увеличением фраг­мента факела распыла в пяти сантиметрах от точки впрыска, на самом развороте жидкости. Факел напоми­нает разрыв снаряда на рой осколков: черное пятно — недра зоны переобогащенной смеси, там концентрация жидкости максимальна, а воздуха мало. Далее смесеоб­разование развивается в «холодном» участке камеры (см. рис. 2), где еще нет горения. Капли летят и «ху­деют», отдавая пар в окружающий поток. Следова­ло бы рассчитать интервал испарения жидкости и уста­новить коллектор нужного сечения, но пока это нам не под силу: размер капель неизвестен, да неизвестна и скорость парообразования, и потому интервал выби­рается эмпирически. Газ с еще недоиспаренными кап­лями должен влететь в зону поджигания и стабилиза­ции пламени.

Вот тут цепь рвется. Оказывается, совсем не просто поджечь поток и удержать устойчивое горение на вет­ру со скоростью под 100 м/с. Докладчик делает интри­гующую паузу, смотрит в окно - потом четко формули­рует свое предложение:

— Нужно сделать «дежурный огонек», небольшую камеру в камере. Короче, форкамеру, со своей отдель­ной малорасходной форсункой и электросвечой. Зажа­тый вход с завихрителем едва-едва пропустит сюда сла­бую струйку по аналогии с тем, как ладони куриль­щика, сложенные лодочкой, заслоняют огонек спички от ветра.

«Так,— соображал я,— здесь всегда будет штиль, ма­лые скорости, мелкие вихри высокой турбулентности — короче, тепличные условия для произрастания пламени. Вот оно, блестящее решение задачи. Вчера Д. только морочил голову намеками на каких-то курильщиков, а сегодня дал-таки всем прикурить!»

(Теперь устройство такого рода описано в учебни­ках и кажется простым и естественным. В разных ис­следовательских центрах, у нас и на Западе, пришли почти одновременно к идее форкамеры — огневого яко­ря спасения от шторма газового потока.)

— Дальше,— продолжал докладчик,— дежурный поджигающий огонь из форкамеры перекидывается в топливовоздушную смесь. Однако здесь он снова от­крыт всем ветрам, и его без страховки мгновенно сор­вет. Но у нас уже есть опыт: выручают плохо обтекае­мые тела.— Указка касается схемы (см. рис. 3).— Это конические кольцевые стабилизаторы,— указка сна­чала тычется в схему, изображенную на рис. 2, затем перескакивает на рис. 3.— За ними тянется аэродина­мическая тень — зона относительно малых скоростей. Здесь крутятся крупные спирали кольцевых вихрей, со­здавая разрежение и питая зону мелкими вихорьками. Горючая смесь с каплями засасывается в этот круго­ворот и сгорает, давая высокий жар. За него-то и цеп­ляется пламя. Напитавшись теплом, окрепший фронт пламени рвется в набегающую горючую смесь по сту­пенькам стабилизаторов.

Вспоминаю камеру ТРД (рис. 4). Там пламя рас­пространяется в чуть более спокойных условиях. Снача­ла оно цепко держится у входного завихрителя-решетки; потом вторичный воздух подмешивается к разгорев­шемуся огню через отверстия рубашки. Дальнейшие опыты показали: чем богаче набор капель по размерам, тем устойчивее пламя за стабилизатором, а чем они в среднем мельче, тем полнее сгорание.

Процесс горения основной массы топлива развивает­ся на довольно протяженном участке камеры, где про­текает химическая реакция окисления. Топливовоздуш­ная смесь не сгорает во фронте пламени полностью, зона догорания простирается далеко за ним.

Доклад еще длился, но я слушал плохо. Мысль от­цепилась, как вагон от состава, и пошла по своей, от­ветвленной колее. Я думал о привычном: как измерить эту каплю?

Миллиарды капель и космический старт

Те же «капельные», но совсем не малые проблемы вста­ли и перед создателями ЖРД. Здесь камеры особенно прожорливые: рабочий процесс должен «переварить» огромные массы топлива, обеспечить высокие мощности, необходимые, чтобы вывести ракету в космическое про­странство. Но сначала немного истории.

