…Научные открытия часто рождаются близнецами. В 1954 году в США заработал прибор, которому его создатель Таунс и его сотрудники Гордон и Цайгер дали странное имя мазер. Оно было составлено из первых букв фразы, описывающей на английском языке принцип действия прибора. После первых сообщений всем стало ясно, что в Физическом институте в Москве и в Колумбийском университете в Нью-Йорке независимо проводилась работа с одинаковым результатом.
Вскоре молекулярный генератор появился и в Институте радиотехники и электроники Академии наук СССР, и в метрологическом институте в Харькове, и во многих других местах. А затем в работу включилась промышленность. Басов и Прохоров были вдохновителями и идейными руководителями всех основных работ в новой области науки, развившейся из их пионерских исследований.
За открытие нового принципа и создание молекулярных генераторов и усилителей Басов и Прохоров в 1959 году были удостоены Ленинской премии.
Вы заметили, мы упомянули о молекулярных усилителях. Да, молекулы породили не только идеальный радиопередатчик, но и бесшумный радиоприёмник. В обычном радиоприёмнике даже при отсутствии помех все время слышно слабое шипение. Это шумят электронные лампы. Молекулы же — самый бесшумный «прибор» на свете. Поэтому молекулярный усилитель улавливает такие далёкие сигналы, которые безнадёжно потонули бы в шуме радиоламп.
Однажды — через несколько лет после описываемых событий — академик Котельников делал доклад о своих замечательных работах по радиолокации планет. Один из слушателей спросил: почему радиолокационный сигнал, полученный им от планеты Меркурий, оказался много яснее, чем сигнал от планеты Венера? Это был далеко не праздный вопрос. Ведь Венера в четыре раза больше Меркурия и она приближается к Земле гораздо ближе, чем он. Следовало ожидать, что сигнал от Меркурия будет гораздо слабее, чем от Венеры.
Ответ Котельникова был прост. Да, сигнал много слабее, но наблюдался он несравненно более ясно потому, что в это время планетный радиолокатор уже был оснащён новым молекулярным усилителем. Этот прибор, основанный на использовании законов квантовой физики, изготовили в Институте радиотехники и электроники АН СССР под руководством профессора Жаботинского.
Всем памятна и первая межпланетная радиосвязь, когда через планету Венера радиотелеграф передал слова ЛЕНИН, СССР, МИР. Это осуществили советские учёные тоже с помощью нового усилителя.
Об этой — радиоастрономической — ветви квантовой электроники мы ещё поговорим подробнее. А сейчас пойдём по пути от мазера к лазеру.
Квантовая радиоэлектроника начала своё триумфальное шествие с радиоволн. Но Басов и Прохоров в Москве и Таунс в Нью-Йорке открыли ей дорогу к световым волнам.
Однако первый успех в этой области пришёл не к ним. Впервые квантовый генератор оптического диапазона построил американский учёный Мейман. Он изготовил из рубина стерженёк, тщательно отполировал и посеребрил торцы, затем осветил его мощной лампой-вспышкой. И свершилось чудо. Из торца стержня вылетел нестерпимо яркий луч красного света! Американцы дали новому прибору имя лазер.
Этот универсальный прибор наших дней на вид странно прост. Почти примитивен. Кусок искусственного рубина или специального стекла… Лампа-вспышка, только размерами отличающаяся от применяемых фотографами… И больше ничего. Но один из зарубежных исследователей, случайно попавший под луч лазера на расстоянии мили от него, получил тяжёлое повреждение зрения. Яркость этого луча в миллион раз больше яркости Солнца! Луч лазера мгновенно пробивает отверстие в стальных пластинах. Вот почему лазерный луч стал незаменимым инструментом для обработки алмазов и сверхтвёрдых сплавов, его применяют для ускорения потоков заряженных частиц и управления химическими реакциями.
Басов вскоре после изобретения молекулярного генератора увлёкся идеей создания лазеров на полупроводниках. Здесь открывалась заманчивая перспектива прямого преобразования электричества в световые волны. И уже его первая совместная работа с Вулом и Поповым заложила теоретические основы для построения таких приборов. Но трудности на пути к практике были столь велики, что долгое время в создание лазеров на полупроводниках не верил никто, кроме самих участников работы.
