Прежде чем остановиться на этом явлении природы подробнее, ответим на вопрос: что может произойти со звездой, которая слишком массивна для того, чтобы спокойно пойти по пути эволюции через состояние белого карлика к пульсару?
Расчёты показывают, что, скорее всего, процесс приведёт к катастрофе. Сжимаясь под действием гравитационных сил, более не сдерживаемых истощившейся энергией термоядерного синтеза, звезда потеряет устойчивость и испытает подобие колоссального взрыва. При этом огромная часть массы её будет выброшена в пространство. Люди неоднократно наблюдали такие взрывы в виде появления необычайно ярких, быстро угасающих звёзд. Одна из таких «сверхновых» наблюдалась примерно тысячу лет назад, и её остатки мы знаем в форме Крабовидной туманности.
Если выброшенная масса будет такой, что остаток звезды может эволюционировать по пути белого карлика, она постепенно превратится в стабильную нейтронную звезду, в знакомый нам пульсар. Именно это и произошло со «сверхновой» в Крабовидной туманности.
Однако такой вариант не может быть единственным. Более того, он представляется мало вероятным, а значит, сравнительно редким.
Скорее всего, звезда, первоначально в 10 раз превосходившая по массе Солнце, не попадёт в узкий «коридор» такой эволюции. В этом случае гравитационное сжатие перейдёт в коллапс, и звезда сожмётся до состояния, предвиденного Лапласом: всё более возрастающие гравитационные силы «запрут» её излучение. Она перестанет быть видимой.
Таких «чёрных дыр» может быть очень много. Предполагается, что в центрах галактик существуют огромные «чёрные дыры» с массой от десяти тысяч до десяти миллионов солнечных масс, непрерывно поглощающие окружающее вещество, а иногда и целые звёзды.
Эту теорию трудно подтвердить опытом, ибо «чёрную дыру» нельзя видеть непосредственно. Но если она имеет спутника в виде обычной звёзды, то, наблюдая её излучение, можно заключить, что незримым партнёром является именно «чёрная дыра».
Астрономы уже изучили движение десятков звёзд, намекающих на то, что их партнёрами являются «чёрные дыры». Но ни одна из них пока не обнаружила всей совокупности признаков, которые должна демонстрировать такая пара.
Одним из решающих доводов в пользу того, что невидимый партнёр является «чёрной дырой», должно быть мощное рентгеновское излучение. Оно неизбежно возникает, когда поле тяготения «чёрной дыры» втягивает в себя вещество из окружающего пространства, придавая частицам этого вещества всё возрастающее ускорение. Будучи партнёром обычной звёзды «чёрная дыра» постепенно всасывает в себя газовую оболочку своего партнёра. Возникшее рентгеновское излучение — словно сигналы бедствия. Но до Земли они не доходят. Они тонут в толще атмосферы.
Что ж, спросит читатель, позывные «чёрной дыры» так и останутся не услышанными?
Рентгеновское излучение из космоса стало предметом тщательного изучения после того, как космические лаборатории, вращающиеся вокруг Земли, были оснащены специальными приёмниками рентгеновских лучей — рентгеновскими телескопами. Эти телескопы обнаружили и позволили изучить рентгеновское излучение, исходящее от Солнца, звёзд и различных галактик. Что же мы узнали о «чёрных дырах» от этих разведчиков?
Все наблюдения как бы группируются в две категории. В одних случаях (их большинство) источники рентгеновского излучения совпадают с видимыми объектами. В других — такое совпадение отсутствует. Вот тут-то можно предположить, что сигналит именно «чёрная дыра»! Однако доказать это пока невозможно.
Когда источник рентгеновского излучения совпадает с видимым объектом, можно по ряду признаков судить о природе источника. Тщательное исследование показало, что природа всех известных до сих пор источников рентгеновского излучения может быть понята и объяснена без привлечения гипотезы «чёрных дыр».