Созданная упорным и вдохновенным трудом ученых, инженеров, конструкторов ракета с ЖРД свершила тех­ническое чудо и проложила человеку путь в космос. Основы этой гигантской победы человеческого разума были заложены на рубеже XIX и XX веков. Осново­положником современной космонавтики и реактивной техники был, как известно, Константин Эдуардович Циолковский (1857—1935). Школьный учитель физики из Калуги первый увидел реальные очертания буду­щих космических аппаратов. В своей замечательной ра­боте «Исследование мировых пространств реактивны­ми приборами» (1903) он дал законы движения ракеты и впервые в мире предложил и обосновал новый тип двигателя — ЖРД. Этим же путем позднее пошли и другие ученые: Р. Эно-Пельтри во Франции (1913), Р. Годдард в США (1919), Г. Оберт в Германии (1923). Интересно, что Оберт, имя которого для многих наших специалистов звучало лишь вехой ушедших лет, неожи­данно «ожил» и в 1982 году прибыл, достаточно бод­рый для своих 88 лет, в числе почетных гостей к нам в страну, когда мы отмечали 125-летие со дня рожде­ния Циолковского и 25 лет с начала космической эры.

В беседе с академиком Б. В. Раушенбахом, нашим известным ученым, соратником С. П. Королева, Оберт с гордостью напомнил собеседнику, как одним из пер­вых понял и высоко оценил труды Циолковского.

Не все ученые того времени были столь прозорливы, от­части из-за своеобразия формы публикаций Констан­тина Эдуардовича, заменявшего часто в формулах алге­браические символы словами. Оберта повезли в Центр подготовки космонавтов и среди прочего показали специ­альный бассейн, где удельные веса жидкости и плаваю­щего тела одинаковы. Космонавты в скафандрах демон­стрировали тренировку в условиях невесомости. Борис Викторович Раушенбах рассказывал: Оберту все очень понравилось, и он ко всеобщему веселью сделал вдруг заявку на приоритет:

— О да, интересно! Но я сам проделал это еще в 1916 году. Погружался с головой в свою ванну, держа трубочку во рту. Мне очень хотелось почувствовать, что есть невесомость...

Прошли годы. Вот-вот станет явью мечта Циолковско­го, говорившего, что Земля — колыбель человечества, но нельзя все время жить в колыбели. По обе стороны океана уже шли к космическим стартам. Но первым взлетел в космос 12 апреля 1961 года наш Юрий Гагарин на корабле «Восток», и одним из ре­шающих факторов успеха были мощные и надеж­ные ЖРД.

Вспомним рациональный, поразительно простой и эффективный принцип действия ЖРД (см. рис. 5). Го­рючее и окислитель из баков подаются центробежны­ми насосами в камеру сгорания: окислитель — непо­средственно к своим форсункам, а горючее — к своим, но через узкую полость между двойными стенками камеры сгорания и сопла. Только так, используя боль­шой поток горючего в качестве охладителя, можно за­щитить камеру и сопло (конструктивно они представ­ляют одно целое) от чудовищного (выше вулканиче­ского) жара, развиваемого внутри этого химического двигателя. Горючее, подогреваемое между стенками, го­товится к процессу смесеобразования. В реальных дви­гателях вспомогательный насос подает его из отдельно­го бака в газогенератор — специальную меньшую каме­ру, работающую при более низкой температуре. Здесь оно газифицируется и идет как рабочее тело на колесо турбины. Турбина вращает соосно расположенные ос­новной и вспомогательный насосы — все в целом обра­зует ТНА (турбонасосный агрегат), компактный сгус­ток современной технической мысли; перед запуском ЖРД его раскручивает специальный стартовый дви­жок. Автоматика регулирует режим работы, поддержи­вает заданную пропорцию жидких компонентов.

Камера сгорания ЖРД — подлинное царство ка­пель, они владеют всем пространством на начальном ее участке — там нет никакой металлической начинки, как в ВРД (форкамеры, стабилизаторы). Здесь оба компонента реакции — и горючее, и окислитель — ис­пользуются в виде жидкости, например керосин и сжи­женный кислород (или спирт с азотной кислотой, отдающей кислород при разложении). В этом заключа­ется отличие от ВРД, для которого возят с собой толь­ко жидкое горючее, а окислитель даровой — из возду­ха атмосферы.