Однако Басов, Крохин и Попов всё же додумались, как, пропуская через полупроводник электрический ток, полностью, почти без потерь, превращать его в луч света. Работа закипела в лабораториях Басова и Вула в Москве и Наследова и Рывкина в Ленинграде. Ленинградцы первые получили обнадёживающие результаты. Вскоре удивительный ла зер засветился и в США, и в СССР. Большой цикл работ советских учёных, приведших к созданию полупроводниковых лазеров, был удостоен Ленинской премии за 1964 год. А потом Басов и его сотрудники опять добились успеха. Их новый лазер светился благодаря бомбардировке полупроводника пучком электронов.
Над созданием и применением новых приборов — мазеров и лазеров — теперь работают тысячи учёных в сотнях лабораторий. Но главную, ведущую роль здесь сыграли Басов, Прохоров и Таунс. Это признала мировая научная общественность. Их деятельность достойно оценила шведская Академия наук, присудив им Нобелевскую премию.
…10 декабря 1964 года… Зал Стокгольмского концертхауса переполнен. Под звуки фанфар входят Басов, Прохоров и Таунс. Учёные идут тем же путём, каким до них входили сюда многие замечательные исследователи.
Этот зал помнит Эйнштейна, Планка, Бора…
Высокий статный старик — король Швеции — приветствует новых лауреатов. Адольф VI, король-профессор, который каждый год брал трёхмесячный творческий отпуск для научной работы, отлично понимал значение открытия, сделанного одновременно и независимо в СССР и США. Но для королевы и её фрейлин, да и для большинства сидящих в зале речь одного из шведских академиков, произнесённая на родном шведском языке, была не более понятна, чем средневековая латынь.
— Наша лаборатория, как видите, выросла, но дело, конечно, не в количественном росте. Главное — существенно изменилась тематика, — рассказывает Прохоров. — Прежде для нас важнейшим был молекулярный генератор, от него пошло все мазеростроение. Мы исследовали кристаллы рубина. Создавали сверхчувствительные усилители. Новый этап развития квантовой электроники — создание лазеров, исследование вещества с помощью лазера и для создания новых типов лазеров, применение лазеров в различных областях науки и техники.
Войдём же в Лабораторию колебаний ФИАНа и попытаемся увидеть всё своими глазами.
Сектор мощных лазеров. Здесь всё крупномасштабно — и сами лазеры, и вспомогательные устройства. Лазеры установлены на массивных металлических столах, тянущихся вдоль длинных комнат. Их окружают выпрямители, блоки питания, жгуты электрических проводов, внушительные системы охлаждения. Оптические зеркала и призмы корректируют, направляют луч лазера. В углу лаборатории вижу резиновые калоши на Гулливера — с высоким напряжением работать небезопасно. На рабочих столах — непременно синие защитные очки.
Многие мощные лазеры, созданные здесь, уже работают на заводах. Они сваривают металлы, которые обычным способом не свариваются, например титан и нержавеющие стали. Режут, штампуют, плавят массивные металлические детали, с искусством виртуозов обрабатывают миниатюрные часовые механизмы. Как рассказывает заведующий одним из секторов мощных лазеров профессор Карлов, лаборатория даже занималась раскроем рулонных материалов. Раскрой их лазерным лучом оказался экономически выгодным. Это делается в непрерывном потоке, по точно рассчитанной программе.
— Создание лазеров для промышленности основная наша задача, — говорит Карлов, — но не единственная. Александр Михайлович Прохоров поставил перед нами новую, сложную и пока никем до конца не решённую проблему. Как вы знаете, молекулы веществ колеблются. Частоты колебаний разных молекул различны. Возникла мысль — нельзя ли, раскачав молекулы лазером, разорвать в них внутренние связи и заставить осколки молекул вступить в новые, недоступные обычной химии соединения? Мы реализовали эту идею и осуществили трудную реакцию соединения бора с водородом, получили так называемые высшие бораны. Рождается новая наука — лазерная фотохимия, она поможет получать сверхчистые химические соединения, в том числе избранного изотопического состава. Например, тяжёлую воду без малейшей примеси обычной воды. Это будет переворотом в промышленности будущего. Задача трудная, она ещё в начальной стадии созревания, но в неё вовлечены немалые силы.
Карлов уже выполнил несколько работ, ставших основополагающими в радиоастрономии и радиоспектроскопии. В Крымской астрофизической обсерватории он занимался повышением чувствительности космических приёмников. Когда родились молекулярные генераторы, включился в мизерный проект.
У Карлова три мечты.
