Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Симпсоны и их математические секреты - Саймон Сингх на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Ученик: «Десять Q». (Англ. ten Q, созвучно с thank you, т. е. «спасибо».)

Учитель: «Пожалуйста».

3 балла

Шутка 6

Вождь племени чероки имел три жены, каждая из которых была беременна. Первая скво родила мальчика, и вождь пришел в такой восторг, что построил ей вигвам из шкуры буйвола. Через несколько дней родила вторая жена, и тоже мальчика. Вождь был очень счастлив и построил ей вигвам из шкуры антилопы. Через несколько дней родила и третья жена, но вождь сохранил подробности в тайне.

Он построил для третьей жены вигвам из шкуры бегемота и поставил перед членами своего племени задачу: определить детали рождения этого ребенка. Тот, кто правильно решит задачу, получит приз. Несколько человек попытались разгадать секрет, но безуспешно. В конце концов один молодой и храбрый воин вышел вперед и заявил, что третья жена родила близнецов. «Верно! – воскликнул вождь. – Но как ты догадался?»

«Все просто, – ответил воин. – Стоимость жены бегемота равна сыновьям жен двух других шкур». (Англ. squaw («жена») созвучно со словом square – «квадрат». Эта шутка на английском языке фонетически очень похожа на формулировку теоремы Пифагора.)

В других версиях шутки 6 другая концовка. Тот, кто улыбнется, прочитав обе концовки, получит дополнительные баллы.

4 балла

Шутка 7

«Доля музы с повышенным давлением равна сумме долей двух других невест». (Англ. hypertense muse («муза с повышенным давлением») созвучно со словом «гипотенуза».)

2 балла

Шутка 8

«Оруженосец с высоко подвешенным котелком и арканом равен сумме оруженосцев двух других сторон». (Англ. high pot and noose («высоко подвешенный котелок и аркан») созвучно со словом «гипотенуза»; англ. squire («оруженосец») созвучно со словом square – «квадрат».))

2 балла

Всего – 20 баллов

Глава 5

Теория шести рукопожатий

Во время приезда в Лос-Анджелес в октябре 2012 года мне посчастливилось попасть на вычитку следующего эпизода «Симпсонов» – «Четыре сожаления и одни похороны» (Four Regrettings and a Funeral, сезон 25, эпизод 3). Обычно во время такой вычитки актеры, которые озвучивают персонажей, полностью прочитывают сценарий с тем, чтобы устранить все проблемы и утвердить его окончательный вариант, прежде чем передавать художникам-мультипликаторам. Мне было очень странно видеть, как Ярдли Смит читает текст голосом маленькой Лизы. Такой же когнитивный диссонанс я испытал, услышав, как столь знакомые за многие годы просмотра «Симпсонов» интонации и тембр голоса Гомера, Мардж и Мо Сизлака звучат в исполнении Дэна Кастелланеты, Джули Кавнер и Хэнка Азариа.

В эпизоде «Четыре сожаления и одни похороны» есть много чего интересного, но, к сожалению, нет математических ссылок. Тем не менее в тот же день мне дали предварительный сценарий еще одного, следующего эпизода под названием «Сага о Карле» (The Saga of Carl, сезон 24, эпизод 21), в котором была целая сцена, посвященная математической вероятности.

Действие эпизода «Сага о Карле» начинается с того, что Мардж оттаскивает членов своей семьи от телевизора и везет всех в Научный музей Спрингфилда, где они смотрят видео об отце теории вероятности Блезе Паскале (1623–1662), а также экспериментальную демонстрацию теории вероятности с помощью так называемой доски Гальтона, представляющей собой ящик с прозрачной передней стенкой и штырями, забитыми в заднюю стенку. Через отверстие в его верхней части скатываются шарики, которые сталкиваются со штырьками и в случайном порядке отскакивают либо направо, либо налево, после чего сталкиваются со штырьками следующего ряда, и опять же отскакивают от них в случайном порядке. В итоге шарики собираются на дне ящика, разделенном на отсеки по количеству штырьков в нижнем ряду. При этом шарики падают в разные отсеки так, что образованные ими столбики соответствуют кривой одновершинного распределения.


Доска Гальтона названа по имени английского изобретателя, ученого-энциклопедиста Фрэнсиса Гальтона (1822–1911). Шары подаются в отверстие в верхней части ящика, отскакивают от штырьков и падают на дно, где образуют так называемое биномиальное распределение. Одна из версий этого классического эксперимента с теорией вероятности присутствует в эпизоде «Сага о Карле»

Имея на руках только сценарий, я не мог знать, как именно доску Гальтона планировали представить на экране. Единственное, в чем я был уверен, так это в том, что одновершинное распределение будет математически точным, поскольку один из сценаристов объяснил мне, что эта тема обсуждалась на совещании по поводу внесения изменений в сценарий. По словам Джеффа Уэстбрука, между ним и несколькими математиками из команды сценаристов сериала разгорелся спор о том, каким именно уравнением было бы корректно описывать распределение шариков, тогда как остальные члены команды молчали, в изумлении уставившись на них. «Мы активно обсуждали, какое распределение здесь имеет место, гауссовское или пуассоновское, – вспоминал Уэстбрук. – В конце концов я решил, что все зависит от того, как моделировать сам эксперимент. При этом остальные, похоже, откровенно скучали и закатывали глаза».