Все ВРД — проточные каналы, ЖРД — глухой гор­шок, дно его плотно усажено сотнями форсунок — фор­суночная головка должна за секунду пропускать мно­гие килограммы жидкости. В форсуночной головке распылители обоих компонентов расположены в опреде­ленном порядке, чтобы каждый факел горючего равно­мерно по возможности насытить окислителем. Часто используют сотовое расположение, подсказанное архи­тектурой пчелиного улья.

В адском горшке ЖРД приготовляется более кало­рийное варево, чем в камере ВРД. Температура газов на выходе из двигателя достигает 3500 К и более. Од­нако набор процессов смесеобразования здесь в прин­ципе тот же, что и в воздушных камерах: распыливание, движение и испарение капель, смешение паров до горючей концентрации, только организованы они слож­нее во времени и в пространстве. Все явления протека­ют почти рядом, бок о бок друг с другом и горением. Исследователи нарисовали картину рабочего процесса в ЖРД. Плотное облако капель в факелах форсунок увлекает за собой слои окружающего газа, на их место обратно засасываются встречные струи горячего газа — продукты полного и неполного сгорания из начальной зоны пламени. Образуются обратные токи — вблизи форсуночной головки крутятся колечки интенсивных вихрей. Только жидкие розетки, и густое облако капель спасают сами форсунки от выгорания.

Химическая реакция горения протекает бурно и идет преимущественно в газовой фазе; сквозь газ движутся горящие капли — давление в камере высокое: 50 и бо­лее атмосфер. Температура быстро нарастает от задней стенки к выходу камеры. Продукты сгорания поступа­ют в реактивное сопло, где поток разгоняется до высоких сверхзвуковых скоростей, и таким образом теп­ловая энергия преобразуется в кинетическую. Мы по­мним счетверенные слепящие блики на теле- или кино­экране, когда показывают запуск космического кораб­ля,— это огненные выхлопные струи из сопел связки двигателей, ими оснащена космическая ракета, идущая в зенит.

Мощность и тяга современных ЖРД очень велики. Пять двигателей первой ступени американской ракеты «Сатурн», забросившей «Аполлоны» на Луну, имели тягу около 600 тонн каждый.

Приведем некоторые цифры для характеристики таких мастодонтов современной ракетно-космической техники, как «Сатурн-V» (двигатель F-1). Мощность одного двигателя первой ступени оценим по парамет­рам реактивной струи. Массовый расход компонентов (керосин и жидкий кислород) составляет примерно 2650 кг/с, а скорость истечения газов из сопла двига­теля  достигает примерно 2400 м/с. Тогда мощ­ность газовой струи оказывается равной 7.6-103 МВт :

Таким образом, двигатель диаметром около метра развивает мощность примерно 10 Днепрогэсов!

Оценим число капель, вылетающих в секунду из форсунок такого двигателя. Секундный расход жид­кости равен произведению числа капель п на среднюю плотность жидкости ρср и объем капли:

Если принять средний диаметр капли в спектре распыливания равным 100 мкм, а среднюю плотность равной 1 г/см3, то получим, что

n = 5 х 1012 капель в се­кунду. Такой невероятный рой капель рождается в се­кунду примерно из 6000 распылителей форсуночной го­ловки, питая бушующее пламя камеры.

Упомянем еще один класс двигателей—РДТТ: ра­кетные двигатели твердого топлива — дальнейшее раз­витие древней пороховой техники. Главные части здесь — тоже камера сгорания и сопло, но в камеру за­ложен заряд твердого топлива сравнительно медленно­го горения. Заряд содержит оба компонента — горючее и окислитель. Наша знаменитая «Катюша» — пример твердотопливной ракеты.

— Но капель в РДТТ нет? — может спросить вни­мательный читатель.