До последнего времени было известно только одно исключение: рентгеновский источник Лебедь Х-1. Рассмотрение его свойств было одной из наиболее волнующих тем, которые обсуждала советско-американская рабочая группа по теории космических источников рентгеновского излучения, собравшаяся в августе 1977 года в научном городке Академии наук СССР Протвино вблизи Серпухова.
Итоги дискуссии послужили темой статьи, написанной совместно Лайманом из Гарвардского университета США, Сюняевым из Института космических исследований АН СССР, Шакурой из Государственного института им. Штернберга в Москве, Шапиро из Корнельского университета США и Эрдли из Вольского университета США.
Статья начинается так: «Мы были бы счастливы, если бы Лебедь Х-1 оказался “чёрной дырой”. Но, честно говоря, полной уверенности в этом у нас нет. Несмотря на энергичные поиски “чёрных дыр” в природе, Лебедь Х-1 остался пока единственным достоверным кандидатом в “чёрные дыры”».
В августе 1978 года появился ещё один кандидат в «чёрные дыры», ещё один рентгеновский источник, во многом похожий на Лебедь Х-1, но о нём пока известно очень мало.
Регулярные исследования источника Лебедь Х-1 ведутся уже свыше девяти лет. О нём известно, что его размеры малы, а масса больше, чем возможная для нейтронной звезды или белого карлика.
Видимый объект в Лебеде Х-1 звезда-сверхгигант. Её масса примерно в 25 раз больше массы Солнца. Это было установлено в 1971 году, когда внезапно резко изменился спектр рентгеновского источника и одновременно в этом же месте возник слабый источник радиоизлучения. Положение нового радиоисточника, измеренное при помощи радиотелескопов с чрезвычайно высокой точностью, совпало с видимой звездой, известной в астрономических каталогах под индексом V=1357Cyg. Так счастливый случай, природа которого ещё полностью не изучена, помог установить, что изменение характера рентгеновского излучения с одновременным возникновением радиоисточника связано с двойной звездой V=1357 в созвездии Лебедя.
Об этой звезде теперь известно многое. Видимая звезда вращается по своей орбите со скоростью не менее 73 км/сек., совершая оборот за 134,4 часа. Радиус орбиты, по которой движется видимая звезда, по крайней мере в 8 раз превышает радиус Солнца, а масса невидимого объекта заключена в пределах от 8 до 11 солнечных масс.(По более поздним и более точным оценкам масса невидимого объекта в системе Лебедь Х-1 заключена в пределах от 10 до 20 масс Солнца, что ещё больше укрепляет уверенность в том, что это «чёрная дыра». К 2006 году уже несколько десятков подобных объектов астрофизики называют «надежными кандидатами в “чёрные дыры”». Подробнее об этом см.: А.М. Черепащук, А.Д. Чернин «Вселенная, жизнь, чёрные дыры», Фрязино: Век-2, 2004. — Прим. В.Г. Сурдина )
Таких массивных нейтронных звёзд или белых карликов быть не может.
Для поддержания интенсивности рентгеновского излучения, наблюдаемого от Лебедя Х-1, нужно, чтобы от видимого сверхгиганта к «чёрной дыре» ежедневно перетекала масса вещества, равная всего десяти или тридцати миллиардным долям массы Солнца, так что процесс перетекания может продолжаться очень долго.
В излучении источника Лебедь Х-1 есть ещё много деталей, не имеющих однозначного объяснения. Например, неизвестна причина изменений интенсивности излучения, при которых его яркость быстро возрастает, а затем медленно уменьшается.
Учёные, выдвигающие самые разные предположения на этот счёт, единодушны в одном: исследования источника Лебедь Х-1 дадут многое для понимания эволюции Вселенной и природы элементарных частиц. Эти исследования перспективны для понимания процессов, происходящих в квазарах и в ядрах активных галактик, во-вторых, можно ожидать существование сверхмассивных «чёрных дыр», скрывающих в себе массу, в миллион или миллиард раз превышающую массу Солнца.
Позднее появились сообщения об обнаружении объектов, необычные особенности которых проще всего объяснить существованием в них сверхмассивной «чёрной дыры». Однако, кроме случая Лебедь Х-1, эти предположения не могут пока считаться полностью доказанными.