Уэстбрук изучал физику в Гарварде, а затем получил диплом доктора наук в области теории вычислительных систем в Принстонском университете. Его руководителем был Роберт Тарьян, всемирно известный ученый, лауреат премии Тьюринга 1986 года – аналога Нобелевской премии в сфере информационных технологий. После получения степени доктора наук Уэстбрук пять лет работал адъюнкт-профессором Йельского университета, после чего перешел в AT&T Bell Laboratories. Однако помимо статистики и геометрии Уэстбрук очень любил каламбуры и эксцентричные комедии, поэтому со временем ушел из научно-исследовательской среды и направился на запад, в Лос-Анджелес.

Мама Уэстбрука, всегда мечтавшая, чтобы ее сын стал ученым, поначалу называла такой шаг «абсолютным преступлением». Уэстбрук считает, что его отец-математик думал так же, но был слишком воспитан, чтобы это озвучить. Коллеги тоже не поддержали его. Уэстбрук до сих пор помнит последние слова своего босса из AT&T Bell Laboratories: «Я понимаю, почему вы это делаете. Надеюсь, вы не добьетесь успеха, потому что я хотел бы, чтобы вы вернулись и работали здесь».

Когда я узнал об уровне образования Уэстбрука, мне стало интересно, является ли он самым квалифицированным математиком среди сценаристов «Симпсонов». Безусловно, он высоко поднялся по академической лестнице, но, может, другие сценаристы написали больше научных работ или сотрудничали с большим числом математиков? В поисках критерия математического совершенства я понял, что один из способов определить рейтинг сводится к применению метода, основанного на теории шести рукопожатий.

В ее основе лежит идея о том, что каждый человек в мире отделен от любого другого человека максимум шестью уровнями общих знакомых. Например, я наверняка знаю кого-то, кто знает еще кого-то, кто знает еще кого-то, кто знает еще кого-то, кто знает кого-то, кто знает вас. Это самая общая и наиболее известная версия теории шести рукопожатий, но ее можно применить и к конкретным сообществам, например математическому. Следовательно, теория шести рукопожатий может помочь вычислить того, кто имеет широкие связи в мире математики, а значит, может обладать самым высоким уровнем математической подготовки. Хотя это не идеальный показатель, он позволяет получить довольно интересную информацию.

Математическая версия теории шести рукопожатий – это шесть рукопожатий до Пала Эрдеша, или просто число Эрдеша (по имени математика Пала Эрдеша, 1913–1996). Задача – найти связь между тем или иным математиком и Эрдешем, а затем составить рейтинг математиков, расположив их по уровню связей (от самых сильных до самых слабых) с Эрдешем. Но почему именно Эрдеш считается центром математической вселенной?

Ответ прост: это самый плодовитый математик ХХ столетия. На его счету 1525 научных публикаций, 511 из которых написаны в соавторстве с другими математиками. Столь поразительный результат стал возможен благодаря эксцентричному образу жизни Эрдеша, постоянно переезжающего из одного университетского городка в другой, где он сотрудничал с местными математиками и писал научные работы с каждым из них. На протяжении всей жизни Эрдеш умудрялся уместить все свое имущество в один чемодан, что было очень удобно для математика, кочующего в поисках самых интересных задач и самого плодотворного сотрудничества. Для того чтобы максимизировать свою математическую результативность, Эрдеш подпитывал мозг кофе и амфетаминами и часто повторял фразу, сказанную его коллегой Альфредом Реньи: «Математик – это автомат по переработке кофе в теоремы».

В концепции шести шагов до Пала Эрдеша связи формируются в процессе соавторства, как правило, при написании научных работ по математике. У любого соавтора самого Эрдеша число Эрдеша равно 1. У математиков, которые писали свои работы в соавторстве с соавтором Эрдеша, число Эрдеша равно 2 и т. д. Та или иная цепочка может связать Эрдеша практически со всеми математиками мира, независимо от области их исследований.

Возьмем в качестве примера Грейс Хоппер (1906–1991). Она разработала первый компилятор для языка программирования, способствовала созданию языка программирования COBOL, популяризировала термин «баг» для описания дефекта в программе, после того как в Гарвардском университете нашли мотылька в компьютере Mark II. Хоппер занималась математикой во время работы в промышленных компаниях и службы в Военно-морских силах США. В действительности «удивительную Грейс» повысили в итоге до звания контр-адмирала; а эсминец ВМФ США Hopper был назван в ее честь. В общем, Хоппер придерживалась практичного, технологического, промышленного и военного подхода к математике, который полностью отличался от свойственной Эрдешу пуристской приверженности к числам, и все же у Хоппер число Эрдеша – всего 4. Это объясняется тем, что она публиковала свои работы в соавторстве с Ойстином Оре, под руководством которого защитила докторскую диссертацию. Среди студентов Оре был выдающийся специалист по теории групп Маршалл Холл, соавтор авторитетного британского математика Харольда Давенпорта, который, в свою очередь, публиковал работы в соавторстве с Эрдешем.

Итак, каков же рейтинг Джеффа Уэстбрука с точки зрения числа Эрдеша? Он начал печатать научные статьи во время работы над докторской диссертацией по специальности «Теория вычислительных систем» в Принстонском университете, а в 1989 году защитил дикторскую диссертацию по теме «Алгоритмы и структуры данных для динамических алгоритмов поиска на графах» под руководством Роберта Тарьяна, а также писал с ним в соавторстве научные статьи. Тарьян, в свою очередь, публиковал работы в соавторстве с Марией Кло, которая сотрудничала с Палом Эрдешем. Это обеспечивает Уэстбруку заслуживающее уважения число Эрдеша, равное трем.

