Рис. 14.
На нем мы видим, что происходит, когда острый край бросает тень на какую-либо поверхность. Световые лучи рассеиваются на краю экрана, как показано на рис. 14.
Часть рассеянного света попадает в область тени, и поэтому близ ее края она оказывается несколько менее темной. Однако часть рассеянного света попадает в освещенную область, интерферируя там с прямым светом. Например, если рассеянный свет на своем пути к точке А проходит в обход путь, превышающий путь прямого луча на 1/2 волны (или на 3/2, или на 5/2 волны и т. д.), то оба луча дадут темноту (рис. 15).
Рис. 15.
Поэтому около края тени мы получим темные полосы. Чем меньше длина волны, тем уже полосы. Обычно эти полосы не видны невооруженным глазом, но, как показано на фото II, их можно увидеть при помощи оптических инструментов.
Эти явления, а также многие другие явления того же характера убедительно доказывают волновую природу света. Они позволяют также измерять длину световой волны. Например, зная толщину такой нефтяной пленки, которая не отражает красного света, мы можем сказать, какова длина волны этого света. Подобные измерения показали, что длины волн видимого света лежат между 4·10-5 и 8·10-5
После того, как мы установили волновую природу света, нам приходится рассмотреть важный вопрос: каким типом волн являются световые волны? что служит их носителем и каковы те колебательные изменения, которые образуют волну? Ответ на этот существенный вопрос был получен в конце XIX века Джемсом Кларком Максвеллом и Генрихом Герцем. Совокупность идей и открытий, приведших к этому ответу, составляет одну из самых захватывающих глав в истории науки. Но прежде чем мы дадим ответ на поставленные выше вопросы, нам нужно познакомиться с двумя фундаментальными понятиями: электричеством и магнетизмом.
Электричество
Поверхностное рассмотрение явлений природы не раскрывает важнейшей роли электричества. Единственные два безусловно электрических явления в природе — это молния и электризация трением. Если первое подавляет нас своей величественностью и разрушительной силой, то второе вообще не производит на нас никакого впечатления. Электризацию трением можно иногда увидеть: при трении предметов о какое-либо вещество они притягивают кусочки бумаги и частицы пыли, а прикосновение этих предметов к металлу приводит к появлению слабеньких электрических разрядов. Эти явления не кажутся столь же важными, как тяготение и свет, и поэтому до конца XVIII века их считали менее существенными, побочными. В наше время, конечно, роль электричества особенно подчеркивается его техническими приложениями; однако истинное значение электричества в природе вышло на передний план только в последнее время, в связи с развитием атомной физики, когда оказалось, что почти все явления, которые мы видим вокруг нас в природе, основаны на электрических силах и их действиях.
В первую очередь здесь следует отметить существование двух родов электричества. Предмет может быть заряжен электричеством как одного, так и другого рода. Они называются положительным и отрицательным электричеством, но в этих названиях не отражено качественное различие между ними. Положительное электричество ничем не «лучше» отрицательного. Ученые, которые дали им эти названия, с тем же успехом могли назвать положительное электричество отрицательным и наоборот. Заряженные объекты воздействуют друг на друга. Если они заряжены разноименным электричеством, то они притягиваются, если одноименным — отталкиваются.
Электрические заряды противоположного знака могут взаимно уничтожаться. Положительно заряженное тело можно сделать электрически нейтральным, если сообщить ему равное количество отрицательного электричества. Следовательно, если какое-либо тело не заряжено, то оно может либо совсем не нести электрического заряда, либо нести равные количества положительного и отрицательного заряда. Одно из великих открытий физики заключалось в обнаружении того, что незаряженное вещество действительно состоит из положительных и отрицательных электрических зарядов.
Электрические заряды могут двигаться в веществе. Движение заряда особенно легко совершается в металлах. Металлическая проволока, соединяя два противоположно заряженных тела, немедленно разряжает их, так как противоположные заряды притягиваются. Отрицательное электричество в одном теле переходит к положительному в другом, и наоборот. Движения заряда в металлической проволоке мы называем электрическим током. В настоящее время мы имеем готовые «заряженные объекты» у себя дома. Два гнезда штепсельной розетки постоянно поддерживаются заряженными электричеством противоположного знака, так что в любой соединяющей их проволоке возникает ток, поддерживаемый электрической силой, действующей между гнездами.
