82. Что представляет собою сердечник феррокартных катушек?
Сердечник феррокартной катушки совершенно не похож на сердечник от трансформатора или дросселя. Сердечник феррокартной катушки состоит из спрессованных крупинок химически чистого железа, связанных специальными лаками. Изготовление такого сердечника является очень трудной и тонкой работой.
6. Детекторный приемник
83. Какова дальность приема на детекторном приемнике?
Детекторный приемник является по преимуществу приемником для близких расстояний. Надежный прием 500 кВт станции им. Коминтерна на детектор возможен на расстоянии 700–800 км. Станции, имеющие мощность 50-100 кВт, можно уверенно принимать на расстояниях 300–500 км. Уверенный прием станций, имеющих мощность 1-10 кВт, возможен на расстоянии 30-100 км. Приведенные цифры являются средними, и потому не исключена возможность в отдельных случаях при благоприятных условиях удовлетворительного приема и на больших расстояниях.
84. От чего зависит громкость работы детекторного приемника?
Громкость работы детекторного приемника зависит, главным образом, от двух причин: от качества детектора и от качества антенны и заземления (см. вопрос 25). Детектор должен состоять из хорошей детекторной пары, имеющей большую чувствительность и большое количество чувствительных точек; антенна должна быть высокой, заземление также должно быть хорошим.
От самой схемы детекторного приемника и его устройства громкость зависит в небольшой степени.
85. Какой телефон более подходит для детекторного приемника — высокоомный или низкоомный?
Выбор высокоомного или низкоомного телефона зависит от сопротивления детектора, работающего в приемнике. Если детектор имеет большое сопротивление, то телефон должен быть высокоомным. При малом сопротивлении детектора лучшие результаты даст низкоомный телефон. Сопротивление большинства применяющихся у нас детекторов (гален-сталь, гален-медь) велико и поэтому при таких детекторах следует пользоваться высокоомными телефонами. К детекторам с малым сопротивлением относится применяемый иногда у нас детектор карборунд-сталь. При применении такого рода детекторов лучшие результаты дадут низкоомные телефоны.
86. Как надо обращаться с детектором?
Кристалл детектора следует предохранять от пыли и загрязнения. Для предохранения от загрязнения детектор надо закрыть каким-либо колпачком, лучше всего стеклянным стаканом. Загрязненный кристалл надо промыть в чистом спирте, чистом бензине или эфире. При впаивании в чашечку детектора нового кристалла следует пользоваться так называемым «сплавом Вуда», плавящимся при низкой температуре. Впаивание кристалла при помощи олова или третника испортит кристалл. Если не представляется возможным произвести впаивание помощью сплава Вуда, кристалл следует зажать в чашечке помощью винта.
87. Какой кристалл для детектора является лучшим?
Наиболее распространенным кристаллом для детектора является гален (свинцовый блеск). Этот кристалл обладает хорошими детектирующими качествами и вместе с тем является самым дешевым.
88. Существуют ли лучшие детекторы, чем галеновые?
По чувствительности галеновые детекторы являются одними из лучших, но обладают тем недостатком, что детекторная точка (место соприкосновения стальной спиральки и кристалла) не постоянна, часто сбивается. В процессе приема и поисков станции детектор приходится постоянно регулировать. Значительно удобнее так называемые «постоянные детекторы» или детекторы с постоянной точкой. Такие детекторы, встречавшиеся ранее на рынке, состояли из пары карборунд-сталь или двух кристаллов — пирита и халькопирита. В настоящее время можно рекомендовать применение купроксных детекторов, которые состоят из нескольких пар последовательно соединенных медных пластинок. Одна из пластинок каждой пары покрыта окисью меди. Такие детекторы по чувствительности мало уступают галеновым детекторам и весьма постоянны в работе.
Главной частью детекторного каскада является детектор. Детектором может быть любой электрический прибор, сопротивление которого зависит от характера приложенного напряжения. Ток в цепи детектора не подчиняется закону Ома. При работе такой прибор нарушает симметрию сигнала и искажает его форму, в результате чего можно произвести разделение составляющих принятого сигнала, т. е. отделить несущую частоту от модулирующей.
Простым прибором, изменяющим свое сопротивление под действием подведенного к нему переменного напряжения, является контактный детектор. Контактным, или кристаллическим, называют такой детектор, у которого контакт осуществлен между двумя кристаллами различных минералов, или между кристаллом и острием металла. Кристаллы, применяемые в детекторе, выполняются из минералов, обладающих пьезоэлектрическими свойствами и хорошей проводимостью. К таким минералам относятся: гален (PbS), цинкит (ZnO), халькопирит и др.
Под пьезоэлектрическим свойством кристалла понимают его способность изменять объем при воздействии на него электрическими зарядами.
Наиболее часто применяются контактные детекторы: гален-сталь, гален-медь (проволочка), цинкит-халькопирит. Качество указанных детекторов зависит от выбора точки на кристалле, где проявляется хорошая чувствительность; от степени нажатия одного кристалла на другой или острия на кристалл.