Тем не менее это не делает его явным победителем среди сценаристов «Симпсонов». Дэвид Коэн опубликовал работу в соавторстве с Мануэлем Блюмом, еще одним обладателем премии Тьюринга, который был соавтором Нога Алона из Тель-Авивского университета, издавшего несколько работ в соавторстве с Эрдешем. Следовательно, Коэн тоже может претендовать на число Эрдеша, равное трем.

Для того чтобы все же не ставить знак равенства между Коэном и Уэстбруком, я решил исследовать еще одну грань успешного сценариста «Симпсонов», а именно – прочную связь с сердцем голливудской индустрии развлечений. Один из способов определить уровень иерархии, на котором находится тот или иной человек в Голливуде, сводится к применению версии теории шести рукопожатий, известной как шесть рукопожатий до Кевина Бэйкона. Задача состоит в том, чтобы найти так называемое число Бэйкона того или иного человека, связав его с Кевином Бэйконом через актеров, вместе с которыми они оба снимались. Например, у Сильвестра Сталлоне число Бэйкона равно 2, поскольку он снимался в фильме Your Studio and You («Твоя студия и ты», 1995 год) вместе с Деми Мур, а Деми Мур играла в фильме A Few Good Men («Несколько хороших парней», 1992 год) вместе с Кевином Бэйконом.

Так у кого же из членов команды сценаристов сериала «Симпсоны» самое малое число Бэйкона, а значит, и самые большие успехи в Голливуде? Эта честь принадлежит замечательному Джеффу Уэстбруку. Он добился успеха как актер в морском приключенческом фильме Master and Commander: The Far Side of the World («Хозяин морей: На краю земли», 2003 год). Режиссер искал опытного моряка англо-ирландского происхождения для подбора корабельной команды, и Уэстбрук предложил свою помощь, поскольку страстно увлекался мореплаванием и соответствовал этническим требованиям. В итоге он получил в фильме второстепенную роль, а главную играл Рассел Кроу. В данном случае этот факт важен, так как Кроу снимался в фильме The Quick and the Dead («Быстрый и мертвый», 1995 год) вместе с Гэри Синизом, а тот, в свою очередь, играл одну из главных ролей в киноленте Apollo 13 («Аполлон-13», 1995 год), в которой также снимался Кевин Бэйкон. Следовательно, число Бэйкона у Уэстбрука равно 3, что ставит его на второе место после Сталлоне. Короче говоря, у Уэстбрука весьма впечатляющий послужной список в Голливуде.

Таким образом, у Уэстбрука и число Бэйкона, и число Эрдеша равно 3. Их можно объединить в так называемое число Эрдеша-Бэйкона, и оно будет равно 6. Это говорит о наличии у Уэстбрука широких связей как в мире киноиндустрии, так и в мире математики. Хотя мы еще не обсуждали чисел Эрдеша-Бэйкона других сценаристов «Симпсонов», могу вас заверить, что ни у одного из них нет такого показателя. Другими словами, из всей команды голливудских нердов Уэстбрук – самый крутой киношник и самый крутой нерд[20].

* * *

Я впервые узнал о числе Эрдеша-Бэйкона от Дейва Байера, математика из Колумбийского университета. Он был консультантом фильма A Beautiful Mind («Игры разума», 2001 год), снятого по известному роману Сильвии Назар о Джоне Нэше, лауреате Нобелевской премии по экономике 1994 года. В обязанности Байера входила проверка уравнений, которые появлялись на экране; еще он выступал в качестве дублера Рассела Кроу, изображая руку Нэша в сценах у доски. Кроме того, Байер получил роль второго плана в конце картины, в эпизоде, где принстонские профессора математики отдают Нэшу свои ручки в знак признания его великих открытий. Байер с гордостью рассказывал: «В моей сцене, известной как “церемония с ручками”, я говорю: “Поздравляю, профессор”. Я третий профессор, положивший ручку перед Расселом Кроу». Таким образом, Байер участвовал в съемках фильма «Игра разума», так же как и Рэнс Ховард. В свою очередь, Рэнс Ховард играл в фильме «Аполлон-13» вместе с Кевином Бэйконом, а это значит, что у Байера число Бэйкона равно 2.

Дэйв Байер – уважаемый математик, поэтому нет ничего удивительного в том, что у него число Эрдеша равно 2, а число Эрдеша-Бэйкона – 4. Когда в 2001 году фильм «Игры разума» вышел на экраны, у Байера было самое низкое в мире число Эрдеша-Бэйкона. Совсем недавно математик Иллинойского университета Брюс Резник установил новый рекорд – его число Эрдеша-Бэйкона оказалось еще ниже. Он написал в соавторстве с Эрдешем работу под названием «Асимптотическое поведение семейства последовательностей», что дало ему число Эрдеша, равное 1. Не менее впечатляющ и тот факт, что у него была совсем небольшая роль в фильме Pretty Maids All in a Row («Хорошенькие девушки, станьте в ряд», 1971 год), который продюсировал Джин Родденберри, легендарный создатель сериала «Звездный путь». Это фильм ужасов о серийном убийце, высматривающем своих жертв в средней школе Оуншенфронта. Среди актеров, снимавшихся в картине, был Родди Макдауэлл, который играл в фильме The Big Picture («Большая картина», 1989 год) вместе с Кевином Бэйконом. Это дает Резнику число Бэйкона 2, и в результате получается, что его число Эрдеша-Бэйкона равно 3.