Тщательное исследование того, что же именно движется в проволоке, показало, что движется отрицательное электричество; положительное остается в самом теле. Отрицательное электричество состоит из маленьких «атомов» электричества, электронов — частиц, с которыми мы часто будем иметь дело в этой книге. Все вещества как бы заполнены электронами.
Отрицательный заряд электронов в веществе обычно уравновешен равным количеством положительного. Положительный же заряд представляется связанным с веществом и, следовательно, неподвижным. Позже мы увидим, что положительный заряд находится в центре атомов и поэтому должен оставаться с ними. Электроны легко удалить из любого вещества или прибавить к нему. Если добавить к веществу некоторое количество электронов, то оно приобретает отрицательный заряд; если удалить часть электронов, то возникает избыток положительного электричества и вещество заряжается положительно.
Мы здесь впервые заглянули в электрическую природу материи. Поверхностному взгляду она не показывает своего электричества; оно маскируется тем, что отрицательные и положительные заряды в веществе обычно точно уравновешивают друг друга, и мы не можем обнаружить никакого избыточного заряда. Тем не менее результаты более глубоких исследований показывают, что вещество состоит из электрически заряженных частиц — подвижных отрицательных электронов и центров атомов, несущих положительные заряды.
Вернемся теперь к силе взаимодействия заряженных объектов. Она зависит от расстояния между зарядами. Например, взаимодействие противоположных зарядов в штепсельных гнездах обычной проводки слишком слабо, чтобы гнать электроны от одного гнезда к другому. Но если достаточно сблизить гнезда (примерно на 0,025
Силу взаимодействия двух заряженных объектов легко измерить. Сила притяжения, действующая между частицами с положительным и отрицательным зарядами, убывает обратно пропорционально квадрату расстояния, т. е. по тому же закону, по которому убывает с расстоянием сила тяготения. Конечно, сила тяготения действует между любыми двумя массами, тогда как электрическое притяжение действует только между объектами, несущими противоположные заряды. Если оно действует между очень маленькими заряженными телами, то сила электрического притяжения обычно гораздо больше гравитационной силы (т. е. силы тяготения). Эта аналогия между силами приводит нас к чрезвычайно существенному выводу: отрицательные электроны в веществе притягиваются положительными центрами атомов примерно таким же образом, как и планеты притягиваются Солнцем. Поэтому мы полагаем, что электроны вращаются вокруг атомных центров так же, как планеты вокруг Солнца. Это заключение имеет очень большое значение в теории атома, что мы и увидим в следующей главе.
Магнетизм
Мы реже замечаем магнитные явления в природе, чем электрические. Конечно, компасом пользуются везде и всегда, но это кажется чем-то столь естественным, что никто уже не задумывается над физической стороной дела. Магнитными свойствами обладает лишь небольшое число металлов, хотя некоторые из них распространены весьма широко, например железо. Тем не менее магнетизм — явление поразительное; когда мы держим в руке магнит и кусок железа, то замечаем силу особого рода — некую «силу природы», подобную силе тяжести (рис. 16).
Рис. 16.
Весьма важным оказалось обнаружение тесной связи магнетизма с электричеством. На такую связь между ними впервые указал датчанин Ганс Христиан Эрстед в начале XIX века. Он установил, что электрический ток, текущий по круговой или спиральной проволоке, действует точно так же, как магнит, и создает магнитную силу. Это открытие привело француза Андре Ампера к предположению, что обычный стальной магнит должен действовать по тому же принципу, и он заключил, что в каждом атоме имеется слабый круговой ток; если большинство этих атомных токов ориентировано в одном направлении, то возникает магнитная сила. Гипотеза Ампера оказалась совершенно правильной.
Связь между электричеством и магнетизмом взаимна. Не только электричество создает магнетизм, нс и магнетизм создает электричество. Если какой-либо магнит движется вблизи электрической проволоки или проволока движется вблизи магнита, в ней возникает ток. Переменная магнитная сила индуцирует ток и, следовательно, действует точно так же, как и электрическая сила. На этом принципе основаны наши генераторы — устройства, производящие ток, применяемый в технике. В генераторах при вращении якоря намотанные на него витки проволоки движутся в магнитном поле, и в проволоке возникает электрический ток. В каких бы условиях ни изменялось магнитное поле, оно всегда создает электрическую силу, приводящую в движение электрические заряды.