Выбор хорошей «точки» производится при работе детектора в схеме. О качестве выбранной точки судят по полученному эффекту (например, хорошая слышимость в телефонных трубках, наибольшее отклонение прибора и т. д.).
О свойствах того или иного детектора судят по его характеристике. Характеристикой детектора называется кривая, выражающая зависимость силы тока, проходящего через детектор, от величины и знака приложенного к нему напряжения.
На рисунке даны характеристики: хорошего детектора а, плохого детектора
Точка 0, около которой характеристика имеет резкий изгиб, называется рабочей точкой детектора.
Очевидно, чем круче поднимается около рабочей точки часть характеристики 0d и чем положе идет часть ее 0с, тем большую чувствительность имеет детектор.
На рисунке показаны две схемы присоединения детектора и телефонных трубок к приемному контуру. Данные схемы относятся к группе так называемых детекторных приемников.
При воздействии на детектор переменным напряжением высокой частоты, подводимым к нему от контура, за счет его пьезоэлектрических свойств начнет изменяться переходное сопротивление контакта. При отрицательных зарядах кристалл, сжимаясь, увеличивает переходное сопротивление, и ток через детектор проходит очень слабый. При положительных зарядах кристалл, расширяясь, даст хороший контакт с острием, и через детектор пойдет ток большей силы. Такое поведение кристалла под воздействием переменной э.д.с. вызовет движение тока в одном направлении. Произойдет, как говорят, «выпрямление» переменного тока.
Кристаллический детектор — прибор дешевый и простой в обращении, применяется главным образом в лабораториях и простых любительских детекторных приемниках. В современных ламповых приемниках такие детекторы не применяются, так как случайные сотрясения сбивают контакт и нарушают работу приемника.
7. Лампы
89. Как расшифровываются обозначения ламп?
Приемные лампы, выпускаемые заводом «Светлана», обычно обозначаются двумя буквами и цифрой. Первая буква указывает назначение лампы, вторая — род катода, а цифра — порядковый номер разработки лампы.
Буквы расшифровываются так:
У — усилительная.
П — приемная.
Т — трансляционная.
Г — генераторная.
Ж — маломощная генераторная (старое название).
М — модуляторная.
Б — мощная генераторная (старое название).
К — кенотрон.
В — выпрямительная.
С — специальная.
Род катода указывают следующие буквы:
Т — торированный, О — оксидированный, К — карбонированный, Б — бариевый.
Таким образом СО-124 означает: специальная оксидная № 124.
В генераторных лампах цифра, стоящая при букве Г, указывает полезную отдаваемую мощность лампы, при чем для маломощных ламп (с естественным охлаждением) эта мощность указана в ваттах, а для ламп с водяным охлаждением — в киловаттах.
90. Что обозначают буквы «С» и «РЛ» на баллонах наших радиоламп?
Буква «С» в кружке марка ленинградского завода «Светлана», «РЛ» — московского завода «Радиолампа».
91. Как образуются названия ламп?
Все современные радиолампы можно разделить на две категории: лампы одинарные, имеющие в своем баллоне одну лампу, и лампы комбинированные, представляющие собой сочетание двух или нескольких ламп, имеющих иногда один (общий), а иногда несколько самостоятельных катодов.
Для ламп первого типа существуют два способа составления названий. Названия, составляемые по первому способу, указывают количество сеток, при чем число сеток указывается греческим словом, а сетка — английским (грид). Таким образом, по этому способу пятисеточная лампа будет называться «пентагрид». По второму способу в названии указывается количество электродов, из которых один является катодом, другой анодом, а все остальные сетками. Лампа, имеющая всего два электрода (анод и катод), называется диодом, трехэлектродная — триодом, четырехэлектродная — тетродом, пятиэлектродная — пентодом, шестиэлектродная — гексодом, семиэлектродная — гептодом, восьмиэлектродная — октодом. Таким образом лампа, имеющая семь электродов (анод, катод и пять сеток), по одному способу может быть названа пентагридом, по другому — гептодом.
Комбинированные лампы имеют названия, указывающие типы заключенных в одном баллоне ламп, например: диод-пентод, диод-триод, двойной диод-триод (последнее название указывает, что в одном баллоне заключены две диодных лампы и одна триодная).
92. Какая разница между многосеточными и многоэлектродными лампами?
В последнее время в связи с выпуском ламп, имеющих много электродов, предложена следующая, не получившая пока еще общего признания, классификация ламп. Многосеточными лампами предложено называть такие лампы, у которых имеется один катод, один анод и несколько сеток. Многоэлектродными лампами такие, у которых имеется два или больше анодов. Многоэлектродной лампой будет называться и такая, у которой два или больше катодов. Лампа экранированная, пентод, пентагрид, октод являются многосеточными, так как у каждой из них имеется по одному аноду и по одному катоду и соответственно две, три, пять и шесть сеток. Такие же лампы, как двойной диод-триод, триод-пентод и т. д. считаются многоэлектродными, так как у двойного диода-триода имеется три анода, у триод-пентода — два анода и т. д.