Представьте, есть, но это особые, «железные» капли. Для повышения тяги ракеты иногда увеличивают кало­рийность топлива, закладывая в него мелкие частицы алюминия. Сгорая, они выделяют много тепла и пре­вращаются в мельчайшие капельки окисла — Аl2О3. Сде­лав свое полезное дело, они потом становятся бал­ластом. Хотя общая выгода получена, потоку газов приходится возвращать «сдачу» — часть своей энергии— на разгон и вынос частиц из сопла. Такие потери называются двухфазными (первая фаза— газ, вторая фаза — твердые или жидкие частицы); их надо уметь рассчитывать, а для этого надо знать диаметры частиц. И вот мы снова пришли к спектру капелек, только из окисла металла, которые обычно меньше, чем капли в ВРД. Механизм образования спектра здесь другой. Капли жидкого горючего — результат распада струй, капли окислов — продукт конденсации в жидкость из газообразного состояния, и поэтому их называют кон­денсатом.

Архитектура из света и капель

Между тем затянувшаяся охота за каплей продолжа­лась, но шла пока без особого успеха. Оказалось сов­сем не просто измерить мелкую, иногда микронных раз­меров, частицу, летящую со скоростями 50—100 м/с. Дело усугублялось широтой спектра диаметров частиц. Имевшиеся в литературе способы измерений в двига­телях внутреннего сгорания нам не подходили.

Обычно рабочий день начинался с открытия. Кто-нибудь приносил очередную «блестящую идею», она представлялась дома такой обещающей, к обеду ее обычно «закрывали» под аккомпанемент беспощадной критики.

В те годы еще не родился метод «мозгового штур­ма», метод психической мобилизации творческой мысли в коллективе. Но мы, начинающие исследователи, на­щупывали его интуитивно. Из шутки, смеха, «всеобще­го трепа» постепенно вырастал серьезный разговор. Как-то сам собой возник обычай свободно высказывать любые безумные или смехотворные предположения и идеи. Поначалу слушатели не без труда воздерживались от зубастых, ехидных замечаний, на которые все были горазды. Но наш руководитель установил правило — отбор и строгая критика отодвигались на последующую дискуссию, когда набирался запас предложений (теперь психологи так и поступают).

— Надо ловить каплю на излете в какую-то мяг­кую подушку, чтобы не дробилась. Я думаю, подойдет паутина...

— Отлично, берем проволочные рамки и айда на чердак.

— Нет, так нельзя... нужно по плану. Рамки пока раздаем уборщицам... а нам всем оформить командиров­ку на завтра в Серебряный бор, там в лесу паутина — залюбуешься.

— Заведем казенного паука, будет новое лаборатор­ное оборудование; использование пауков в технике — авторское свидетельство. Пусть завхоз ставит его на довольствие, как нашу серую Мурку...

Возникала атмосфера раскованности; шутка, игра помогали ломать жесткий стереотип привычной мысли. Нам тогда не грозила опасность впасть в бездумную болтовню. Всех будоражили, тонизировали каждоднев­ные сообщения о новых технических идеях, конструк­циях, полетах, об успешных действиях наших Илов, штурмовиков с кинжальными эрэсами (ракетными сна­рядами), наших реактивных «Катюш», явно превосходивших немецкие шестиствольные минометы, о наших новых типах пороховых ракет, которые иногда запуска­лись прямо с деревянной тарой («Русские бросаются са­раями!»— вопили фашисты).

В издававшемся тогда журнале «Британский союз­ник» появились эффективные чертежи-рисунки первых турбореактивных двигателей. Но старые опытные цаговцы предостерегающе качали головами:

— Не очень доверяйтесь, здесь поработало бюро искажений.

Мы всматривались в них квадрат за квадратом, как в загадочные картинки — «найти взломщика», но так и не находили. Позже, когда мы работали уже в дру­гом институте, появились первые трофейные немецкие ТРД и огромные, как нам тогда казалось, марсианско­го вида ФАУ-2...

Мы сбились с ног в поисках материалов для улав­ливания капель. Пробовались новые по тем временам пластики и полимеры, пористый пенопласт, желеобраз­ные среды (гели), смолы, различные пасты вплоть до гуталина, который был тогда дефицитом.

Пока же опыты ставились на модельной установке, капли распыленной воды улавливались в касторо­вое масло. Каждую пробу, приходилось утомительно и кропотливо обрабатывать под микроскопом. Способ годился для условного сопоставления форсунок по качеству распыливания, но не для измерения частиц реального топлива в камерах. Кто-то однажды пред­ложил:

— Хватит ловить капли, как мух на липкую бума­гу. Применим метод моментальной, искровой фото­графии.