Электрические и магнитные поля
Изучение связи между электрическими и магнитными явлениями привело к открытию нового явления природы — совокупного электрического и магнитного поля. Оно было сделано примерно в середине XIX века. Мы обязаны этим открытием главным образом Фарадею, Максвеллу и Герцу. Возникшие отсюда новые представления не только глубоко повлияли на наше понимание природы, но и изменили наш образ жизни, так как они стимулировали развитие энергетики и радиотехники. Понятие электромагнитного поля связано с тем удивительным обстоятельством, что электрические заряды или магниты оказывают действие на другие объекты (заряды или магниты), не находящиеся в непосредственной близости от них. Электрические и магнитные силы действуют в пространстве на расстоянии. Как это может быть? Что передает это действие от одного тела к другому?
Чтобы понять это действие на расстоянии, воспользуемся представлением о поле. Каждый электрический заряд служит центром, или источником, электрического поля. Это поле есть свойство самого пустого пространства. Пространство в окрестности заряда находится в состоянии натяжения. Последнее можно измерить, воспользовавшись
Рис. 17.
Заряд
Подобные же поля создают магниты в окружающем их пространстве. Они называются магнитными полями. Это — «натяжение» в пространстве другого типа. Оно действует на любой кусок железа, находящийся в данном участке пространства; «натяжение» принимает характер силы, толкающей железо к магниту.
До сих пор понятие поля служило только для сложного способа описания сил взаимодействия зарядов или магнитов. Однако связь электрических и магнитных явлений показывает, что эти поля существуют и сами по себе. Возьмем, к примеру, индуцирование тока в проволоке путем движения магнита вблизи нее. При движении магнита его магнитное поле в том месте, где находится проволока, меняется со временем: с приближением магнита поле растет, с удалением — убывает. В результате этих изменений в проволоке индуцируется ток: они приводят заряды в движение. Следовательно, переменное магнитное поле делает то, что по предположению делает электрическое поле, — переменное магнитное поле создает электрическое поле.
Рассмотрим теперь создание магнитного поля электрическими силами. В данном случае магнитное поле создает ток. Ток — это движение зарядов, каждый из которых несет электрическое поле. Итак, мы видим, что движущееся электрическое поле создает магнитное поле, точно так же, как движущееся магнитное поле создает электрическое.
Электромагнитные волны
Связь между электрическим и магнитным полями занимала умы физиков в течение всей первой половины XIX века. Наибольший вклад в решение этой проблемы внес великий английский физик-теоретик Джемс Кларк Максвелл, который, кроме того, смог математически описать полученные результаты. Математические соотношения, связывающие оба поля, являются основой наших знаний об электрических явлениях; эти соотношения называются уравнениями Максвелла. Содержащаяся в них концепция явилась поворотным пунктом в нашем понимании природы и породила бесчисленные направления в физике и технике, среди которых мы упомянем здесь лишь радио, радиолокацию и телевидение.
Максвелл тщательно изучил связи между обоими полями и пришел к следующему интересному вопросу: если электрическое и магнитное поля существуют сами по себе, то не могут ли они существовать независимо от зарядов и магнитов? Конечно, статические (постоянные) поля могут существовать только близ зарядов и магнитов, но как же обстоит дело с переменными полями? То обстоятельство, что переменное поле создает поле другого рода, наводит на мысль о возможности самоподдерживающегося процесса. Изменяющееся электрическое поле создает магнитное; создаваясь, последнее увеличивается и поэтому само создает электрическое поле и т. д. Анализируя эти соотношения количественно, Максвелл показал, что данный процесс распространяется в пространстве, т. е. что переменное электрическое поле в одной точке создает магнитное по соседству с ней, которое в свою очередь вызывает электрическое еще немного дальше, и так снова и снова. Таким образом возникает колеблющееся электромагнитное поле, непрерывно расширяющееся в пространстве. Каким бы способом ни возникало переменное электрическое или магнитное поле — например, в результате колебаний зарядов или появления магнитов, — поле будет распространяться во всех направлениях. Скорость его распространения можно вычислить по данным о наблюденном токе, индуцированном движущимися магнитами, или по данным о магнитном поле, создаваемом токами. В результате эти вычисления показали, что скорость распространения электромагнитного поля равна 3·108
Что такое свет?