93. Что такое лампа с переменной крутизной («варимю»)?
Лампы, обладающие переменной крутизной, имеют ту отличительную особенность, что характеристика их при малых смещениях вблизи нуля обладает большой крутизной и коэффициент усиления при этом возрастает до максимума. С увеличением отрицательного смещения, крутизна характеристики и коэффициент усиления лампы падают. Это свойство лампы с переменной крутизной позволяет применять ее в каскаде усиления высокой частоты приемника для автоматической регулировки силы приема: при слабых сигналах (смещение мало) лампа усиливает максимально, при сильных сигналах усиление падает. На рисунке слева приведена характеристика лампы с переменной крутизной 6SK7 и справа характеристика обычной лампы 6SJ7. Отличительная особенность лампы с переменной крутизной — длинный «хвост» в нижней части характеристики.
94. Что значит ДДТ и ДДП?
ДДТ является сокращенным названием двойного диода-триода, а ДДП — сокращенным названием двойного диода- пентода.
95. Как выведены электроды у приемных ламп?
Выводы электродов у различных ламп показаны на рисунке. (Разметка штырьков дана так, как если бы на цоколь смотреть снизу).
1 — триод прямого накала; 2 — экранированная лампа прямого накала; 3 — двуханодный кенотрон; 4 — пентод прямого накала; 5 — триод косвенного накала; 6 — экранированная лампа с косвенным накалом; 7 — пентагрид прямого накала; 8 — пентагрид косвенного накала; 9 — двойной триод прямого накала; 10 — двойной диод-триод прямого накала; 11 — двойной диод-триод косвенного накала; 12 — пентод с косвенным накалом; 13 — двойной диод-пентод с косвенным накалом; 14 — мощный триод; 15 — мощный одноанодный кенотрон.
96. Что называется параметрами лампы?
Каждая электронная лампа обладает некоторыми отличительными особенностями, характеризующими ее пригодность для работы в известных условиях, и усиление, которое эта лампа может дать. Эти характерные для лампы данные называются ее параметрами. К основным параметрам принадлежат: коэффициент усиления лампы, крутизна характеристики, внутреннее сопротивление, добротность, величина междуэлектродной емкости.
97. Что такое коэффициент усиления?
Коэффициент усиления (обозначаемый обычно греческой буквой μ) показывает, во сколько раз сильнее, по сравнению с действием анода, действие управляющей сетки на поток электронов, излучаемых нитью накала. Общесоюзный стандарт 7768 определяет коэффициент усиления, как «параметр электронной лампы, выражающий отношение изменения анодного напряжения к соответствующему обратному изменению сеточного напряжения, необходимому для того, чтобы величина анодного тока оставалась постоянной».
98. Что такое крутизна характеристики?
Крутизной характеристики называется отношение изменения анодного тока к соответствующему изменению напряжения управляющей сетки при постоянном напряжении на аноде. Крутизна характеристики обозначается обычно буквой S и выражается в миллиамперах на вольт (mA/V). Крутизна характеристики является одним из самых важных параметров лампы. Можно считать, что чем крутизна больше, тем лампа лучше.
99. Что такое внутреннее сопротивление лампы?
Внутренним сопротивлением лампы называется отношение изменения анодного напряжения к соответствующему изменению анодного тока при постоянном напряжении на сетке. Обозначается внутреннее сопротивление буквой Ri выражается в омах.
100. Что такое добротность лампы?
Добротностью называется произведение коэффициента усиления на крутизну лампы, т. е. произведение μ на S. Добротность обозначается буквой G. Добротность характеризует лампу в целом. Чем добротность лампы больше, тем лампа лучше. Добротность выражается в милливаттах, деленных на вольты в квадрате (mW/V2).
101. Что такое внутреннее уравнение лампы?
Внутренним уравнением лампы (оно всегда равно 1) называется отношение крутизны характеристики S, помноженной на внутреннее сопротивление Ri и деленной на коэффициент усиления μ, т. е. S·Ri/μ= 1.
Отсюда: S=μ/Ri, μ=S·Ri, Ri=μ/S.
102. Что такое междуэлектродная емкость?
Междуэлектродной емкостью называется электростатическая емкость, существующая между различными электродами лампы, например, между анодом и катодом, анодом и сеткой и т. д. Наибольшее значение имеет величина емкости между анодом и управляющей сеткой (Cga), так как она ограничивает усиление, которое можно получить от лампы. В экранированных лампах, предназначенных для усиления высокой частоты, Cga измеряется обыкновенно сотыми или тысячными долями микромикрофарады.
103. Что такое входная емкость лампы?
Входной емкостью лампы (Cgf) называется емкость между управляющей сеткой и катодом. Эта емкость обычно присоединяется к емкости переменного конденсатора настраивающегося контура и уменьшает перекрытие контура. В среднем можно считать, что входная емкость применяющихся в настоящее время ламп лежит в пределах 15–30 см.