Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Получение энергии. Лиза Мейтнер. Расщепление ядра - Roger Corcho Orrit на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В биографическом тексте «Разгадки и промахи ядерной энергии» Мейтнер описывает свою прогулку с племянником по свежевыпавшему снегу и момент, когда они смогли представить себе ядро в виде капли воды. Мейтнер пишет об этом так:

«В ходе нашей дискуссии мы пришли к следующему: если ядро урана, обладающее высоким зарядом, поверхностное натяжение которого ослаблено из-за взаимного отталкивания протонов, достигает благодаря поглощаемому нейтрону коллективного движения соответствующей интенсивности, то оно может растягиваться; все большее растягивание приводит к делению на два более легких ядра, примерно равных между собой, которые стремятся разделиться еще больше из-за взаимного отталкивания. Согласно нашим расчетам, энергия, высвобождаемая в ходе процесса, равна 200 МэВ. Так как процесс напоминал деление клеток, мы по предложению Фриша назвали его расщеплением. Мы подчеркиваем, что данное исследование не публиковалось ранее, и заметку о нем называем A New Type of Nuclear Reaction [«Новый вид ядерной реакции»]».

Мейтнер говорила, что они с племянником направили статью в Nature 16 января 1939 года. До того как номер вышел из печати, Бор прибыл в США. В пути его сопровождал бельгийский физик Леон Розенфельд (1904-1974), с которым Бор в деталях обсудил процесс расщепления. Бор обещал не разглашать полученные от Фриша сведения до публикации их с Мейтнер статьи, но Розенфельд или не знал об этой договоренности, или сделал вид, что не знал, и на своих первых лекциях в Штатах сообщил аудитории об открытии. Это стало сенсацией, многие из слушателей, среди которых были физики Калифорнийского университета, решили повторить опыт, доказывающий возможность расщепления. Скоро новость облетела все научное сообщество.

Открытие расщепления ядра не было случайным. Вдохновение, посетившее Мейтнер в то снежное утро, стало заслуженным вознаграждением за долгие годы кропотливой работы, во время которых исследовательнице пришлось столкнуться с множеством неизвестных — как в научной деятельности, так и в трудовых и личных отношениях. Жизнь Мейтнер является примером противоречий и несправедливостей, характерных для той эпохи, но она также пример преодоления всех превратностей судьбы — преодоления, совершенного любознательным ученым, больше всего на свете стремящимся разгадать тайны окружающего мира.

ГЛАВА 2

Радиоактивность

В начале XX века радиоактивность стала наиболее увлекательным физическим явлением, удивительным и многообещающим. Физика привлекала Мейтнер с детства, и свою карьеру Лиза начала с изучения радиоактивности, а если быть более точными — с рассеяния альфа-частиц.

В конце XIX века были сделаны несколько важных открытий, потрясших основы физической науки. С классической физики, занимавшейся механикой, термодинамикой или оптикой, интерес ученых сместился к новым теоретическим горизонтам: квантовой теории, ядерной физике, или физике частиц, и теории относительности. Феномен ядерного расщепления необходимо рассматривать в общем контексте развития ядерной физики.

Изучение радиоактивности открыло дорогу к пониманию внутреннего строения атома. Радиация, испускаемая некоторыми элементами, такими как уран, была зафиксирована в виде частиц или излучения. Начало XX века ознаменовалось еще одним великим открытием новой физики — специальной теорией относительности Альберта Эйнштейна. Он открыл эквивалентность массы и энергии. «Масса и энергия — различные проявления одного», — так записал немецкий гений в 1905 году. Эта идея была воплощена в формуле: Е = mc2, в которой Е — это энергия, m — масса, с — скорость света, универсальная постоянная, равная = 3 • 108м/с. Материя — это энергия, расщепление ядра — один из феноменов, в котором проявляется эта эквивалентность.

Это был невероятный период для физики. Тот, кто, как Мейтнер, начал свои исследования в начале XX века, постоянно наталкивался на новые захватывающие идеи. Неудивительно, что Лиза увлеклась исследовательской работой и сразу же заинтересовалась опытами по радиоактивности, обнаружив свое призвание к науке, в котором позже и черпала силы для преодоления всех препятствий на этом пути.