Это был один из великих моментов. Тот день, когда Максвелл завершил свои расчеты, по праву считается одним из знаменательных дней в истории физики. Максвелл пользовался в своих вычислениях только измерениями электрических токов и магнитных полей, т. е. явлениями, которые, казалось бы, не имеют ничего общего со светом; однако он заключил из этих измерений, что колеблющееся электрическое поле распространяется в виде волн со скоростью, точно совпадающей со скоростью световых сигналов. Таким образом была открыта связь между двумя областями физики, которые казались совершенно несвязанными, между оптикой и электричеством.
От результатов Максвелла до заключения, что свет есть не что иное, как распространение электромагнитных волн, оставался лишь очень малый, но смелый шаг. После того, как он был сделан, множество разрозненных фактов стало на свое место. Например, нам сразу же становится ясно, почему нагретое до высокой температуры вещество испускает свет. Это вытекает из того, что вещество состоит из электрических зарядов. При высоких температурах заряженные частицы вещества, в частности электроны, совершают интенсивные и быстрые движения; в результате этого они создают быстро меняющиеся электрические поля, которые вызывают распространение полей в пространстве со скоростью света, т. е. испускается свет.
Если представление Максвелла об электромагнитной природе света верно, то должно быть возможным создание новых видов света. Любой электрический заряд или магнит, приведенный в колебание, породит поле, распространяющееся в пространстве, и будет служить источником света с частотой, равной частоте колебаний самого заряда или магнита.
Например, при пропускании по проволоке переменного электрического тока будут излучаться электромагнитные волны: их можно обнаружить на большом расстоянии, поместив на пути волн другую проволоку, в которой будут наблюдаться слабые наведенные токи. Этот опыт был впервые осуществлен в 1880 г. Герцем, который хотел проверить правильность идей Максвелла. Успех Герца открыл новую эру в технике. В настоящее время пространство полно таких радиоволн, испускаемых переменными токами в антеннах и отличающихся от световых волн только частотой, и длиной волны. Конечно, колебания, искусственно вызываемые в антеннах, происходят значительно медленнее колебаний электронов в накаленных проволочках ламп. Поэтому радиоволны имеют ту же природу, что и световые, но их частота гораздо меньше, или длина волны значительно больше (рис. 18).
Рис. 18.
Теперь мы можем ответить на вопрос о природе световых волн: что же именно колеблется и что служит носителем? Колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство; это пространство находится в состоянии натяжения. Электрическое и магнитное натяжения распространяются в пространстве в виде световой волны, точно так же, как сгущения и разрежения распространяются в воздухе в виде звуковой волны. Электромагнитная волна носит двойственный характер. Электрические и магнитные натяжения распространяются вместе и тесно связаны друг с другом. Итак, свет имеет чисто электромагнитную природу. Световая волна — это волна электромагнитного поля, бегущая в пространстве и отделенная от испустивших ее зарядов.
Открытие Максвелла можно сравнить по важности с открытием закона тяготения Ньютоном. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и открыл фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего поля тяготения, труды Максвелла — к введению понятия электромагнитного поля и к установлению законов его распространения.
ГЛАВА IV
АТОМЫ
Естественные единицы материи
В мире мы находим несметное множество различных веществ с невероятно сложными свойствами и строением; особенно сложна живая материя. Для того чтобы подойти к наиболее важным особенностям строения материи, следует начинать с изучения простых веществ. Сначала оставим в стороне органические вещества, такие, как дерево или кожа человека, так как они обладают сложной структурой и представляются комбинацией субструктур. Мы начнем рассмотрение с однородных веществ, таких, как воздух, вода, нефть, кусок металла или минерала. Эти вещества встречаются в трех агрегатных состояниях: твердом, жидком и газообразном (в виде пара). В твердом и жидком состояниях вещество выглядит плотно упакованным: в этих состояниях его чрезвычайно трудно сжать. Сжать вещество, находящееся в газообразном состоянии, очень легко; отсюда можно заключить, что в газообразном состоянии оно разрежено, т. е. что между единицами материи есть пустое пространство.