Одно из сообщений касается ядра галактики М87. Необычайно большой поток энергии, выделяемой ядром этой галактики, и спектральные особенности этого излучения наиболее непротиворечиво объясняются предположением о том, что в ядре этой галактики скрыта сверхмассивная «чёрная дыра», масса которой составляет примерно десять миллиардов солнечных масс.
Поток энергии, выделяемой этой галактикой, близок по своей величине потокам энергии, выбрасываемой квазарами — этими всё ещё непонятными объектами.
Доказательство или опровержение наличия сверхмассивной «чёрной дыры» в ядре галактики М87 даст возможность глубже понять природу таких удивительных объектов, как активные галактики и квазары.(С помощью космического телескопа «Хаббл» за последние 10 лет астрономы обнаружили в ядрах многих галактик признаки присутствия сверхмассивных «чёрных дыр» с массами от миллионов до миллиардов масс Солнца. Не только галактики с активными ядрами, но и нормальные, спокойные галактики нередко содержат такие удивительные объекты. Даже в ядре нашей Галактики с очень большой вероятностью обнаружена «чёрная дыра» с массой около 4 млн. масс Солнца, которая — что удивительно — не проявляет высокой активности. — Прим. В.Г. Сурдина)
Можно было бы рассказать ещё о многих удивительных явлениях в гигантских просторах Вселенной и микроскопических процессах, связанных с взаимодействием элементарных частиц.
Но об этом невозможно рассказать всё — каждый день прибавляет нам новые открытия и новые сомнения. Истина подобна горизонту — путь к ней не имеет конца. Но чем дальше, тем
ГЛАВА 2
Если нация хочет застраховать себя от потери самых сенсационных открытий, она должна обеспечить поддержку научным направлениям, которые находятся на переднем крае познания, даже если они кажутся бесполезными.
…И ЧЛЕН ЛАПУТЯНСКОЙ АКАДЕМИИ НАУК
Банкетный зал наконец затих, и юноша, долго взывавший к порядку, мог начать свою речь. Он открыл адрес в красивом переплете, и… вот что мы услышали:
«ДОРОГОЙ КОЛЛЕГА!
В день Вашего юбилея Вас приветствует и поздравляет Лапутянская академия наук.
Вы являетесь славным продолжателем научных исследований по квантовой электронике, начатых в нашей академии примерно 250 лет назад. Упоминание об этих исследованиях содержится в летописи академии, отрывок из которой позвольте здесь прочесть.
Летописец пишет: “Первый учёный, которого я посетил, был тощий человек с закопчённым лицом и руками, с длинными, всклокоченными и местами опалёнными волосами и бородой. Его платье и кожа были такого же цвета. Восемь лет он разрабатывал проект извлечения солнечных лучей из огурцов. Добытые таким образом лучи он собирал в герметически закупоренные склянки, чтобы затем пользоваться ими для согревания воздуха в случае холодного и дождливого лета”.
И далее пишет летописец: “…Учёный не сомневался, что ещё через восемь лет он будет иметь возможность продавать солнечные лучи для губернаторских садов по умеренной цене, однако жаловался, что запасы его невелики, и просил меня дать ему что-нибудь в качестве поощрения, тем более что огурцы в этом году были очень дороги. Я предложил профессору несколько монет”»…
Дружный смех долго не давал оратору закончить это приветствие, но тренированный физик перекричал аудиторию и прочёл адрес до конца:
«Вы видите, дорогой юбиляр, что наука всегда зависела как от состояния сельского хозяйства, так и от расположения благодетелей.
Поняв это, Вы научились добывать деньги из такого пустяка, как атомы и молекулы…
Велики Ваши заслуги перед физикой. Вы заменили огуречное семя более твёрдым телом и, вооружившись им, уверенно идёте к высотам науки…
Учитывая Ваши успехи и, главным образом, Ваше личное обаяние, Лапутяпская академия наук избрала Вас почётным членом.