ОТКРЫТИЕ РАДИОАКТИВНОСТИ

Радиоактивность была удивительным явлением, новой, неисследованной территорией. До 1896 года никто не мог и представить, что внутри материи могут спонтанно протекать подобные процессы, но именно в этот год Антуан Анри Беккерель (1852-1908) открыл радиоактивность.

Беккерель изучал рентгеновские лучи, открытые за год до этого, чтобы выяснить, связаны ли они с флуоресценцией — явлением, при котором некоторые минералы поглощают энергию в виде электромагнитного излучения (например, видимого света) и потом испускают ее, также в виде электромагнитного излучения, но при этом длина волны отличается от первоначальной. Это явление не зависит от температуры материала; например, существуют минералы, светящиеся при температуре окружающей среды. В отличие от других люминесцентных процессов, таких как фосфоресценция, при исчезновении источника энергии, возбуждающего минерал, флуоресцентное свечение также исчезает.

Беккерель начал изучать разные флуоресцентные элементы, проверяя, испускают ли они рентгеновские лучи под воздействием света. Он взял соль урана, подверг ее воздействию солнечного света, а затем разместил на фотопластинке, прикрыв тканью. Беккерель обнаружил, что на пластинке отпечатались очертания кусочка соли урана, и решил: это подтверждение гипотезы о том, что солнечные лучи возбуждают материал, а затем испускаются в виде рентгеновского излучения в ходе процесса флуоресценции. На другой день он решил повторить эксперимент, но было облачно. В соответствии с гипотезой ученого отсутствие солнца не позволяло индуцировать флуоресценцию в минерале, так что Беккерель убрал уран и пластинку в ящик стола. К его удивлению, через несколько дней на пластинке он обнаружил такой же отпечаток, как и после воздействия солнечного света. Это означало, что излучение, испускаемое ураном, имеет мало общего с рентгеновскими лучами и флуоресценцией. Также Беккерель поместил между ураном и фотопластинкой медный крест, и его силуэт проявился на пластинке в виде тени. Речь шла о неизвестном явлении, которое несколько лет спустя было названо радиоактивностью.

[Лиза Мейтнер] это наша Мария Кюри.

Альберт Эйнштейн

Неподалеку от Музея естественной истории, где работал Беккерель, молодая женщина-исследователь польского происхождения начала заниматься только что открытой радиацией и посвятила ей свою диссертацию. Речь идет о Марии Кюри — первой женщине, получившей Нобелевскую премию (в 1903 году по физике), и первом исследователе, получившем Нобелевскую премию дважды (второй раз — в 1911 году, по химии). Вместе с мужем Пьером Кюри Мария принялась искать другие вещества, для которых была свойственна радиоактивность, и супруги обнаружили торий, полоний (назван в честь родины Марии Кюри) и радий. Для определения атомного веса радия требовались тысячи тонн урановой смолки — минерала, содержащего ничтожное количество урана (примерно один грамм чистого урана на килограмм минерала) и таящего в себе интенсивный источник радиации. После напряженных трудов Кюри удалось получить достаточное количество материала и произвести фундаментальное исследование.

КАТОДНЫЕ И РЕНТГЕНОВСКИЕ ЛУЧИ

Изучение катодных лучей началось после наблюдения учеными любопытного феномена. В 1857 году Генрих Гейслер (1814-1879), занимавшийся изготовлением стеклянных трубок, изобрел вакуумный насос — устройство для откачки воздуха из сосуда, позволявшее получить в трубке низкое давление. Разместив внутри такой трубки электроды, он обнаружил, что в ней возникает странное свечение. Позже английский химик Вильям Крукс (1832-1919) усовершенствовал вакуумный насос и наблюдал то же явление, но у него трубка не освещалась внутри, а свет концентрировался в одном из ее концов, прямо на стекле. Если внутри трубки, между электродом и ее концом, расположить какой-либо объект, например мальтийский крест, на противоположном конце трубки отпечатается тень этого объекта (см. схему). Это означало, что катод испускает какой-то луч, коллимированный свет, проявляющийся на стенке трубки. Если на этой стенке размещали фосфоресцентное вещество, оно под воздействием луча начинало светиться. В отличие от флуоресценции, фосфоресценция минерала продолжается, даже когда источник возбуждения убирают. Период отдачи света может длиться от нескольких долей секунды до нескольких лет — этим объясняется свечение таких минералов в темноте. Так были открыты катодные лучи, то есть испускание электронов.