Пока что рекордно низкие значения числа Эрдеша-Бэйкона демонстрировали математики, рискнувшие попробовать себя на актерской стезе, однако есть и актеры, которые занимались научными исследованиями и получили в итоге достаточно высокое число Эрдеша-Бэйкона. Один из самых известных примеров – Колин Ферт, путь которого к числу Эрдеша начался во время работы внештатным редактором программы BBC Radio 4 «Сегодня». В рамках одного из проектов программы Ферт попросил нейробиологов Джерейнта Риса и Рету Канаи проанализировать корреляцию между структурой мозга и политическими взглядами, что повлекло за собой дальнейшие исследования; а впоследствии ученые предложили Ферту стать их соавтором в работе под названием «Корреляция между политической ориентацией и структурой мозга у совершеннолетних молодых людей». Хотя Рис – нейробиолог, его число Эрдеша равно 5, поскольку он принимал участие в различных совместных проектах, связывающих его с миром математики. Опубликовав работу в соавторстве с Рисом, Ферт может претендовать на число Эрдеша, равное 6. Кроме того, его число Бэйкона составляет 1, так как они вместе играли в фильме Where the Truth Lies («Где скрывается правда», 2005 год). Это обеспечивает Ферту число Эрдеша-Бэйкона, равное 7 – впечатляющий показатель, хотя и весьма далекий от рекорда Резника.

У Натали Портман также вполне достойное значение числа Эрдеша-Бэйкона. Во время учебы в Гарвардском университете она проводила исследование, в рамках которого стала соавтором работы под названием «Активность лобной доли мозга при объектном постоянстве». Однако ни в одной базе данных научных исследований имя Натали Портман не упоминается, поскольку она публиковала свои работы под настоящим именем, Натали Хершлаг. Среди соавторов была и Эбигейл Берд, которая связана с миром математики и имеет число Эрдеша, равное 4. Стало быть, у Портман число Эрдеша равно 5. Ее число Бэйкона составляет 1, так как они оба снимались в фильме New York, I Love You («Нью-Йорк, я люблю тебя», 2009 год). Следовательно, число Эрдеша-Бэйкона у Натали Портман равно 6 – оно достаточно низкое, чтобы превзойти Ферта, но слишком высокое, чтобы давать ей хотя бы какую-то надежду на покорение рекорда Резника.

А как насчет самого Пала Эрдеша? Как ни удивительно, его число Бэйкона равно 4, потому что о нем рассказывается в документальном фильме о его жизни под названием N Is a Number («N – это число», 1993 год), в котором также фигурирует Томаш Лучак, игравший в фильме The Mill and the Cross («Мельница и крест», 2011 год) вместе с Рудгером Хауэром, снявшимся в фильме Wedlock («Смертельные узы», 1991 год) с Престоном Мейбэнком, игравшем в фильме Novocaine («Новокаин», 2001 год) вместе с Кевином Бэйконом. У Пала Эрдеша число Эрдеша по очевидным причинам равно 0, а значит, его совокупное число Эрдеша-Бэйкона равно 4 – недостаточно для того, чтобы выйти на один уровень с Резником.

И наконец, что можно сказать о числе Эрдеша-Бэйкона самого Кевина Бэйкона? Бэйкон, будучи Бэйконом, имеет число Бэйкона, равное 0. Пока что у него нет числа Эрдеша. Теоретически он мог бы увлечься теорией чисел и написать научную работу в сотрудничестве с тем, у кого число Эрдеша равно 1. Это обеспечило бы ему самое высокое число Эрдеша-Бэйкона – 2.

Глава 6

Лиза Симпсон – королева статистики и бейсбола

Когда «Симпсоны» дебютировали на телевидение в «Шоу Трейси Ульман», их личности еще не были настолько развитыми, как сейчас. Нэнси Картрайт – голос Барта Симпсона – написала мемуары под названием My Life as a Ten-Year-Old Boy («Моя жизнь в качестве десятилетнего мальчика»), в которых подчеркнула серьезный недостаток образа Лизы: «Она была просто мультяшным восьмилетним ребенком, не имеющим ярко выраженной индивидуальности».

Это безжалостное, но справедливое описание. Если в тех первых коротких эпизодах у Лизы и была какая-то личность, то она напоминала скорее смягченную женскую версию Барта – чуть менее озорную и так же незаинтересованную в книгах. Быть одним из племени нердов – последнее, о чем думала тогда Лиза.

Однако накануне выхода первых эпизодов «Симпсонов» в качестве самостоятельного мультсериала Мэтт Грейнинг и его команда сценаристов совместными усилиями попытались придать Лизе индивидуальность. Разум Лизы был подвергнут трансформации, после чего она обрела вторую жизнь как настоящий интеллектуал, наделенный такими двумя дополнительными качествами, как сострадание и социальная ответственность. Картрайт весьма точно описала личность своей преобразованной вымышленной сестры: «Лиза Симпсон – это такой ребенок, каким мы хотели бы видеть не только своих детей, но и всех детей».