Что же такое единицы материи? Существуют ли они на самом деле? Можно ли бесконечно делить известное количество данного вещества, не изменяя его свойств, или же есть какое-то наименьшее его количество? Ответ на этот основной вопрос в настоящее время хорошо известен. Существует какое-то наименьшее количество любого вещества, которое называется молекулой, а в некоторых веществах— атомом. Разница между атомом и молекулой будет рассмотрена в конце настоящей главы. Раньше нам не придется делать различии между этими двумя типами наименьших единиц. Такие единицы очень малы, и в большинстве случаев простые вещества производят впечатление однородных. Однако исследования, проведенные очень тонкими методами, обнаруживают наличие какой-то молекулярной структуры. На фото III, например, показано строение кончика очень острой вольфрамовой иглы, снятого при помощи так называемого ионного микроскопа — устройства, позволяющего локализовать очень мелкие детали на некоторых металлических поверхностях.
Здесь мы видим правильное, упорядоченное расположение единиц, из которых состоит вольфрам. Зная увеличение микроскопа, можно найти размер этих единиц; оказывается, что он примерно равен 3·10-8
На этой же фотографии мы видим, что в твердом состоянии единицы вещества образуют правильную, хорошо упорядоченную решетку.
Молекулярную природу газа, например воздуха, можно продемонстрировать весьма убедительным образом. Мы знаем, что воздух может двигать легкие предметы, так, движение воздуха заставляет шелестеть листья. Однако если воздух находится в покое в резервуаре, в котором нет ни ветра, ни течений, то мы не должны ожидать, что нам удастся заметить какое-либо движение объектов, взвешенных в неподвижном воздухе. Однако если объекты очень малы и легки — это могут быть, например, мелкие частички пыли или дыма, — то наши ожидания не оправдаются. Если рассматривать в микроскоп взвешенные в воздухе частички, то мы увидим, что они испытывают небольшие беспорядочные смещения в разные стороны (рис. 19).
Рис. 19.
Это выглядит так, как если бы по ним стреляли крошечными невидимыми снарядами, беспорядочно выпускаемыми во всех направлениях. Такое движение впервые обнаружил в 1827 г. ботаник Роберт Броун, увидевший в свой микроскоп хаотический танец маленьких частиц. Он вел наблюдения в воде, а не в воздухе, но причина движения от этого не изменяется. Наличие «броуновского движения» служит прямым доказательством того, что воздух не непрерывен, а состоит из множества маленьких единиц, летящих в пространстве по всем направлениям весьма произвольным образом. Любой предмет в воздухе беспорядочно обстреливается со всех сторон молекулами, и этот обстрел создает давление воздуха. Обычно число ударов столь велико, что они действуют, как постоянное давление. Однако если наш предмет очень мал, то он испытает значительно меньше ударов, и, следовательно, отдельные удары могут время от времени вызывать дополнительное действие. Это и есть причина броуновского движения.
Мы можем определить наименьшую единицу жидкости, задавая следующий вопрос: сколь большую площадь можно покрыть тонкой пленкой жидкости, если в нашем распоряжении имеется ограниченное ее количество? Если бы не существовало наименьшей единицы, то одним граммом можно было бы покрыть площадь какого угодно размера, так как тогда любую площадь можно было бы удвоить, уменьшая толщину пленки вдвое. Но если есть наименьшая единица, толщину пленки нельзя сделать меньше нее, и, следовательно, для данного количества жидкости должна существовать определенная наибольшая площадь, по которой можно распределить ату жидкость.
Подобный опыт легко произвести, давая нефти растекаться по поверхности воды. Оказывается, что маленькая капелька нефти диаметром 1
Существование определенной наименьшей единицы любого вещества дает нам некую абсолютную меру количества. Обычно мы говорим об одном килограмме железа, об одном литре воды, об одном кубическом метре воздуха при атмосферном давлении. Все эти меры определяются произвольным выбором единиц измерения. Но, говоря о миллионе атомов железа, миллионе молекул воды или воздуха, мы тем самым применяем абсолютную меру, характерную для данного вещества и не зависящую от выбора человеком тех или иных единиц измерения. Вещество можно «сосчитать», вместо того чтобы измерять или взвешивать.