— Мне хочется иметь в руках лазерный импульс, — говорит он, — очень-очень-очень большой и посмотреть эффекты взаимодействия его луча с веществом. Это раз. Мне хочется осуществить управляемую лазерным лучом экзотическую химическую реакцию, которая никем никогда не была осуществлена. Два. Мне хочется получить ясность в вопросе лазерного разделения изотопов. Это три.
Три мечты, и каждая — не просто этап в планомерном развитии традиционной области исследований, а скачок в область, где действуют ещё неведомые людям законы. И каждая — фактически уже не мечта, а повседневная работа. Карлов подводит к установке, где осуществляет вместе с сотрудниками разделение изотопов редкоземельного элемента европия. Европий загружается в тугоплавкий тигель. Нагревается до тысячи градусов. Раскалённый газ поступает в стальную камеру — через стеклянное окошко видно оранжевое облачко. Это смесь атомов европия. До рождения понятия «изотоп» эти атомы считались абсолютно идентичными в своём физическом и химическом проявлениях. Но сегодня физики так уже не думают. Они знают: эта идентичность кажущаяся. На самом деле атомы европия бывают двух сортов, двух изотонических составов, чуть-чуть различающихся атомным весом: европий-151 и европий
153.
Разделить их между собой — задача неимоверной трудности. Атомы — не предметы, которые отличаются по виду, цвету, весу. Их можно попытаться разделить каким-нибудь косвенным путём, скажем, придумать реакцию, в которой эти два сорта атомов будут вести себя по-разному. Но в известных физических и химических экспериментах изотопы ведут себя одинаково. И изотопы не только европия, но и других элементов, можно сказать — всех элементов.
Многие элементы Периодической таблицы Менделеева обладают двумя, или несколькими, или даже целым «букетом» изотопов. И хоть атомы-близнецы так похожи друг на друга, что их трудно отличить, каждый «сорт» обладает уникальными качествами, которыми не обладает другой.
Химически чистые изотопы сделали возможным реализацию многих ранее недоступных технологических процессов. Например, использование в атомной энергетике только титана-50 намного увеличивает срок службы реакторов. Часто химически чистый изотоп применяется исследователями как индикатор. Например, химики осуществляют контроль за течением некоторых химических реакций в промышленных установках с помощью введения в процесс изотопа. Агробиологи используют изотопы, чтобы следить за тем, как растения усваивают удобрения.
Поэтому учёные и ведут настойчивый поиск возможностей быстрого, дешёвого, легкоосуществимого разделении изотопов. Пока методы разделения не имеют ни одного этого качества Они трудоёмки, громоздки, дороги. Дороги поэтому и сами химически чистые изотопы. Так, килограмм осмия-187 на мировом рынке стоит 14 миллионов долларов, кальция — 46–88 миллионов долларов.
Совершенно сенсационными оказались опыты лазерщиков. Они обнаружили, что лазеры обладают безошибочной избирательностью по отношению к изотопам. В смеси изотопов они легко опознают атомы определённого сорта.
Я спрашиваю Карлова, в чём секрет такой наблюдательности лазеров? Каким методом они пользуются?
Карлов рассказывает, что никакой неожиданности в этой ситуации вообще-то нет. Для физиков не секрет, что на атомы каждого вещества можно воздействовать квантом света определённой длины волны. И на изотоп в том числе. Просто ни один источник света, кроме лазера, не может излучать постоянную длину волны. А лазер может. Лазер способен генерировать очень чистую световую «ноту». Вопрос в том, чтобы подобрать излучение лазера, способное вступить в резонанс с излучением изотопа.
— Мы используем для разделения изотопов европия два лазера, — уточняет Карлов, — один настроен так, что его луч возбуждает только европий-151 и не действует на европий
153. Другой — наоборот.
Квантами света физики разделяют изотопы, словно овец в стаде! «Чёрных» — в одну сторону, «белых» — в другую!
Остроумно! Но можно ли сказать, что это «дёшево и сердито»? — спрашиваю Карлова.
Лазерные методы, — говорит он, — могут конкурировать с прежними по количеству получаемого продукта при несравненно меньших размерах установок, затратах энергии, с лучшим использованием сырья. Что же касается элементов, которые сейчас во всех странах добываются граммами (например, изотопы осмия, калия, иридия, иттербия), то в этой области лазерный метод будет, несомненно, вне конкуренции. Думаю, что затраты на селективное, выборочное получение изотопов подавляющего большинства элементов Периодической таблицы Менделеева с помощью лазеров будут в сотни раз меньше по сравнению с традиционными способами…
Карлов с большим волнением говорит о чудесах, которые оказались по плечу лазерам. Но я, слушая его, испытывала волнение от другой мысли: разве не чудо то, что оказалось по плечу современному физику, ему самому — Карлову Николаю Васильевичу? То, что составляет будни его сегодняшней работы, вчера считалось темой фантастических романов.