Хотя Лиза обладает разнообразными талантами, директор Скиннер отмечает ее особые способности к математике в эпизоде «Маленький домик ужасов на дереве 10» (Treehouse of Horror X, сезон 11, эпизод 4; 1999 год). Когда на Лизу падает большой штабель многоместных сидений, Скиннер восклицает: «Ее раздавило!.. А вместе с ней и надежды нашей команды по матлетике».

Мы наблюдаем способности Лизы в действии в эпизоде «Игра до победного конца» (Dead Putting Society, сезон 2, эпизод 6; 1990 год), в котором Гомер и Барт предлагают соседям Неду и Тодду Фландерсам, уверенным в своем превосходстве, сыграть в мини-гольф. В процессе подготовки к большой игре Барт изо всех сил старается отработать удар клюшкой и обращается за помощью к Лизе. Ей следовало бы посоветовать Барту взять клюшку в другую руку, поскольку он от рождения левша, но на протяжении всего эпизода пытается толкать мяч к лунке, удерживая клюшку правой рукой. Но вместо этого Лиза фокусируется на геометрии как на ключе к правильному удару клюшкой, так как может использовать эту область математики для расчета идеальной траектории мяча, чтобы гарантировать Барту попадание в лунку при каждом ударе. Во время тренировки Лиза показывает Барту, как ударить по мячу таким образом, чтобы он отскочил от пяти стенок и попал в лунку, что дает ему повод сказать: «Просто не могу поверить. Ты и вправду нашла геометрии практическое применение!»

Это изящный ход, но сценаристы используют персонаж Лизы для изучения более глубоких математических идей в эпизоде «ДеньгоБАРТ» (MoneyBART, сезон 22, эпизод 3; 2010 год). В первой сцене эпизода в начальной школе Спрингфилда встречают эффектную Далию Бринкли, единственную выпускницу школы, поступившую в один из университетов Лиги плюща[21]. Неудивительно, что директор Скиннер и суперинтендант Чалмерс пытаются заискивать перед мисс Бринкли, так же как и некоторые ученики. К их числу относится и Нельсон Манц, который старается произвести впечатление на самую успешную выпускницу Спрингфилда, притворяясь другом Лизы. Делая вид, что интересуется математическими способностями Лизы, он побуждает ее продемонстрировать их мисс Бринкли:

Нельсон. Она даже знает математику с буквами. Смотрите. Чему равен х, Лиза?

Лиза. Ну, это зависит от условий.

Нельсон. Извините, вчера у нее получилось.

Во время этой встречи Далия объясняет Лизе, что результатов экзаменов будет недостаточно для поступления в лучший университет и что ее собственный путь к успеху отчасти опирался на участие во множестве разных внеклассных кружков и занятий во время учебы в начальной школе Спрингфилда. Лиза рассказывает о том, что она казначей джазового клуба, а также основала школьное общество по переработке мусора, но это не производит впечатления на Далию: «Всего пара кружков! Это ставка в покере, а не заявление в Лигу плюща».

Тем временем бейсбольная команда Барта Isotots теряет тренера. Лиза решает воспользоваться представившимся шансом улучшить свое резюме для поступления в университет Лиги плюща и берет на себя эту роль. При этом Лиза прекрасно понимает, что не знает основ бейсбола, и потому отправляется в бар Мо, чтобы попросить совета у Гомера. Вместо того чтобы поделиться собственным опытом, Гомер указывает дочери на необычную четверку гиков, сидящих в углу бара. К удивлению Лизы, Бенджамин, Даг и Гари из Спрингфилдского университета активно обсуждают тонкости бейсбола с профессором Фринком. Когда Лиза спрашивает, почему они говорят о спорте, Фринк объясняет это так: «В бейсбол играют спортсмены, но по-настоящему его могут понять только мозголомы».

Другими словами, Фринк утверждает, что единственный способ освоить бейсбол – выполнить глубокий математический анализ игры. Он вручает Лизе целую стопку книг для изучения. Когда Лиза уходит, Мо подходит к гикам и сетует на то, что они не пьют пиво: «И зачем я дал рекламу бара в научном журнале?»

Лиза следует совету Фринка и погружается в изучение специальных книг перед своей первой игрой в качестве тренера Isotots. За этим занятием ее и застает один из репортеров. Столь необычное зрелище побуждает его сказать: «Я не видел столько книг с тех пор, как Эйнштейн решил заняться греблей».

Среди книг, которые читает Лиза, есть книги с названиями eiπ + 1 = 0, F = MA и «Бита Шредингера». Хотя все они вымышленные, под ноутбуком Лизы лежит вполне реальная книга The Bill James Historical Baseball Abstract («Краткий обзор бейсбола Билла Джеймса»), которая представляет собой настоящий каталог наиболее важных статистических данных в бейсболе, составленный одним из самых вдумчивых специалистов по этой игре.


Лиза в окружении книг, среди которых есть книга The Bill James Historical Baseball Abstract

THE SIMPSONS™ и © 1990 Twentieth Century Fox Television. Все права защищены

Билл Джеймс стал легендарной фигурой в области бейсбола и статистики, однако его исследования в этих сферах начинались не в спортивных учреждениях и тишине научных кабинетов. Самые первые грандиозные идеи пришли к нему в голову во время длинных одиноких ночей, когда он работал ночным сторожем на заводе по выпуску свинины с фасолью, принадлежавшем крупнейшей американской компании по производству консервов Stokely-Van Camp.