Для нас молекулы или атомы чрезвычайно малы, и поэтому химики предпочитают пользоваться в качестве абсолютной меры «молем» вещества[26]. Молем называется некое определенное число наименьших единиц; из практических соображений для определения моля выбрано число атомов в 1 г водорода. Это число, знаменитое число Авогадро, равно 6,03·1023. Один моль воды, содержащий 6,03·1023 молекул воды, заполняет около 18 с; один моль горной породы (кварца) имеет объем, примерно равный 24
Тепло
Что делает предмет горячим или холодным? В течение многих лет считалось, что тепло — это некое вещество, содержащееся в нагретом предмете. Полагали, что при соприкосновении с холодным предметом тепловое вещество проникает из горячего предмета в холодный и выравнивает их температуры. Но в середине прошлого века стало ясно, что тепло есть энергия, а именно энергия неупорядоченного движения молекул и атомов. При нагревании куска вещества все изменение состоит в том, что его наименьшие единицы совершают более быстрые и беспорядочные движения.
Рассмотрим несколько примеров. Мы видели, что в вольфрамовой игле атомы расположены в виде правильного узора. Как же они могут совершать беспорядочные движения? Будучи нагреты, они колеблются вокруг предписанных им мест, совокупность которых образует упорядоченную структуру. Конечно, это возвратно-поступательное движение частично обусловливает размытость картины на фото III.
При более высокой температуре ее размытость еще увеличивается. При очень высокой температуре размах колебаний становится сравнимым с расстоянием между соседними атомами и их расположение перестает быть упорядоченным. Это происходит при нагреве металла до температуры его плавления.
В газе, например в воздухе, тепловое движение молекул — это обычное прямолинейное движение, когда каждая молекула перемещается в пространстве хаотическим образом, сталкиваясь с другими молекулами и со стенками. Чем выше температура, тем быстрее движение. В холодный день (—18 °C) средняя скорость молекул воздуха примерно равна 400
Несмотря на огромную скорость движения молекул при обычных температурах, они не «улетают» очень далеко. Их «полет» постоянно прерывается столкновениями с другими молекулами. В воздухе их средний свободный и непрерываемый путь составляет только одну стотысячную долю сантиметра. Поэтому их полет больше всего напоминает беспорядочное метание с указанной выше скоростью, причем направление движения изменяется через каждую стотысячную сантиметра пути.
Тепловое движение в любом веществе, твердом или газообразном, полностью прекращается при —273 °C, так называемом абсолютном нуле температуры. При этой температуре все беспорядочное движение молекул прекращается, и ясно, что она является наименьшей возможной температурой.
Молекулы и атомы
Можно ли разделить описанные выше наименьшие единицы материи на еще меньшие? Можно, но тогда эти части уже не будут принадлежать тому же веществу. Молекула воды есть наименьшая единица воды. Части этой молекулы окажутся уже не водой, а водородом и кислородом.
Разбить молекулу на ее составные части значительно труднее, чем разбить само вещество на молекулы. Например, когда мы кипятим воду и получаем пар, мы разделяем вещество воды на молекулы. Вода в форме пара — это газ, частицы которого, молекулы, летают в пространстве каждая в отдельности, но оставаясь неразделенной, целой единицей. Но если через пар пропустить мощный искровой разряд, то часть молекул раздробится, и мы получим водород и кислород. Искра — значительно более сильный источник энергии, чем процесс кипячения. В некоторых случаях сильное нагревание тоже расщепляет молекулы и превращает одно вещество в другое.
Опыт, накопленный за все время развития химии, показал, что некоторые вещества можно разложить в другие интенсивным нагреванием, электрической искрой или другим сильным воздействием и что два вещества можно соединить, получая при этом новое химическое соединение. Водород и кислород можно соединить в воду, а кусок кварца можно разложить на кислород и кремний.
Один из самых важных моментов в истории человечества наступил, вероятно, около 3000 лет до нашей эры, когда человек впервые поместил некоторые похожие на землю вещества (вероятно, куприт или свинцовый блеск) на раскаленные угли. При этом получилось новое вещество — медь или свинец. Большинство металлов, например железо, медь, свинец, цинк и т. д., суть воистину вещества, приготовленные человеком; они редко встречаются в природе; исключением служат очень мелкие самородки (например, меди) и железоникелевые сплавы, приходящие из космического пространства в виде метеоритов. Объясняется это очень просто: чистые металлы не сохраняются, если они подвержены действию кислорода воздуха. Большинство металлов с течением времени связывается с кислородом и образует химические соединения, представляющие собой те же похожие на землю вещества, из которых сами металлы были извлечены. Человек может превратить эти руды в чистые металлы на период времени, достаточный для практических применений, но очень короткий по сравнению с возрастом Земли.