После трубки Крукса

Изучая природу новых лучей, венгерский физик Филипп Ленард (1862- 1947) сделал важное открытие, благодаря которому получил Нобелевскую премию по физике в 1905 году. Ленард хотел попробовать исследовать лучи вне трубки Крукса. Проблема состояла в том, что для создания вакуума нужно было стекло, — без этого невозможно было получить катодные лучи, но с другой стороны, этот материал поглощает лучи, поэтому их невозможно изучать, находясь снаружи сосуда. Необходимо было сделать сосуд из другого материала, при этом в нем нужно было создать внутренний вакуум, но катодные лучи должны каким-то образом выходить из сосуда. В конце концов Ленард понял, что если на стенке сосуда сделать маленькую щель, которая впоследствии в его честь была названа окном Ленарда, и прикрыть ее алюминием, лучи смогут «убегать» через нее, — это было обнаружено с помощью фосфоресцирующего вещества, расположенного в нескольких сантиметрах от трубки. Так было установлено, что лучи могут проходить сквозь алюминий и освещать фосфор. При этом если фосфоресцирующее вещество размещали на расстоянии более 10 см от трубки, воздух ослаблял лучи, препятствуя индуцированию фосфоресцентного минерала.

Загадочные лучи

В 1895 году немецкий физик, профессор Университета Вюрцбурга Вильгельм Рентген (1845-1923) заинтересовался экспериментами Филиппа Ленарда. Рентген даже устроил дома маленькую лабораторию для изучения катодных лучей в трубках с окнами Ленарда. Однажды вечером он, чтобы помешать выходу катодных лучей, закрыл алюминиевое окошко куском картона. После этого Рентген подключил к трубке напряжение и неожиданно увидел свечение на расстоянии метра. После отключения напряжения свечение исчезало. В этом опыте освещался экран, покрытый платиноцианистым барием — флуоресцентным веществом. Результаты опыта показали, что обнаруженные лучи отличаются от катодных: воздух не поглощал их, более того, лучи могли проходить сквозь разные материалы. Исследователь сделал вывод, что процессы, происходящие в трубке Крукса, вызывают новый вид излучения с высокой проникающей способностью. Новое излучение проходило через твердые материалы и живые ткани (это было доказано с помощью опыта, в котором был сделан снимок руки жены ученого), присутствие лучей можно было установить по возбуждающему действию, которое они оказывали на флуоресцентные материалы. Так были открыты Х-лучи, которые сегодня широко применяются в медицине. Благодаря этому открытию была учреждена Нобелевская премия по физике, впервые врученная в 1901 году, — конечно же, лауреатом стал Рентген.

ЭЛЕКТРОН

Открытие электрона неразрывно связано с исследованиями трубки Крукса и наблюдениями за катодными лучами. Крукс заметил, что катодные лучи под воздействием магнитного поля отклоняются, и это позволило ему установить их отрицательный заряд. В 1896 году британский ученый Джозеф Джон Томсон (1856-1940) провел серию опытов, установив, что катодные лучи состоят из частиц (или корпускул, как он их сам называл). Томсону удалось создать трубку Крукса со степенью разрежения, наиболее близкой к абсолютному вакууму.

Воздействуя электромагнитным полем на области вокруг трубки, ученый смог определить глобальное соотношение массы и заряда электронов. Используя разные материалы для катода и анода, изменяя разреженные газы в трубке, он сделал вывод, что обнаруженная частица едина для атомов любых элементов. Эти опыты привели его к созданию атомной модели, которую назвали «пудинговой»: атом состоял из электронов, которые, словно изюм в пудинге, равномерно располагались в положительно заряженном облаке. Заряды облака и электронов взаимно компенсируются.


В «пудинговой» модели атома, предложенной Томсоном, отрицательно заряженные электроны равномерно распределяются в положительно заряженном облаке, словно изюм в пудинге.