Охраняя национальный запас свинины с фасолью, Джеймс пытался найти те истины, которые ускользали от предыдущих поколений любителей бейсбола. Постепенно он пришел к выводу, что статистические данные, используемые для оценки сильных сторон отдельных бейсболистов, в некоторых случаях неуместны, порой малопонятны и, что хуже всего, часто вводят в заблуждение. Например, основным статистическим показателем для оценки эффективности полевого игрока было количество допущенных ошибок: чем меньше ошибок, тем лучше полевой игрок. На первый взгляд это кажется вполне разумным, однако у Джеймса были сомнения по поводу обоснованности такого статистического показателя.

Для того чтобы понять обеспокоенность Джеймса, представьте себе, что бэттер[22] отбил мяч далеко от полевых игроков. Быстрый полевой игрок пробегает пятьдесят ярдов, вовремя подбегает к мячу, но выпускает его из рук. Это событие отмечается как ошибка. Медленный же игрок не может преодолеть даже половины пути до того места, где приземлится мяч и где у него была бы хоть какая-то надежда его поймать. Следует сказать, что это событие не фиксируется как ошибка, поскольку полевой игрок не потерял мяч.

Какого игрока вы выбрали бы для своей команды на основании только этой информации? Ответ очевиден – более быстрого, так как в следующий раз он может поймать и удержать мяч, тогда как медленный игрок так и не принесет в этой ситуации никакой пользы.

Тем не менее, согласно статистике ошибок, более быстрый игрок допустил ошибку, тогда как более медленный – нет. Получается, если бы нам пришлось выбирать игрока на основании одной лишь статистики ошибок, мы бы предпочли не того игрока, которого следовало. Именно эта статистика не давала Джеймсу спать по ночам, поскольку могла создать ложное представление об эффективности игрока.

Разумеется, Билл Джеймс был не первым, кого беспокоило чрезмерное и зачастую неправильное использование статистики. Благодаря Марку Твену широкую известность получило такое утверждение: «Существует три вида лжи: ложь, наглая ложь и статистика». В аналогичном духе химик Фред Менгер писал: «Если пытать цифры достаточно долго, они скажут все что угодно». Тем не менее Джеймс был убежден, что статистика способна стать силой, действующей во благо. Он считал, что если бы ему удалось определить подходящую совокупность статистических показателей и правильно их интерпретировать, то это позволило бы понять глубинную сущность бейсбола.

Каждую ночь Джеймс внимательно анализировал данные, записывал какие-то уравнения и проверял разные гипотезы. И в конце концов начал разрабатывать эффективную статистическую модель, сформулировав свои теории в тоненькой брошюре под названием 1977 Baseball Abstract: Featuring 18 Categories of Statistical Information That You Just Can’t Find Anywhere Else («Обзор бейсбола за 1977 год: 18 категорий статистической информации, которую вы не найдете больше нигде»).

Следующий выпуск брошюры, 1978 Baseball Abstract («Обзор бейсбола за 1978 год»), содержал сорок тысяч единиц статистической информации и оказался более успешным: всего было продано 250 экземпляров. В брошюре 1979 Baseball Abstract («Обзор бейсбола за 1979 год») Джеймс объяснил мотивы публикации всех этих статистических данных: «Я работаю с числами как механик, просматривая записи бейсбольных матчей, чтобы понять, как функционирует механизм нападения в бейсболе. Я начинаю с чисел не в большей степени, чем механик начинает с разводного гаечного ключа. Я начинаю с игры, с тех вещей, которые в ней вижу, и с того, что говорят во время игры. И я задаю вопрос: правда ли это? Можно ли это обосновать? Можно ли это измерить?»

Год за годом Джеймс наблюдал за ростом контингента читателей его брошюры «Обзор бейсбола», а единомышленники из числа любителей чисел поняли, что нашли своего гуру. Поклонниками Джеймса были как писатель и журналист Норман Мейлер, так и актер Дэвид Лендер, игравший роль Сквигги в телесериале Laverne and Shirley («Лаверн и Ширли»). Одним из самых молодых последователей Джеймса являлся Тим Лонг, который стал потом членом команды сценаристов «Симпсонов», написал сценарий эпизода «ДеньгоБАРТ» и включил в него экземпляр одной из книг Джеймса, лежавшей на столе рядом с Лизой Симпсон.

ДРУГИЕ НАБЛЮДЕНИЯ ОТНОСИТЕЛЬНО ТУМАННОГО МИРА СТАТИСТИКИ

«Он использует статистику, как пьяница использует фонарь – в качестве опоры, а не источника света».

Эндрю Лэнг

«42,7 процента статистики берутся с потолка».

Стивен Райт

«Дать человеку только небольшие или поверхностные знания статистики – все равно что вложить бритву в руки ребенка».

Картер Александер

«К тому же есть еще и человек, который утонул, переходя ручей со средней глубиной шесть дюймов».

У. И. Э. Гейтс

«Любую статистику трудно проглотить и невозможно переварить. Единственное, что я помню, так это если всех людей, которые засыпают в церкви, выложить в одну линию, то им будет гораздо удобнее».