Что ещё сказать о Карлове? Он обаятелен, молод, хотя приходится причислять его к «старикам». Он один из тех сотрудников Прохорова, которые начинали вместе с ним с нуля, ещё в домазерную эпоху. Как ветеран лаборатории, Карлов несёт солидную нагрузку. Он и заведующий ответственным сектором, и профессор Физико-технического института, и секретарь партбюро Лаборатории колебаний. Впрочем, мне придётся ещё не раз говорить о «старых» сотрудниках, о всех тех, кто начинал свою работу у Прохорова ещё студентом и вырос вместе с лабораторией. И это отнюдь не из-за возраста. Все они — кандидаты и доктора наук — наставники молодежи, приходящей сегодня в лабораторию.
…В Физико-техническом учебном институте существует полезная традиция. Преподаватели рассказывают выпускникам о своих лабораториях, и это помогает им выбрать место работы. То же было и в год выпуска Вадима Федорова. Один из сотрудников акустической лаборатории ФИАНа так рассказывал об акустике, что перед удивлённым деканом легли сплошь заявления с просьбой направить в эту лабораторию. Только Фёдоров просился к Прохорову — так он и работал здесь с 1968 года, в паре с Бункиным, главой теоретического сектора, первым из прохоровских сотрудников, избранным членом-корреспондентом АН СССР. Бункин кончал МГУ и был аспирантом у профессора Рытова, одного из ведущих советских физиков-теоретиков, учителя Прохорова. Бункин решил уже немало сложных проблем в новой науке, рождённой лазерами и мазерами, — квантовой электронике. Работа его сектора переплетается практически с тематикой всех других секторов лаборатории.
Последние годы Бункина-теоретика и Федорова-экспериментатора объединяет интерес к проблеме взаимодействия лазерного излучения с веществом. С одной из сторон этой задачи я познакомилась, когда Федоров демонстрировал работу мощного лазера. Звук выстрела, металлическая мишень обзаводится порядочной дыркой, и всё затихает. Будто ничего не произошло. Приблизительно так я всё себе и представляла, но заранее была подготовлена к тому, что луча этого лазера не увижу; так как он лежит в невидимой для человеческого глаза области — инфракрасной. И всё же через синие очки я была ослеплена мгновенно вспыхнувшей молнией, шнуром связавшей лазер и мишень! Что это?!
— Это не лазерный луч, а ответ мишени на световую пулю, — объяснил мне Федоров. — Ведь на металл обрушивается световой импульс мощностью в несколько мегаватт на квадратный сантиметр — шквал, мощность целой электростанции! Металл вскипает, испаряется, и навстречу лазеру устремляются раскалённые до тысяч градусов пары. Явление, никогда ранее не наблюдаемое оптиками…
Казалось бы, побочное явление, стоит ли обращать на него внимание?
Но такова специфика научной работы — в ней не бывает, не должно быть ничего необъяснённого, случайного. Это на заводе лазер — послушный работник. Здесь он — необъезженный конь. Но из лаборатории на завод он придёт прирученным, покорным. Без неожиданностей. Неожиданности достаются физикам.
И видимая молния оказалась не простым и не случайным явлением. И далеко не тем, чем можно пренебречь. Это защитная реакция мишени. Она затрудняет работу лазера. Разряд как бы экранирует мишень от попадания на неё следующей лазерной пули, бережёт себя от неё. Это похоже на реактивную силу двигателя, на хвост стартующей ракеты. Несколько лет над объяснением этого явления бьются экспериментаторы и теоретики.
Профессор Бункин говорит: «Это лишь часть общефизической проблемы взаимодействия лазерного луча с веществом. Прежняя физика этих забот не знала, никогда ещё человек не имел дело с такими интенсивными потоками света. В этой области всё новость, открытие. Лазерный луч, ударяясь в мишень, перерождает металл, превращает его в совершенно другое вещество — диэлектрик. Как, почему это происходит? Какими методами исследовать новое вещество в момент катастрофы, как изучить процессы между мишенью и лазером?
Задача теоретиков — построить модель явления, задача экспериментаторов — диагностировать процесс. Они фотографируют, изучают спектры, мерят температуру. И им приходится нелегко: для регистрации таких высокотемпературных, быстротечных процессов нет готовой аппаратуры. Её надо создавать самим. Ждать помощи некогда — лазер нужен производству.