ТИПЫ РАДИОАКТИВНОСТИ

Открытие новых радиоактивных элементов стало важным шагом, но необходимо было проанализировать и другие аспекты этого явления. Новозеландский физик Эрнест Резерфорд (1871-1937) вместе с английским химиком Фредериком Содди (1877-1956) стали авторами самых невероятных открытий в этой области, когда в 1935 году в Университете Макгилла в Канаде опубликовали данные о том, что радиоактивность проявляется в виде разных типов излучения, которые различаются по проникающей способности (а также, как стало известно позже, по электрическому заряду). Резерфорд назвал альфа-излучением радиацию с наименьшей проникающей способностью. Впоследствии сам ученый подтвердил, что альфа-частицы имеют положительный заряд. Бета-излучение, в свою очередь, имеет большую проникающую способность.

Установить заряд этого вида излучения удалось Антуану Анри Беккерелю в 1900 году: он аналогичен заряду катодных лучей, то есть речь шла о той же частице, которую открыл Томсон несколько лет назад, — электроне.

Электрон по своему размеру в соотношении с атомом подобен бейсбольному мячику в сравнении с Землей. Или, как утверждал Оливер Лодж, если бы мы могли увеличить атом водорода до размера собора, электрон был бы в нем как маленькая пылинка.

Вальдемар Кемпферт (1877-1956), американский научный редактор и писатель

Гамма-лучи были открыты последними — из-за того, что заряд у них отсутствует. Этот тип лучей не состоял из частиц, они были похожи на рентгеновские, хотя несли гораздо больше энергии. Гамма-лучи открыл в 1900 году Поль Виллар (1860-1934), вначале спутавший их с рентгеновскими. Благодаря Резерфорду было установлено, что все это — разные виды электромагнитного излучения.

Так как три типа излучения имеют разный заряд — положительный, отрицательный или нейтральный, — у них различная проникающая способность (см. рисунок 1), по-разному они ведут себя и в присутствии электрических и магнитных полей (см. рисунок 2). При прохождении через электрическое поле альфа-лучи притягиваются к отрицательному полюсу, бета-лучи — к положительному. Траектория гамма-лучей под действием магнитного поля не изменяется.

Все эти события разворачивались, когда Мейтнер решила изучать физику. Но как могла молодая девушка еврейского происхождения не только посвятить себя науке, но и стать одной из главных фигур среди исследователей своей эпохи? Пришло время обратить свой взгляд на Вену, родной город Лизы, в котором можно найти ключ к тайне ее превращения в одного из известнейших ученых своего времени.


РИС. 1

Одна из отличительных характеристик трех типов излучения — проникающая способность.


РИС. 2

При воздействии электрического поля альфа-частицы (обладают положительным зарядом) притягиваются к отрицательному полюсу, их траектория отклоняется в этом направлении, отрицательно заряженные бета-частицы отклоняются к положительному полюсу. Нейтральные гамма-лучи сохраняют свою прямолинейную траекторию.

ГОДЫ В ВЕНЕ

Мейтнер родилась в 1878 году в Вене, в то время город был столицей Австро-Венгерской империи. Лиза с раннего возраста увлекалась математикой и физикой, но женщинам было запрещено получать высшее образование. К счастью, именно в эту эпоху в Австро-Венгрии начались масштабные социальные преобразования, благоприятно отразившиеся, например, на евреях, которые получили доступ к обучению в вузах. Так мечты Лизы об изучении физики начали сбываться.

Мейтнер прожила в Вене 29 лет, но, покинув ее, больше на родину не возвращалась, хотя и сохранила австрийское подданство. Ее родители, Филипп Мейтнер и Хедвиг Сковран, были моравскими евреями. В семье росло восемь детей, Лиза — третья из них.

С середины XIX века в Австро-Венгрии начался процесс либеральных преобразований, которые затронули многие стороны жизни. В этот период город начал стремительно расти, принимая тысячи приезжих, которых в основном влекли бурная театральная и музыкальная жизнь столицы. Но условия, в которых должны были селиться вновь прибывшие, не всегда можно было назвать благоприятными: тесные жилища, ужасная антисанитария, отсутствие постоянных заработков при высокой безработице.

Большинство венцев исповедовали католичество, евреев же в этом городе преследовали: они были ограничены в правах по сравнению с другими жителями, как показывает пример с университетским образованием. Положение в корне изменилось в 1867 году, с введением конституции, защищавшей «фундаментальные права всех граждан». Несмотря на то что антисемитизм по-прежнему был характерен для венского общества, Филипп Мейтнер благодаря происходящим изменениям смог получить диплом юриста и стал одним из первых евреев, освоивших эту профессию. Филиппа очень волновала политическая жизнь, и в его доме часто шли дискуссии о будущем страны.