Миссис Марта Тафт

«У человека в среднем одна грудь и одно яичко».

Дез Макхейл

«Трое статистиков и трое биологов едут в поезде на конференцию. Биологи жалуются на высокую плату за проезд, но статистики раскрывают им секрет, который позволяет сэкономить. Услышав голос контролера, статистики прячутся в туалете. Контролер стучит в дверь туалета и говорит: «Ваши билеты, пожалуйста!» Статистики протягивают один билет, контролер пробивает его и возвращает назад. Биологи поражены. Через два дня статистики и биологи едут в поезде обратно. Биологи показывают статистикам, что купили только один билет, на что статистики отвечают: «А у нас нет ни одного». Прежде чем кто-либо успевает задать вопрос, вдалеке слышится голос контролера. В этот раз биологи прячутся в туалете. Один из статистиков тайком следует за ними, стучит в дверь туалета и говорит: «Ваши билеты, пожалуйста!» Биологи протягивают билет. Статистик хватает его, прячется вместе со своими коллегами в другом туалете, и все ждут контролера. Мораль этой истории проста: не применяйте статистические методы, которых не понимаете».

Имя автора неизвестно

По словам Лонга, будучи подростком, он считал Джеймса своим героем. «В средней школе я любил исчисления и был страстным поклонником бейсбола. Мы с отцом наладили отношения благодаря этой игре. Тем не менее в плане управления бейсбол опирался исключительно на народную мудрость. Именно поэтому мне так понравились идеи человека, который предоставил данные, опровергающие многие элементы этой народной мудрости. В свои четырнадцать я был фанатом Билла Джеймса».

Среди истинных почитателей Джеймса немало математиков и программистов, которые не только впитывали его открытия, но и продвигали собственные идеи. Например, Пит Палмер был программистом и инженером-системотехником на радиолокационной станции, расположенной на Алеутских островах. Его работа представляла собой своеобразный высокотехнологичный эквивалент работы ночного сторожа на консервном заводе. Подобно Джеймсу, во время ночных дежурств Палмер размышлял о бейсбольной статистике. В действительности Палмер увлекался этой темой с детства, когда одержимо строчил матери на печатной машинке данные о бейсбольных матчах. Одним из его главных достижений стала разработка нового статистического показателя, известного как OPS (on-base plus slugging percentage – процент попаданий на базу плюс процент сильных ударов), который охватывал два самых важных качества бэттера – способность выбить мяч за пределы поля и умение добраться до базы.

Вы можете составить более полное представление о том, как Палмер использовал математику для оценки бэттеров, взглянув на записанную ниже формулу расчета показателя OPS. Один его элемент – SLG (slugging percentage – процент сильных ударов), который представляет собой частное от деления общего количества баз игрока на количество выходов на биту. Второй – OBP (on-base percentage – процент попаданий на базу), но о нем мы поговорим чуть позже, когда вернемся к эпизоду «ДеньгоБАРТ», поскольку Лиза Симпсон ссылается на OBP, подбирая свою команду.

Ричард Крамер, еще один статистик-любитель, тоже подобно Палмеру и Джеймсу использовал математику для изучения бейсбола. Будучи научным сотрудником фармацевтической компании SmithKline, Крамер имел доступ к очень мощным компьютерам, предназначенным для разработки новых лекарственных препаратов. Но Крамер по ночам использовал их для поиска ответов на некоторые вопросы из области бейсбола, например, действительно ли существует такой феномен, как клатч-хиттеры. Клатч-хиттер – это игрок, обладающий способностью демонстрировать свои лучшие качества в форс-мажорной ситуации. Как правило, клатч-хиттер лучше всего отбивает мяч в момент, когда его команда находится на грани проигрыша, особенно во время важной игры. Комментаторы и знатоки бейсбола десятилетиями утверждали, что такие игроки есть, но Крамер решил проверить, действительно ли это так или это всего лишь результат выборочного анализа данных.

Формула расчета показателя OPS впервые была изложена в доступной форме в книге The Hidden Game of Basebalname = "note" A Revolutionary Approach to Baseball and Its Statistics («Секреты игры в бейсбол: революционный подход к бейсболу и его статистике»), написанной Питом Палмером в соавторстве с Джоном Торном. Пожалуйста, не испытывайте чувства вины, если захотите пропустить это минное поле математики и бейсбольного жаргона.

OPS = SLG + OBP


Таким образом,


OPS = процент попаданий на базу плюс процент сильных ударов

OBP = процент попаданий на базу

SLG = процент сильных ударов

H = хиты

BB = база за болы

HBP = удар при подаче

AB = выходы на биту

SF = жертвенные флайболы

TB = все базы

Крамер применил простой, элегантный и сугубо математический подход, определив эффективность игроков во время обычных матчей и во время самых напряженных игр того или иного сезона (за основу был взят сезон 1969 года). Создавалось впечатление, что некоторые игроки действительно проявляют свои лучшие качества в решающие моменты, но обусловлено ли это какой-то внутренней суперсилой, активизирующейся в соответствующих условиях, или банальным стечением обстоятельств? Чтобы ответить на этот вопрос, Крамер выполнил аналогичные расчеты за сезон 1970 года. Если клатч-хиттинг – это настоящий навык, тогда в сезонах 1969-го и 1970 годов будут одни и те же клатч-хиттеры. Если же это исключительно удача, тогда предполагаемые клатч-хиттеры 1969 года уступят место новой группе клатч-хиттеров в 1970 году. Расчеты Крамера показали отсутствие значимой связи между двумя группами клатч-хиттеров за два сезона. Другими словами, предполагаемые клатч-хиттеры одного сезона не могут сохранить свою эффективность на прежнем уровне в следующем сезоне. Их результативность обусловлена скорее везением, чем уникальными способностями.