Трудно даже сказать, кому лазер нужен больше — производству или науке…»
Как рассказывал мне Прохоров, глава этой, теперь уже гигантской лаборатории, исследования по взаимодействию мощного лазерного излучения с веществом дают столько неожиданных эффектов, столько порождают надежд на новые практические применения лазеров, что трудно сказать, какие стороны этого явления надо изучать прежде всего и какие использовать. Конечно, важно решить технологические задачи обработки материалов, особенно сверхтвёрдых. Но невероятно любопытно изучить процессы в нагретых лазерным лучом жидкостях и жидких металлах. Нельзя не увлечься и перспективой, которую сулит образование плазмы при пробое воздуха вблизи поверхности твёрдой мишени лазерным излучением — ведь возникающие при этом импульсы давления на мишень могут быть использованы для создания лазерных реактивных двигателей!
Слушая Прохорова, я всё время ощущала, как в нём переплетается трезвость исследователя с озорством безудержного мечтателя. Он говорит о том, что сейчас происходит в лаборатории, а думает о том, чего здесь ещё нет, но что обязательно будет!
Переходим в следующий сектор прохоровской лабора тории. Здесь нас ожидает особенный лазер. Вы, наверно, думаете — очень мощный? Да, мощный. Но главная его особенность в другом. Он, если можно так выразиться о приборе, — голубых, благородных кровей. Излучает одну волну, рождает «звук» на одной «ноте».
Это лазер — плод исключительного инженерного искусства и физического чутья доктора технических наук Александра Ивановича Барчукова, человека необычной судьбы и сложного характера. До ФИАНа был фронт, служба в полку «Нормандия — Неман», потом — только ФИАН, только служение одной, раз и навсегда выбранной цели. В Барчукове, давнем сотруднике Прохорова, сочетается недюжинный талант инженера-изобретателя и тонкого экспериментатора-физика. Чтобы сделать лазер мощным, надёжным, мало указаний теории. Тут есть чёткие границы движения вперёд. А изобретательским ухищрениям практически нет предела. Всегда можно придумать такие ходы, которые улучшат характеристики прибора.
Вот результат особого инженерного видения Барчукова: огромный лазер длиною в 100 метров (длина в данном случае способствует повышению мощности) «уложен» на «этажерке», легко уместившейся в маленькой комнате.
Такую творческую индивидуальность не создаёт ни один факультет, ни один институт. Она зреет в гуще коллективного творчества той лаборатории, где работает человек, имеющий особые природные данные. Но не везде и они получают развитие. Барчукову повезло. Повезло и лаборатории.
…Луч лазера, испаряющий металл, воспламеняющий плазму, может быть нежнее человеческих рук. Он может, проникнув под кожу, не повредив её, в нужной точке сделать целительную операцию.
— Наша лаборатория предложила использовать лазер для лечения глаукомы, — рассказывает Прохоров. — Профессор Краснов уже провёл успешно множество операций. Мы с ним постоянно контактируем и делаем сейчас улучшен ный вариант. Лазер работает в импульсном режиме, короткими частыми толчками и пробивает капиллярный проток вместо того, который закупорился в результате болезни.
— И нигде в мире такие операции не проводятся?
— Работа Краснова получила большой международный резонанс. Она вошла в цикл его замечательных исследований, заслуженно удостоенных Ленинской премии.
Прохоров достает несколько зарубежных газет — там сообщается о работах советских физиков и медиков и говорится, что такие операции будут взяты медициной на вооружение.
Руководитель работ кандидат физико-математических наук Тамара Михайловна Мурина последние годы часто выезжает в Киев, где в институте имени Гамалея идут настойчивые эксперименты в области лазерной медицины. Объекты наступления — рак кожи, волчанка, врождённые дефекты кожи. Лазер используется и просто для поверхностного облучения, результаты позволяют надеяться на терапевтическое лечение злокачественных заболеваний, родимых пятен, заболеваний сосудов.
Впрочем, родимые пятна, оказывается, тоже сосудистое заболевание. Любопытно, что красный цвет петушиных гребешков — результат закупорки сосудов: в гребнях кровь не циркулирует. Под облучением лазера петух теряет свой победный вид — его гребень становится белым.