ВЕНА, КУЛЬТУРНАЯ СТОЛИЦА ЕВРОПЫ

В 1866 году в результате войны, продолжавшейся несколько недель, Австрия была разбита Пруссией, во главе которой стоял Отто фон Бисмарк. После этого так называемые германские государства объединились вокруг Пруссии, образовав Германскую империю, а Австрия объединилась с Венгрией под Австро-Венгерской короной. В конце XIX века высшее общество Вены продолжало жить в мире корсетов и сословных привилегий — в соответствии со свойственными империи представлениями. Но в этой атмосфере возник и критический дух, интеллектуалы эпохи сыграли важнейшие роли в истории различных научных дисциплин. В Вене конца XIX века жили, например, психоаналитик Зигмунд Фрейд и великолепный музыкант Густав Малер, журналист-сатирик Карл Краус, который со страниц газеты Die Fackel («Факел») разоблачал лицемерие современного общества. Нельзя также не отметить философов Людвига Витгенштейна и Карла Поппера, физиков Людвига Больцмана и Лизу Мейтнер. Вся эта бурная жизнь имперской столицы неожиданно прервалась в 1914 году, со смертью наследника австро-венгерского трона и началом Первой мировой войны.


Карл Краус


и Людвиг Витгенштейн были частью многообразного культурного сообщества, сложившегося в Вене в конце XIX века.

Сегодня это кажется невероятным, но глядя назад, я поражаюсь, сколько трудностей существовало тогда для молодых девушек. Одной из самых больших проблем было получение нормального образования.

Лиза Мейтнер

Мейтнер впоследствии говорила о «необыкновенно стимулирующей интеллектуальной атмосфере», в которой выросла она сама, а также ее братья и сестры. Мать Лизы приложила немало усилий, чтобы дети получили прекрасное музыкальное образование. Все они научились играть на фортепиано, а Августа — или, как ее называли, Густи — даже стала профессиональной пианисткой. Именно Густи была матерью Отто Роберта Фриша, который под влиянием своей прославленной тетки стал блестящим физиком. Как мы уже говорили, Фриш непосредственно участвовал в исследованиях по расщеплению ядра.

Семья Мейтнеров жила в районе Леопольдштадт, где селились в основном евреи, и поэтому здесь было много синагог. Мейтнеры не исповедовали никакой религии. Крещение могло бы облегчить их жизнь, но родители предпочли, чтобы религия не имела решающего влияния на их детей. Уже в зрелые годы Мейтнер решила креститься и стала протестанткой.

Лиза как-то рассказывала, что в детстве бабушка предупредила ее: если она будет шить в шаббат, на нее обрушатся небеса. Девочка захотела проверить, так ли это, и однажды в субботнее утро села вышивать. Первые стежки она делала очень осторожно и неуверенно, но довольно скоро поняла, что ничего страшного не происходит. Да, любопытство очень часто подталкивало Лизу в ее поступках. Многодетная семья Мейтнеров вела не очень богатую жизнь и даже испытывала стеснение в средствах, но при этом в доме всегда было много книг, и все дети получили высшее образование.

В УНИВЕРСИТЕТЕ

Женщинам было запрещено поступать в университеты. Не было у них доступа и к среднему образованию. Когда в 1892 году Мейтнер закончила базовый курс школы, она не смогла продолжить обучение. Считалось, что в этом возрасте, примерно с 13 лет, любая молодая венка должна начать готовиться к браку и учиться вести домашнее хозяйство. Писатель Стефан Цвейг отзывался об этом так: «[...] именно такими общество желало видеть молодых женщин: глупенькими и необразованными». Единственной возможностью продолжать учебу была специализация на одном предмете, чтобы стать учительницей, — университетского диплома для такой работы не требовалось. Лиза выбрала французский.

Но в империи подул ветер перемен. В 1897 году женщинам было позволено поступать в австрийские университеты, и это стало для Мейтнер великой возможностью. В одной из бесед с отцом она рассказала о своем желании получить образование в области науки и попросила его поддержки. Этот путь не был легким, но на помощь родителей девушка могла рассчитывать всегда.