Изучение процессов, в которых одни вещества превращаются в другие, позволило установить очень важный факт: все, действительно все существующие вещества можно разложить на 92 основных вещества, называемых элементами. Каждый кусок вещества, где бы он ни был найден и в каком бы агрегатном состоянии он ни находился, всегда или сам представляет собой элемент, или состоит из элементов. Вещество, наименьшая единица которого является комбинацией нескольких элементов, называется химическим соединением.
Многие хорошо известные нам вещества представляют собой настоящие элементы. Все чистые металлы, например золото, серебро, железо, свинец, алюминий и т. д., суть элементы. Многие газы, например водород, кислород или азот, также являются элементами, но другие газы, такие, как светильный или углекислый газы, суть химические соединения. Большинство хорошо известных жидкостей — это химические соединения. Наименьшая единица элемента называется атомом; наименьшая единица химического соединения — молекулой. Так как все химические соединения можно разложить на элементы, наименьшая единица химического соединения должна быть составлена из наименьших единиц элементов. Следовательно, каждая молекула представляет собой конгломерат атомов; она состоит из атомов тех элементов, из которых состоит само химическое соединение. Они как-то подходят друг другу и образуют устойчивую единицу, молекулу, наделенную всеми химическими свойствами того вещества, чьей единицей она является.
Вода — это химическое соединение водорода и кислорода. Наименьшими единицами элементов водорода и кислорода служат атомы водорода и кислорода[28]. Наименьшей единицей воды служит молекула воды, состоящая из двух атомов водорода и одного атома кислорода (Н2O); они связаны так прочно, что разъединить их может только электрическая искра.
Существуют как большие молекулы, так и маленькие. Молекула воды состоит только из трех атомов; молекула этилового (винного) спирта — из девяти атомов: одного атома кислорода, двух атомов углерода и шести атомов водорода. Некоторые молекулы, встречающиеся в живом веществе, например белки, состоят из сотен и тысяч атомов.
Открытие 92 элементов и их атомов было самым важным шагом в понимании строения материи. Потребовалось очень много времени, чтобы выработались ясные представления и были поняты факты. Представление об основных веществах, из которых можно сделать все другие, столь же старо, как и натурфилософия. Целый ряд греческих философов развивал спекулятивные идеи такого рода. Первые заключения, близкие к нашим нынешним, были сделаны в XVII веке Робертом Бойлем; однако многие вещества, которые он считал простыми (т. е. элементами), оказались химическими соединениями. Знаменитый французский химик Антуан Лавуазье, казненный во время французской революции, составил список, содержащий 33 элемента. Современный список элементов и представление о молекулах как о соединении атомов были выработаны в XIX веке, причем наиболее важный вклад в это был сделан английским химиком Джоном Дальтоном.
Постараемся понять все колоссальное значение этого открытия. Мы окружены бесконечным множеством веществ, находящихся в различных и даже постоянно изменяющихся формах, с разными свойствами: горячих и холодных, живых и неживых. Несмотря на это колоссальное многообразие, все известные нам объекты состоят только из атомов 92 сортов, причем каждый сорт принадлежит своему, хорошо определенному элементу. Ни в живой, ни в неживой материи нельзя найти ничего такого, что нельзя было бы разложить каким-либо способом на некоторые из 92 элементов. Это открытие обнаружило основную простую черту в строении материи. Мы имеем дело со сравнительно малым числом фундаментальных единиц. Поэтому есть надежда, что принципы, лежащие в основе строения материи, достаточно просты, чтобы их мог понять человек.
Рис.
Строение атомов
Очень важно больше узнать о строении самих атомов. Надо выяснить, что же существует в 92 различных формах и наделено способностью соединяться, образуя самые разнообразные известные нам вещества; мы должны понять, почему определенные комбинации элементов возможны, а другие — нет, и наконец, мы должны попытаться выяснить, откуда произошли столь высоко организованные системы, как живая материя.