Мы надеемся, что теперь, став членом нашей академии, Вы получите доступ к отчёту за 1726 год, написанному неким Джонатаном Свифтом (под шифром “Путешествия Гулливера”), и найдёте там много свежих идей для вашей дальнейшей деятельности.
Позвольте поздравить Вас и вручить Вам мантию почётного члена Лапутянской академии наук».
Под одобрительные возгласы молодые физики натянули на высоченную фигуру юбиляра — Александра Михайловича Прохорова — чёрную мантию и повесили на шею эмблему: огромный огурец на тесёмке. Чёрную шапочку юбиляр надел сам — его двухметровый рост не позволял сделать это его инициативным ученикам…
Это было 11 июля 1966 года, когда Александр Михайлович праздновал своё пятидесятилетие и одновременно избрание его действительным членом Академии наук СССР.
…Большинство исследователей видят основную цель своей деятельности в открытии нового. Они ставят и решают важнейшие вопросы. Как устроен атом? Что обеспечивает сходство потомков с предками? И, установив, что вокруг атомного ядра вращаются электроны, а наследственная информация заключена в генах, считают свою задачу выполненной.
Но есть другой тип учёных. Для них главным является вопрос «почему?» Они не могут успокоиться, не выяснив, в силу каких причин атомы стабильны, хотя законы классической механики и электродинамики предсказывают неустойчивость его планетарной модели.
История науки свидетельствует, что попытки ответить на вопрос «почему?» часто приводят к радикальной ломке устоявшихся взглядов, к настоящей революции идей.
Именно к таким результатам в конце концов привели первые «почему?», заданные природе Александром Михайловичем Прохоровым, будущим академиком, лауреатом Ленинской и Нобелевской премий, Героем Социалистического Труда.
…До войны выпускник Ленинградского университета Саша Прохоров успел проработать в ФИАНе (Физическом институте имени П. Н. Лебедева АН СССР) лишь два года. Чуть попробовал теории, немного приобщился к эксперименту. Лабораторная работа часто прерывалась экспедициями. Ничего выдающегося создать не успел.
Потом фронт, тяжёлое ранение, госпитальная койка…
Многие не вернулись домой. Советский народ дорого заплатил за свою великую победу.
Прохоров возвратился. Вернулся к физике, но не в прежней научной теме. Война не отпускала его и в тылу.
Он не мог думать о мирной жизни. Продолжал сражаться и в лаборатории — разрабатывал новые системы радиосвязи для фронта.
Первое время из-за ранения Прохоров не участвовал в полевых испытаниях аппаратуры. Зато вволю размышлял над теоретическими проблемами.
Было известно, что точность радиолокационного дальномера зависит от качества входящего в его состав генератора радиоволн. Но почему даже у лучшего прибора, стабилизированного кристаллом кварца, «ходит» частота? Так бывает у неважных радиоприемников, и они теряют нужную волну. В дальномерах это недопустимо. Как увеличить стабильность генератора радиоволн? Вклад в решение этой задачи сделал Прохорова кандидатом наук.
В это время Владимир Иосифович Векслер открыл принцип синхротрона — совершенно нового ускорителя элементарных частиц. Частицы приобретали здесь недостижимую в других ускорителях скорость и энергию.
Но чем большую энергию придавал частицам ускоритель, тем большая её часть исчезала неведомо куда.
Ускоритель становился похожим на кипящий чайник: как ни прибавляй огонь, температура воды не увеличивается — только струя пара всё сильнее бьёт из носика.
Потребовалось провести сложные исследования, прежде чем удалось понять — энергия ускоряемых частиц «испарялась» в виде радиоволн.
Каждый участник этой работы сделал свои выводы: конструкторы задумались над улучшением конфигурации составных частей синхротрона, теоретики кинулись проверять расчёты, а Прохоров… Озадачил коллег своим подходом к явлению: нельзя ли, задумался он, превратить синхротрон в некое подобие радиолампы, обратить мешающее явление в полезное?