Он уже тогда был достаточно усовершенствован. Время экспозиции, то есть вспышки искры, составляло 10-5—10-6 с. Экспериментатор, жаждавший остановить мчащуюся каплю, мог скомандовать: «Остановись, мгно­вение, ты прекрасно!» Метод позволил впоследствии многое разглядеть и понять в самом явлении распада, но для систематических измерений не пошел. Вступили в противоречие два главных требования — точность за­меров и массовость объектов. Для хороших измерений нужен увеличенный портрет капли. По законам опти­ки укрупнение масштабов изображения оплачивается уменьшением глубины резкости и сужением поля зре­ния. Из массы летящих капель объектив фотоаппарата выберет несколько резко сфокусированных, остальные получатся размытыми пятнами — не напасешься дефи­цитной мелкозернистой пленки.

Тут как раз и подоспело мое предложение использо­вать радугу. В литературе по метеорологической оптике я отыскал теорию радуги, ее создал известный английский астроном и физик Эри (1801—1892).

Про­стой принцип этой дивной архитектуры из солнечного света и капель совсем нетрудно понять. Наблюдатель видит радугу, стоя спиной к солнцу (рис. 6). Лучи солнца претерпевают в каплях полное внутреннее отражение и возвращаются обратно к зрителю под определенным углом. Это сопровождается дисперсией — капли «рабо­тают» как миниатюрные призмы, разлагая свет на цве­та исходного спектра, от красного до фиолетового. На рис. 6 одна из капель и ход лучей в ней показаны круп­ным планом.

Вследствие интерференции световых волн интенсивность возвращенного света имеет для каждого цвета ряд максимумов, которые соответствуют определенным углам наблюдения. Только эти максимумы и может ви­деть глаз, слабые лучи всех других направлений не дают зрительного восприятия. Но максимумы — от пер­вого к последующим — в каждом цветовом ряду резко слабеют, и различать вторые, третьи и т. д. глазу стано­вится трудно. Поэтому мы обычно видим одну арку, так называемую главную радугу — это сомкнутые по­лосы, соответствующие первым максимумам всех цветов; она всегда наблюдается под углом примерно 42°.

Изредка в очень чистом небе видна и вторая многоцвет­ная арка — от капель, где свет прошел двойное внут­реннее отражение.

Такая интерференционная картина обладает особен­ностью — стоящий в данном месте наблюдатель видит радугу только от определенной группы частиц. Глаз служит вершиной конуса с углом 42°, а все «избирае­мые глазом» капли дождя образуют круг в основании конуса.

Первым дал объяснение радуги знаменитый фран­цузский философ, математик, физик и физиолог Рене Декарт в 1631 году. Не зная еще явления дифракции, он имел терпение и трудолюбие построить чисто геоме­трически ход 10 000 лучей, прошедших через каплю. Обнаружилось, что только небольшая группа лучей под номерами от 8500 до 8600 выходит из капли компакт­ным пучком, давая примерно одинаковый угол откло­нения, порядка 42°, все остальные расходятся широ­ким веером, то есть рассеиваются.

Земной зритель не может видеть всю окружность, а только ее верхнюю часть. На самолете другие гео­метрические условия обзора: они позволяют объять глазом весь круг (одно из бесплатных преимуществ авиапассажира, которое Аэрофлот забыл указать в сво­их проспектах и рекламе).

Радуга принадлежит к «призракам, идущим за то­бой». Вы отходите — она перемещается за вами на дру­гой Слой капель, строго соблюдая постоянство угла зрения. Солнечные и лунные дорожки на воде «из той же компании»: помните, они тоже всегда следуют за вами; причины аналогичные — максимум интенсив­ности света, отраженного от ряби волн, соответствует определенному углу зрения.

Теория Эри мне очень понравилась. Все было так красиво и просто, а главное, подтвердилась моя надеж­да: теория давала нужную зависимость. Это была связь углового расстояния между соседними максимумами световых интенсивностей (для каждого цвета) и диа­метром капли. «Теперь ясно, как ставить опыт,— мне необходима монохроматическая (одноцветная) радуга».