Атомы 92 видов обладают весьма различными свойствами. В обычных условиях одни из них образуют газы, другие — металлы; некоторые, например атомы углерода, способны легко соединяться с другими атомами и образовывать скелет целого ряда химических соединений, тогда как другие, например атомы гелия, неона, аргона, почти никогда не дают соединений. Несмотря на такие различия, атомы имеют примерно одинаковую величину. Это можно показать следующим способом.
Если известно атомное строение молекулы вещества, то легко определить, сколько атомов содержится в данном количестве вещества. Вспомним, что 1 моль воды содержит 6,03·1023 молекул и что это количество занимает около 18
Рис. 21.
Эти измерения говорят кое-что о том, как распределен электрический заряд в атомах металлов. Если бы он был равномерно распределен по всему атому, то при пролете альфа-частиц сквозь атом они никогда не отклонялись бы заметным образом от своего пути. Если же электрический заряд сосредоточен в определенных точках атома, то, подходя к этим точкам, альфа-частицы должны испытывать сильное отклонение. Здесь стоит провести описание опыта, данное самим Резерфордом:
«…Я хотел бы воспользоваться этим примером, чтобы показать, как часто мы наталкиваемся на факты случайным образом. Я уже давно занимался исследованиями рассеяния альфа-частиц, а д-р Гейгер, работавший в моей лаборатории, изучал это явление во всех деталях. Исследуя тонкие образцы тяжелых металлов, он нашел, что рассеяние. оказывается обычно малым, порядка одного градуса. Однажды Гейгер пришел ко мне и сказал: „Не думаете ли Вы, что молодому Марсдену, которого я учу методике исследований радиоактивности, следовало бы начать небольшую исследовательскую работу?“ Я согласился с ним и сказал: „Почему бы не предложить ему выяснить, могут ли рассеиваться альфа-частицы на большие углы?“ Должен сознаться Вам, что я сам не верил в такую возможность. Действительно, как мы знаем, альфа-частицы — это очень быстрые и массивные частицы с большим запасом энергии, и можно показать, что если бы рассеяние было обусловлено эффектом накопления целого ряда незначительных рассеяний, то вероятность рассеяния альфа-частиц в обратном направлении окажется очень малой. Затем я вспоминаю, что два или три дня спустя Гейгер пришел ко мне очень возбужденным и сказал: „Мы получили несколько альфа-частиц, летящих в обратном направлении…“ Это было самое невероятное событие, когда-либо происходившее в моей жизни. Это было почти столь же невероятно, как если бы при стрельбе 15-дюймовым снарядом по куску бумаги Вас бы ранило рикошетом. Поразмыслив, я понял, что это обратное рассеяние должно происходить в результате одного-единственного столкновения, и когда я произвел вычисления, то увидел, что можно получить эффект такого порядка величины, только если допустить существование системы, в которой большая часть массы атома сосредоточена в маленьком по размеру ядре. Тогда я подумал об атоме с маленьким массивным центром, несущим заряд. Я разработал математический закон, которому должно подчиняться рассеяние, и установил, что число частиц, отклоненных на заданный угол, должно быть пропорционально толщине рассеивающей фольги, квадрату заряда ядра и обратно пропорционально четвертой степени скорости. Эти выводы впоследствии подтвердили Гейгер и Марсден рядом прекрасных опытов»[30].
После этих опытов и целого ряда последующих стало совершенно ясно, что атом состоит из положительно заряженного, маленького, но массивного ядра (в котором сосредоточена основная масса атома), окруженного отрицательно заряженными электронами, гораздо более легкими, чем ядро. Истинный размер ядра чрезвычайно мал. Его диаметр лежит между 10-13 и 10-12 см, в зависимости от рода атома, т. е. примерно в 10 000 раз меньше диаметра самого атома; однако ядро очень тяжелое, так как в нем сосредоточена почти вся масса атома. Резерфорд и другие физики, в частности Мозли, определили число электронов в каждом атоме и положительный заряд атомного ядра. Поскольку сам атом электрически нейтрален, отрицательно заряженные электроны должны уравновешивать заряд положительно заряженного ядра. Следовательно, число электронов всегда должно равняться заряду ядра, выраженному в единицах заряда электрона. Это число характерно для атомов каждого рода. Водород, например, имеет один электрон и один положительный заряд в ядре, гелий — два электрона, литий — три и т. д., вплоть до урана с его 92 электронами и ядром, несущими 92 единицы положительного заряда. Это число называется атомным номером