Использование лазерного луча в качестве скальпеля уже имеет свою историю. Он помог осуществить операции на печени, селезёнке. Такие операции при помощи простого ножа часто бывали невозможны — так кровоточили эти органы. Хирурги говорят: ткань плачет. Лазерный нож режет и одновременно заживляет — кровотечения не возникают.
— Тамара Михайловна, с каким инструментом вы работаете? Это лазер обычного типа или он имеет свои особенности?
— Наш лазер работает на особом кристалле-флюорите с диспрозием, который создан у нас в лаборатории, в секторе у В.В. Осико. Кристалл определяет все те эффекты, которые мы наблюдаем в наших медицинских экспериментах. На других волнах пока не обнаружены те лечебные результаты, которые даёт наш лазер.
Много времени ушло в лаборатории на «воспитание» кристалла. Был он в работе капризен, неустойчив. Его облучали гамма-лучами, вводили добавки — теперь он вполне надёжен. Как видно, он даст начало новому ceмейству лазерных материалов, которым суждено трудиться на медицинском поприще.
Слушая Тамару Михайловну, наблюдая её мягкую, почти домашнюю манеру поведения, я думала о том, как сложна, обязывающа её профессия. Тамара Мурина кончала Бауманский институт, диплом делала под руководством Прохорова на фиановском ускорителе, а сейчас участвует в сложнейшем синтезе физики и медицины. Сколько же этой женщине надо над собой работать, чтобы объять такой диапазон знаний, сказать своё слово в науке!
Говорят, хорош тот генерал, за которым идёт армия.
Счастлив тот учёный, который сумел воспитать единомышленников.
Сколько людей в прохоровской лаборатории — столько же индивидуальностей. Но в каждом — частица Прохорова, его характера, эрудиции, его мироощущения. И это естественно: для старых сотрудников он — старший испытанный товарищ. (Таков он, например, для заведующего механическими мастерскими Дмитрия Константиновича Бардина, рабочего паренька, который вместе с Басовым и Прохоровым делал первый мазер. Тогда все трое были одновременно и головой, и руками.) Для молодых Прохоров — учитель, всемирно признанный авторитет, доброжелательный, опытный руководитель. На четвёртом этаже нового здания — две двери с табличкой «Кафедра взаимодействия излучения с веществом». Это базовая кафедра Московского физико-технического института, который и даёт основные кадры лабораториям типа прохоровской. Заведующий кафедрой — Прохоров. Преподаватели — сотрудники лаборатории. Студенты начиная с четвёртого курса работают в лаборатории. Тот, кто прикипает сердцем, остаётся здесь и после окончания института.
Для прохоровцев лазеры — основное занятие, смысл их научной деятельности. Увлечение и работа. Но ни самого Прохорова, ни его сотрудников невозможно упрекнуть в узости интересов. Во-первых, потому, что исследования в целях создания новых типов лазеров связывают их с самыми различными областями физики и техники. Во-вторых, и в этом «повинен» сам Прохоров, однобокость, однонаправленность не совместимы с характером и научным темпераментом прохоровцев. Сам он принадлежит к когорте учёных, которых ни на минуту не оставляет первозданное любопытство ко всему необъяснённому. Поэтому и его собственные интересы, и интересы сотрудников выплёскиваются далеко за рамки чисто лазерных проблем.
Здесь не хватило бы места, чтобы рассказать о всех, кто трудится на главном направлении. Но надо же сказать несколько слов и о тех, кто «отклоняется в сторону».
Ненасытность прохоровских интересов передалась его ученикам и сотрудникам. Прохоров полностью полагается на их знания, чутьё, поддерживает, помогает, выращивает в каждом то неповторимое, что питает науку новыми соками.
Это доверие помогло родиться в лаборатории многим замечательным открытиям. Одно из них — сюрприз для… ювелиров. Да, в лаборатории, где из радиофизики родились лазеры, где обсуждались и создавались теории и приборы, имеющие отношение к самым высоким сферам довременной физики, были созданы драгоценные камни, подобные бриллиантам, фиановские бриллианты самого различного цвета — по заказу. Этих драгоценностей природа не знает, не знал их и человек. Они родились в ФИАНе и поэтому получили название фианиты. Спрос на них велик. Они уже давно продаются в ювелирных магазинах, их экспортируют в другие страны.
Повторяю: фианиты родились там, где совершенно не думали о потребностях ювелиров, а занимались фундаментальными исследованиями. Теперь можно сказать, что фианиты именно поэтому и появились. Только глубокое изучение свойств кристаллов натолкнуло на способ их получения.