В «Обзоре бейсбола» за 1984 год Билл Джеймс писал, что такой вывод его не удивляет: «Как может быть, чтобы игрок, рефлексы, удар, знания и опыт которого обеспечивают ему показатель 0,262, при других обстоятельствах как по волшебству становится хиттером с показателем 0,300? Как это происходит? В чем суть процесса? Каковы его последствия? До тех пор, пока мы не найдем ответы на эти вопросы, я не вижу смысла обсуждать клатч-способности».

Дерек Джетер, получивший прозвище Капитан Клатч за высокие результаты в отбивании мяча в команде New York Yankees, был категорически не согласен со статистиками. В интервью Sports Illustrated он сказал: «Можете взять этих статистиков и выбросить из окна»». К сожалению, собственные показатели Джетера подтвердили вывод Джеймса. По данным за тринадцать сезонов такие показатели Джетера, как средняя результативность, процент попаданий на базу и процент сильных ударов, составляли 0,317/0,388/0,462 в регулярных матчах и 0,309/0,377/0,469 в важных матчах серии плей-офф.

Безусловно, всем новым математическим дисциплинами нужны имена, и в свое время этот эмпирический, объективный и аналитический подход к пониманию бейсбола получил известность как «саберметрика». Этот термин, придуманный Биллом Джеймсом, происходит от акронима SABR (Society for American Baseball Research – Общество изучения американского бейсбола) – организации, созданной с целью содействия изучению различных аспектов бейсбола, таких как история игры, связь бейсбола с искусством, а также женщины в бейсболе. На протяжении двух десятилетий представители бейсбольной элиты в основном игнорировали, а порой даже высмеивали Джеймса и группу его коллег по саберметрике, численность которой неуклонно росла. Тем не менее саберметрика в конце концов получила признание, когда одна команда оказалась достаточно смелой, чтобы применить этот метод и доказать, что именно в нем кроется секрет успеха в бейсболе.

В 1995 году бейсбольную команду Oakland Athletics купили Стив Шотт и Кен Хофманн – два инвестора, которые с самого начала отчетливо дали понять, что бюджет команды необходимо сократить в два раза. Когда в 1997 году Билли Бин возглавил Athletics, клуб был печально известен самым ограниченным бюджетом в Главной лиге бейсбола. Бин понял, что единственный способ выиграть достаточное количество матчей без финансирования – это положиться на статистику. Другими словами, он использовал математику, чтобы превзойти своих богатых соперников. Будучи горячим приверженцем идей Билла Джеймса, Бин продемонстрировал свою веру в статистику, наняв на должность помощника одержимого статистикой выпускника экономического факультета Гарвардского университета Пола Деподесту. Деподеста, в свою очередь, нанял еще более увлеченных статистикой специалистов, таких как Кен Морьелло и Джек Армбрустер, – финансовых аналитиков, ушедших с Уолл-стрит и открывших свою компанию по бейсбольной статистике Advanced Value Matrix Systems. Они проанализировали данные об игре каждого отдельного питчера, филдера и хиттера за сотни прошлых матчей, с тем чтобы оценить их точный вклад. Их алгоритмы сводили к минимуму случайное влияние удачи и, по сути, присваивали определенную денежную сумму каждому игроку каждой команды. Это позволило Бину получить необходимую информацию для покупки недооцененных игроков.

Вскоре Бин понял, что лучшие предложения появляются на рынке посреди сезона, когда команды, потерявшие шанс одержать победу в своей лиге, сокращают расходы за счет продажи игроков. Закон спроса и предложения обеспечивал падение цен, а Бин мог использовать статистику для поиска отличных игроков, которые остались незамеченными в командах, попавших в трудное положение. Иногда Деподеста рекомендовал сделки, которые сторонники традиционного подхода считали бредовыми, но Бин редко ставил под сомнение его советы. В действительности, чем абсурднее казалась та или иная сделка, тем выше была вероятность того, что команде удастся купить недооцененного игрока. Эффективность математических расчетов Деподесты и сделок, заключенных посреди сезона по их результатам, стала очевидной в 2001 году. В первой половине сезона команда Oakland A’s выиграла только 50 процентов из 81 матча, однако во второй половине сезона этот показатель увеличился до 77 процентов, что позволило команде занять второе место в играх западного дивизиона Американской лиги.

Это поразительное улучшение, основанное на статистике, было впоследствии задокументировано в книге журналиста Майкла Льюиса, наблюдавшего за приключениями Бина с саберметрикой на протяжении нескольких сезонов. Эпизод «Симпсонов», в котором Лиза становится бейсбольным тренером, получил название «ДеньгоБАРТ», перекликающееся с названием книги Льюиса. Более того, на представленном выше рисунке, где Лиза сидит среди книг, третья книга под компьютером и есть Moneyball[23]. Следовательно, можно с уверенностью утверждать, что Лиза знает о Билли Бине и его любви к саберметрике.



Поделиться книгой:

На главную
Назад