На эту работу пришлось затратить несколько лет. В итоге — отрицательный ответ: нет, использовать принцип синхротрона для создания радиоламп невыгодно. Но на пу ти к неутешительному выводу удалось провести столь глубокие теоретические и экспериментальные исследования, что учёный совет ФИАНа постановил: это докторская работа, её автор достоин носить звание доктора физико-математических наук.
А Прохорова уже тревожит новый вопрос: все генераторы радиоволн созданы руками человека — неужели в природе нет естественных источников? Речь шла, конечно, не о звёздах, не о космических генераторах радиоволн, а о более доступных человеку.
Этот вопрос возник не случайно. Испытывая радиолокаторы, инженеры потратили немало времени, чтобы понять одно странное обстоятельство. Иногда радиоволны от локатора не достигали цели, а исчезали в пути. Что с ними происходило?
Этот вопрос оказался тесно связан с тем, над которым думал Прохоров.
Начались годы огромного творческого напряжения, счастливых озарений, работы без перерывов, когда радость открытий подавляла усталость. В этой работе участвовал коллектив, созданный Прохоровым, и прежде всего его ближайший сотрудник, учёный большого дарования — Николай Геннадиевич Басов, впоследствие академик, лауреат Ленинской и Нобелевской премий, Герой Социалистического Труда, депутат Верховного Совета СССР.
Общая задача захватила Прохорова и Басова. Они задумали серию опытов. Брали разные газы и облучали их радиоволнами. И им открылась удивительная картина. Газы далеко не одинаково относились к пронизывающим их радиоволнам. Большая часть радиоволн оказывалась для них «неинтересной», и они пропускали их без задержки.
Но по отношению к некоторым длинам волн, разным для различных газов, положение менялось. Жадно, как любимую пищу, многие из газов поглощали вполне определённые радиоволны. Определённые своей длиной, своей частотой колебаний.
Вот куда пропадали «радиоразведчики», посланные радиолокатором в поисках цели! Их «поедали» газы, составляющие воздух…
Создавалось впечатление, что молекулы этих газов, как миниатюрные радиоприёмники, настроены на определённую длину волны.
В эти годы аналогичным исследованиям начали уделять внимание многие лаборатории мира, особенно университетские, где, в отличие от лабораторий фирм и заводов, занимались фундаментальными проблемами.
Постепенно метод просвечивания газов радиоволнами вошёл в промышленность для анализа различных газовых смесей.
Но это был побочный результат. Главное — впереди.
Итак, было доказано, что молекулы газов способны поглощать радиоволны. Но все ли вещества поглощают радиоволны? И только ли поглощают? Нет ли среди них таких, которые умеют излучать? Короче говоря — нет ли в природе естественных генераторов радиоволн?
Прохоров и Басов делают решающий шаг. Они выдвигают предположение, логично, закономерно вытекающее из одной, пользовавшейся большой популярностью работы, выполненной Эйнштейном вскоре после Первой мировой войны. Это был шаг, давший жизнь замечательному открытию. Молодые учёные поняли: если молекулы способны поглощать радиоволны, значит, они могут, даже должны излучать их!
Молекула в качестве генератора радиоволн? Это было совершенно неожиданное заключение. Оно звучало неправдоподобно.
Если недавно Прохоров изумлял коллег своими попытками использовать в качестве генератора радиоволн такую махину, как синхротрон, то теперь, к удивлению окружающих, он ударился в другую крайность — начал мечтать об использовании в роли генератора невидимых и неосязаемых атомов и молекул!
К такому повороту мыслей ещё никто не был подготовлен. К этому надо было привыкнуть! Ведь с понятием радиотехнического прибора в то послевоенное время были связаны громоздкие ящики, набитые электронными лампами, катушками индуктивностей, трубочками сопротивлений, конденсаторами, источниками электропитания.
А тут — невидимая крупица материи. Но с какими необыкновенными свойствами! Электронные лампы и детали изнашиваются и портятся. Молекула же вечна! Она не старится, не срабатывается. Если её изолировать от внешних воздействий, она никогда не изменит длину излучаемой волны. Этот генератор, созданный природой, самый устойчивый, неизменный в своей работе прибор.