Вячеслав Васильевич Осико, доктор физико-математических наук, не думал о дамских украшениях. Он настойчиво искал новые материалы для лазеров. Делал искусственные рубины, гранаты, более совершенные, чем лучшие из природных, стремился сочетать в своей работе самые современные методы и приёмы. Прохоров с большой серьёзностью и терпением относился к поискам Осико, предоставив ему и нужные средства, и помещения: у Осико отдельный корпус и большой штат сотрудников. Они гордятся своими трудягами, лазерными кристаллами, гораздо больше, чем сверкающими фианитами.
…Неожиданный научный выход дали работы ещё одного из давних сотрудников — Виктора Георгиевича Веселаго. Он создал самую мощную в Европе магнитную установку — сооружение в три этажа, — на которой ведутся важнейшие исследования свойств вещества. Эта работа, так сказать, в русле тематики лаборатории. Но есть и другая — из области теории относительности, выдающая романтический стиль научного мышления Веселаго и имеющая пока мало сторонников. Но среди них — один из великих могикан: французский физик Луи де Бройль, который независимо пришёл к тем же выводам.
И ещё одна работа доктора физико-математических наук Веселаго выделяет его как ученого с оригинальным самостоятельным мышлением: он «сочинил» необычайные вещества с невиданными свойствами и придумал ситуацию, в которой такие вещества могут существовать. Пока нельзя говорить о практическом выходе этих идей, но ведь в науке многое начинается с вопроса «почему?» Изучаются необык новенные свойства веществ, а потом уж думают, как реализовать условия, при которых они осуществимы.
Так возникло особое звучание научной школы Прохорова. Возникла легенда и о самом Прохорове: у него необыкновенное чутьё на перспективность работ, он заранее знает, какая идея пойдёт, какая — пустая трата времени.
Прохоров — сторонник фундаментальных исследований. Без них, считает он, невозможен нормальный рост науки в техники. Поэтому-то он всегда в мобилизационной готовности. В фундаментальных исследованиях видит бездну возможностей, неожиданностей.
— Существуют два вида, две категории фундаментальных исследований, — говорит он. — К первому из них относятся те, что не нацелены прямо на решение практических задач. Таковы, например, астрофизические исследования, исследования твёрдого тела при сверхнизких температурах и сверхсильных магнитных полях и т. п. Второй тип исследований связан с решением конкретных задач, таких, например, как управляемый термоядерный синтез, высокотемпературная сверхпроводимость, синтез кристаллов с заданными свойствами и т. п. Оба типа фундаментальных исследований должны развиваться одинаково интенсивно, взаимно обогащаясь.
На что же нацеливает лабораторию Прохоров — на связь с промышленностью или на разработку новых научных принципов?
— Как правило, лишь хорошо подготовленный в теоретическом плане учёный, — считает Прохоров, — может создать новые технологические процессы, новые материалы, всё то, что действительно является потребностью практики. Фундаментальные исследования с неизбежностью приводят к выходу в практику, и наоборот, принципиально новые задачи техники, например космической техники или энергетики, неизбежно приводят к постановке фундаментальных исследований в физике, математике и других областях науки.
Нормально развивающаяся физическая лаборатория должна вести работы в перспективных, поисковых областях, постоянно поддерживая контакт с промышленностью, учитывая фундаментальные направления и развитие народного хозяйства, потребности общества.
В одних случаях мы разрабатываем теорию, изучаем явление, и это неизменно приводит к практическим результатам. В других — целенаправленно ищем решение технической проблемы. Таково научное кредо нашей лаборатории.
Знакомясь с работой и жизнью Лаборатории колебаний ФИАНа, я подумала, что она похожа на ветвистое дерево. От ствола идут ветви первого поколения — это те сотрудники Прохорова, которые составляли старую небольшую лабораторию времён рождения молекулярного генератора. Сегодня они руководят коллективами, сравнимыми по масштабам с прежней лабораторией. А от этих ветвей идут веточки следующего поколения. Это молодёжь, работающая по десять — пятнадцать лет. Мандельштам, внучка основателя лаборатории, замечательного советского учёного академика Л. И. Мандельштама, Виноградов, Козлов, Щелев и Коробкин — лауреаты премии им. Ленинского комсомола, Дианов — лауреат Государственной премии СССР, вместе с Прохоровым удостоенный недавно премии ФИАНа, Сычугов и Золотов — пионеры техники оптической связи лаборатории и многие другие.