Я работал все дни до 10 вечера, и в неделю мы со­брали простую оптическую установку в темной комнате на пятом этаже. Всем не терпелось проверить правиль­ность идеи. «Солнцем» служил межэлектродный про­межуток вольтовой дуги, помещенный в фокусе большо­го конденсора. Красный светофильтр (иных не на­шлось) отсекал все другие цвета, потому и требовался очень яркий источник. Под форсункой стояло устрой­ство с улавливателем капель в касторовое масло для контрольного измерения. Все было готово. Мы застыли в полной темноте и тишине ожидания. Сердце у меня колотилось, казалось, о стены комнатки — выйдет или не выйдет этот первый в жизни самостоятельный эксперимент?

— Давай давление воды... держи десять атмосфер, включай рубильник...

На бисерных нитях конуса распыливания небольшой центробежной форсунки повисли бледные, но ясно раз­личимые красные дуги комнатной радуги, разделенные темным промежутком, как и предписывала теория. Мне самодельная радуга показалась прекрасней многоцвет­ной, естественной.

Все были довольны — «момент истины», когда реаль­ность совпадает с предсказанием теории, доставляет какую-то детскую радость. Дескать, фокус удался, хотя вы читали о нем и знаете, как это делается. На другой день я вычислил диаметры капель по формуле радуги, через измеренное угловое расстояние между ее первым и вторым кольцом. Потом мы обработали пробу капель, уловленных в касторовое масло,— данные обоих изме­рений неплохо согласовывались.

Итак, мои радужные надежды оправдались. Метод давал величину, близкую к среднеарифметической вели­чине диаметров капель в спектре распыливания.

Природа образует радугу не на любой жидкости — все зависит от величины коэффициента преломления. Но керосиновая радуга оказалась в числе «разрешен­ных». Это уже сулило практический результат, так как керосин применялся в ТРД. (Правда, запротестовали пожарники, требуя для опытов более сложной взры­вобезопасной установки.) Конечно, до решения всей капельной проблемы было еще очень далеко. Для понима­ния физики распыливания и создания расчета смесеоб­разования требовалось определение всего спектра час­тиц. Но теперь хоть можно было определять и довольно просто средние значения диаметров капель спектра.

Глава II

ОХОТА ЗА КАПЛЕЙ

В поисках уравнений

Начальник одной из лабораторий ЦАГИ и наш научный руководитель Генрих Наумович Абрамович предложил мне написать статью. Я писал ее в состоянии внутрен­него подъема. Мне нравилась радуга, ее теория, мир капель и вообще весь мир. Статья содержала такой перл: «Теория Эри по своей красоте и изяществу может соперничать с явлением, ею описываемым». Мой това­рищ по работе инженер Л. А. Клячко, острослов, не без ехидства выдернул эту фразу из текста, как смешную редиску из грядки, и бегал с нею по всем комнатам, по­тешая сотрудников. Через несколько лет мы поквита­лись. Отыскался в его статье соответствующий перл: «Кривая концентраций топлива для форсунки имеет двугорбый характер» (автор имел в виду наличие двух максимумов).

Нам, начинающим, повезло на начальников и науч­ных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследо­вателем и автором известных работ по теории свобод­ной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассо­циации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, акту­альные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавяз­чиво, требуя от нас лишь инициативы и самостоятель­ности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, пояс­няя образование ударной волны в сверхзвуковом тече­нии. Его книга «Прикладная газовая динамика» стала настольной для поколений студентов и инженеров.

В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без фор­сунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.

Есть в инженерной практике человечества счастли­вые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде растру­ба на выходе реактивного двигателя, где газ разгоняет­ся до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геоме­трических форм. Кстати, древние греки могли бы полу­чить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подо­брав эмпирически сопло — раструб с определенной пло­щадью горловины, меньшей площади выхода.

Центробежная форсунка — младшая сестра в уни­кальном семействе устройств, которые скупыми сред­ствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко рас­ходящимся конусом мелких капель, чтобы полнее на­сытить некий объем? Проще всего подать ее танген­циально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой за­крыт, другой — сужен до малого отверстия (рис. 7). По­лучится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», об­разовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной фор­мы: однополостной гиперболоид (рис. 8).



Поделиться книгой:

На главную
Назад