Прохоров хорошо знал, сколько труда стоят попытки сконструировать неизменные, или, как говорят инженеры, стабильные генераторы радиоволн.
Да, от заманчивой мысли уже трудно было отказаться. Молекула в роли радиопередатчика — идея настолько привлекательная, что она полностью подчинила себе жизнь и мысли Прохорова и Басова на многие годы…
…Два молодых человека не отрываясь смотрели на экран осциллографа. Они видели светящуюся линию, середина которой плавно уходила вниз и вновь вздымалась к прежнему уровню. Кривая больше всего напоминала парящую птицу. Так изображают птиц дети. Так рисовали их и старые японские мастера.
Один из физиков медленно вращал ручку прибора, и изгиб кривой постепенно уменьшался, пока она не превращалась в прямую линию. Затем на месте провала возникал плавный подъём. Действуя очень осторожно, можно было заставить кривую вознестись вверх так, как она только что изгибалась вниз. Потом кривая опять выпрямлялась, и, наконец, на ней снова возникал провал.
Ещё несколько дней назад это казалось очень интересным и важным. Но теперь изящная кривая вызывала досаду и отвращение. Ведь не для этого же, в самом деле, разбирали они прибор, полировали его детали, вновь и вновь откачивали из него воздух!
— Рискнём? — спросил Прохоров.
Басов только кивнул. Движение руки. Стрелка вольтметра подскочила ещё на несколько тысяч вольт. Вчера при этом неизбежно возникал пробой. Но теперь всё было спокойно.
В который раз медленно вращается ручка прибора. И опять кривая становится прямой и начинает изгибаться вверх. Вдруг на её вершине возникает узкая полоска.
Прохоров и Басов переглянулись. Неужели?!
Всё так же методично движется рука, вращающая рукоять прибора. Медленно увеличивается и расширяется полоска. И вот в её середине отчётливо виден поясок.
Типичный бантик, — сказал один.
Работает, — отозвался второй.
Так в Лаборатории колебаний Физического института Академии наук СССР родился молекулярный генератор, поразительный прибор, сердцем которого был не мотор, не шестерни, не какие-нибудь другие детали. Главную роль в нём играли невидимые глазу молекулы аммиака, которые делали то, чего никто никогда от них не ждал. Они излучали радиоволны.
Именно бантик на капризной кривой и возвестил учёным о долгожданной минуте. Никто не знает, как распространяются слухи. Физики убеждены, что они летят быстрее, чем свет. А это значит, что они не материальны. И на сей раз слух непостижимо проник через стены, полы и потолки. Открылась дверь, и в комнату начали входить научные работники, лаборанты, механики… Каждый хотел взглянуть на бантик, поздравить, а если позволят, и покрутить ручку. Конечно, такой чести удостоились далеко не все. Для этого нужно было пользоваться большим уважением или принять хоть малое участие в работе, которая ещё безнадёжно далека от завершения. И первым по праву положил руку на рукоять прибора Бардин, талантливый механик, сделавший, как говорят физики, «всё железо». А «всё желе зо» — это и тончайший резонатор из специального сплава — суперинвара, и корпус из нержавеющей стали… Бардина сменил Никитин, монтировавший радиосхемы, — радиотехник и студент-заочник, вскоре ставший инженером, а впоследствии научным сотрудником, кандидатом и доктором наук. И только потом к прибору прорвался маститый теоретик и неожиданно для всех закрыл вентиль баллона, из которого поступал аммиак. Бантик исчез и ко всеобщему восторгу возник вновь, как только был открыт вентиль.
— Наука торжествует, — изрёк теоретик и отошёл в сторону.
Так физики праздновали победу. И при этом говорили только о том, что надо проверить, измерить, переделать. И праздник перешёл в трудовые будни. И по-прежнему по утрам уборщица, выметая обрезки проводов и капли олова, вздыхает: «Кванты, кванты…» — и толкует своим подругам, работающим на других этажах:
— А мы запустили молекулярный генератор.