Что же превращает этот коллектив в единый организм, единую семью? Общность интересов. Взаимопонимание и осознание общей цели. Энтузиазм. Дружба. Конечно, не та, прежняя, семейная дружба, объединявшая маленький коллектив, который мог уместиться на нескольких байдарках или за одним столом. Дружба стала другой. Теперь лаборатория в четыреста человек вряд ли может разом ходить в гости друг к другу. Но общность коллектива стала осознанней и целеустремленней. Появилась новая задача — сделать свой труд эффективным, выдержать соревнование с другими коллективами и у нас в стране, и за рубежом.
Над этим думает каждый в отдельности и все вместе.
Каковы же планы этого коллектива на ближайшее деся тилетие? Будет ли это продолжение тем, начатых сегодня, или что-то принципиально новое?
С этими вопросами я обратилась к Прохорову. Думаю, что короткий отрывок из интервью даст понять, какими интересами живёт и будет жить лаборатория Прохорова. Вот что я услышала.
— Мы всё время меняем тематику, — сказал Александр Михайлович, — хотя это, может быть, и не бросается сразу в глаза. Мои сотрудники очень мобильны. Они с удовольствием расширяют диапазон исследований и сами, и под моим влиянием. Большую часть изысканий займёт, конечно, изучение твёрдого тела. Твёрдое тело — это орешек, который будет разгрызать ещё не одно поколение физиков. Ведь от его свойств, возможностей зависит развитие и науки и техники. Изучение твёрдого тела влияет и на перспективу развития лазерных приборов. И оно же — твёрдое тело — даёт новую жизнь электронно-вычислительной технике.
Я вспоминаю, что уже не раз слышала в лаборатории трудное словосочетание — «супермикроэлектроника твёрдого тела», и прошу Александра Михайловича рассказать, что оно означает.
— Это новая и весьма тонкая сфера исследований, — говорит он, — и мы ею занимаемся очень серьёзно. Создавая ЭВМ, которые представляют собой не что иное, как искусственный мозг, мы всё время, вольно или невольно, опираемся на свойства живого мозга. Чем отличается память человека от памяти машины? Элементной базой. В человеческой памяти работают клетки органического происхождения, в машинной — работает неорганика. В первом поколении машин это были электронные лампы, во втором — полупроводниковые элементы, транзисторы. В последние 10–15 лет происходит революция в этой области — физики пытаются применять в качестве основ памяти элементы из твёрдого вещества с подходящими свойствами. Вы, наверно, слышали об интегральных схемах? Это мозг нового поколения машин, и состоит он из сверхтонких плёнок твёрдого тела. Преимущества в том, что объём машин меньше — ведь на месте одной прежней электронной лампы умещается целая «академия наук»!
Но разве дело только в объёме? — спрашиваю я. — Не важнее ли уловить секрет жизнедеятельности клеток, принцип их действия, чтобы нечто подобное попытаться воплотить в ЭВМ? И вообще возможно ли это? Ведь механизм процессов памяти формируется на молекулярном уровне. И этим объясняются свойства памяти и принцип её действия. А у лампы, полупроводника или даже плёнки твёрдого тела совсем иная природа, а следовательно, и иной принцип действия. Какую цель ставят поиски — добиться сходства или понять различие? И нужно ли искать сходство?
Мы ищем сходство не в принципе действия живого и искусственного, интеллекта, а в его результатах. От ЭВМ мы даже ждём большего. Большей скорости работы, большей надёжности, долговечности. Все параметры искусственного мозга должны перекрыть возможности живого мозга. И мы возлагаем большие надежды на элементы твёрдого тела не только потому, что это сулит нам уменьшение объёма ЭВМ. А главное потому, что исследования внушили нам уверенность в большой перспективности этих элементов памяти. У нас возникла надежда, что элементная база на твёрдом теле сможет не только соперничать, но и превзойти возможности интеллекта, созданного природой. Пока, конечно, лидируют биологические элементы памяти. Но ручаюсь, очень скоро искусственные помогут нам создать новую машинную цивилизацию.
Утратив связь этих проблем с тематикой лаборатории, я спрашиваю Прохорова:
— А при чём тут лазеры?
Он смотрит на меня с недоумением, будто я забыла, для чего в природе Солнце.
— Лазеры? Но ведь это орудия изучения твёрдого тела. Они не только помогают исследовать свойства веществ, но дают часто единственную возможность изменять состояние материалов. Например, уплотнять атомы. Лазер может обжать вещество на четыре порядка! А уплотнение — это путь к ещё более компактным элементам ЭВМ.