Для поступления в университет необходимо было иметь среднее образование (что предполагало учебу в течение восьми лет), а также сдать вступительный экзамен (Matura). Женщинам, которые хотели поступить в университет, но не прошли курс среднего образования, была предоставлена возможность ограничиться сдачей вступительного экзамена. Курс, который обычно слушали восемь лет, Лиза самостоятельно прошла всего за два года. Девушка очень серьезно относилась к учебе, так что братья даже начали подшучивать над ней: в те редкие минуты, когда они видели Лизу без книги, они предостерегали, что ее ждет провал на экзаменах.

Лиза была очень благодарна своему наставнику, физику Артуру Сарваши, о котором писала: «У него был невероятный дар преподавания математики и физики в очень увлекательной манере». Кроме того, Сарваши показал Мейтнер некоторые приборы, которые исследователи использовали в лабораториях. В 1901 году Мейтнер отправилась сдавать экзамен вместе с еще 14 претендентками, среди которых была и дочь Больцмана, впоследствии оказавшего значительное влияние на карьеру Мейтнер. Выдержали экзамен только четыре девушки. Несмотря на то что Лиза очень интересовалась физикой, она испытывала некоторые колебания, поскольку разрывалась между страстью к этой дисциплине и желанием оказывать помощь другим:

«Когда мне было 23 года и я собиралась поступать в университет, я лелеяла мысль о том, что буду учиться медицине, а в свободное время — заниматься математикой и физикой».

Конец сомнениям положил отец, посоветовавший Лизе не отклоняться от первоначальной цели:

«Отец ясно объяснил мне, что такое возможно только для гения, каким был Герман Гельмгольц, но не для обычного человека».

Мейтнер с большим уважением относилась к советам отца, поэтому остановила свой выбор на физике.

Она приступила к учебе в Венском университете в 1901 году. Лиза была немного старше других студентов и при этом одной из немногих женщин. Она постоянно чувствовала неуверенность из-за того, что не прослушала обычную программу среднего образования, и считала, что в ее знаниях много пробелов. Желая устранить их, Лиза записалась на изучение множества разных дисциплин.

ПУТЬ К ФИЗИКЕ

Скрытность Мейтнер стала причиной неприятного эпизода на одном из первых занятий по математике, что окончательно заставило ее сосредоточиться на физике, — профессор попросил Лизу найти ошибку в расчетах. Вот что вспоминала об этом она сама:

«Мне потребовалась значительная его помощь, чтобы найти ошибку, и когда он любезно предложил опубликовать это решение под моим именем, я поняла, что не могу на это пойти».

Профессор был очень обеспокоен отказом Мейтнер продолжать изучение математики, хотя Лиза всего лишь стремилась к абсолютной честности — это стремление руководило ею на протяжении всей жизни. Благодаря этому эпизоду девушка избавилась от последних сомнений:

«Инцидент помог мне окончательно понять, что я хотела стать физиком, а не математиком».

Мейтнер повезло с преподавателями, которые следили за новейшими открытиями в области физики и делились ими со студентами. Франц Экснер, один из преподавателей экспериментальной физики, был другом Вильгельма Рентгена, поэтому знал обо всех открытиях, связанных с Х-лучами. Также этот преподаватель интересовался радиоактивностью и был знаком с Марией и Пьером Кюри, предоставлявшими ему для экспериментов уран.

СПОРЫ ВОКРУГ АТОМИЗМА

Начиная со второго года обучения преподавать у Мейтнер стал Людвиг Больцман, уроки которого она называла «блестящими и увлекательными». Больцману удавалось заразить слушателей собственным энтузиазмом, с которым он занимался физикой. Общение с ним было настолько захватывающим, что «после каждого занятия оставалось ощущение, будто перед нами открылся чудесный и совершенно новый мир». Можно сказать, что в формировании Мейтнер как физика принимал участие один из самых видных ученых эпохи и прекрасный оратор, заставлявший замирать аудиторию. Мейтнер считала, что «этот преподаватель был так талантлив из-за своей нетипичной человеческой природы»: она имела в виду в том числе и частую смену настроений, которой был подвержен Больцман.

Больцман дал ей [Лизе Мейтнер] видение физики как сражения за последнюю истину, и это видение оставалось с ней всю жизнь.

Отто Фриш



Поделиться книгой:

На главную
Назад