Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Тончайшее несовершенство, что порождает всё. Долгий путь частице Бога и Новая физика, которая изменит мир - Гвидо Тонелли на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Тайна темной материи

У нашей Вселенной, между тем, есть и другие тайны, способные поколебать нашу уверенность в, казалось бы, надежно установленных фактах и бросить вызов нашим теориям. И даже самые привычные космические объекты, галактики, в действительности куда более загадочны, чем нам думается. Наблюдения скоростей звезд на периферии спиральных галактик, вроде нашего Млечного Пути, с неизбежностью приводят к выводу: кроме видимого вещества – звезд, межзвездной пыли, туманностей и даже черных дыр, одна из которых почти всегда находится в центре любой из галактик, – там должно быть огромное количество чего‑то еще, какого‑то дополнительного неопознаваемого ингредиента. Если бы его там не было, эти периферические звезды не могли бы двигаться с наблюдаемыми скоростями, а двигались бы куда медленнее. Следовательно, это должна быть какая‑то невидимая и необъяснимая форма материи; данная материя не излучает свет и потому получила название “темной”; она полностью обволакивает галактики, проникает в занимаемое ими пространство и окружает их, простираясь на огромные расстояния и будучи своего рода тонким массивным газом, состав которого совершенно неизвестен.

Еще более удивительны наблюдения больших скоплений. Галактики, примерно как и мы с вами, любят жить семьями, галактическими скоплениями, состоящими из десятков или даже сотен членов, расположенными относительно близко (по космическим масштабам) друг к другу. В каталогах их тысячи. Первая мысль, которая должна приходить в голову физику, когда он заглядывает туда, – а что держит эти галактики вместе? Ответ кажется очевидным: сила тяжести, притягивающая их одну к другой. Но при подсчетах концы с концами не сходятся: видимая масса галактик, той их светящейся части, которую мы можем измерить, оказывается слишком мала. Чтобы объяснить устойчивость этих огромных образований, нужно допустить существование какой‑то другой – неизвестной и невидимой – формы материи. Таинственная материя должна быть повсюду: в скоплениях, в самих галактиках, в звездах и во всех планетах… да даже тут и сейчас – внутри нас, в каждой комнате нашего дома.

Нити темной материи простираются на миллиарды световых лет, образуя нечто вроде космической паутины, оплетающей крошечные (в сравнении с ними) области, где концентрируется видимое вещество. Благодаря изначальной неоднородности этой таинственной формы материи видимое вещество собиралось в сгустки, из которых спустя примерно 400 миллионов лет после Большого взрыва рождались первые звезды, а потом и первые галактики, эволюционировавшие во все остальное, – включая звездные системы, планеты и, в конечном счете, нас самих. Результаты последних исследований говорят нам, что эта невидимая и вездесущая материя – только она одна! – составляет 27 % всей массы Вселенной. Чуть больше четверти материального мира вокруг нас состоит из этой странной темной материи, и нам должно быть стыдно, что мы понятия не имеем, что же она из себя представляет.

Очарование Сьюзи

После того как доказательства существования темной материи стали множиться, теоретики разработали для нее немало возможных объяснений. Эти теории сильно различаются между собой. Одна из наиболее перспективных – суперсимметричная, которая особо любима физиками, потому что не только разгадывает тайну темной материи, но и предлагает элегантные ответы на целый ряд других вопросов.

Вообще‑то речь тут идет о целом семействе теорий, концентрирующихся вокруг предположения, что вся известная материя – лишь небольшая часть первичной материи, родившейся в момент Большого взрыва. Согласные с этим ученые считают, что у каждой известной элементарной частицы есть суперсимметричный партнер – элементарная частица практически с теми же самыми свойствами, только более тяжелая и с другим спином (так называют специфическое квантовое свойство элементарных частиц, в чем‑то схожее с вращением вокруг своей оси; спин – неизменная внутренняя характеристика данной частицы, как, например, электрический заряд).

Чтобы излишне не напрягать свою память, физики, оставив открытой возможность некоторых исключений, решили называть суперсимметричный партнер тем же словом, которым называют и саму частицу, но с добавлением в начале буквы “с”[7]. Так, суперпартнер электрона называют сэлектроном, а суперпартнер топ-кварка – стоп-скварком. Для того чтобы сделать теорию более привлекательной и описать ее более обобщенно, в обиход был пущен акроним Сьюзи (SUSY – SUper SYmmetry), напоминающий имя девушки.

Теория оказалась внутренне непротиворечивой и полностью совместимой с результатами всех экспериментов, и, стало быть, ее надо принимать всерьез. Но почему же тогда нет никаких следов суперсимметричных частиц в окружающей нас материи? Все просто: в ранней Вселенной эти частицы сосуществовали на равных с частицами обычной материи. Она (Вселенная) была настолько раскалена, что условия для таких массивных частиц, обладающих высокими энергиями, были исключительно благоприятными. Однако ее быстрое охлаждение, вызванное быстрым расширением, повлекло массовое вымирание Сьюзи. Утратив способность к дальнейшему существованию, они стали распадаться, почти моментально, в частицы обычной материи – оттого‑то мы их теперь и не находим. Но одна из них могла не исчезнуть. Теория предсказывает, что самая легкая представительница этого семейства должна быть стабильной и ни на что не распадаться. Эта частица, которую называют нейтралино[8], была бы в Сьюзи аналогична самым легким нейтрино в Стандартной модели. Если она и взаимодействует с другими формами материи, то исключительно слабо, однако она очень тяжелая и способна образовывать колоссальные кластеры, создающие сильное гравитационное поле. И именно тут можно было бы отыскать объяснение тому, что мы видим, когда наблюдаем галактики или скопления галактик. Темная материя, удерживающая от распада эти колоссальные космические структуры, могла бы представлять собой газ тяжелых нейтралино – реликтов первобытной эпохи, когда в мире доминировала суперсимметричная материя.

Вот так, в попытках понять происхождение темной материи, мы можем наткнуться на таинственную форму материи, о существовании которой едва ли догадывались. Стоим себе, глядя лишь под ноги, – а потом вскидываем голову к небу и открываем для себя его чудеса. Вторая половина Вселенной всегда была прямо перед нами, но нам словно бы недоставало смелости посмотреть на нее.

Чтобы подтвердить теорию, хорошо бы найти Сьюзи-частицы, но это пока никому не удалось. Почему же мы их не видим? Может, потому, что теория не верна. А может быть, все проще и суперчастицы, даже самые легкие, настолько тяжелы, что мы не можем достичь минимальных энергий, необходимых для их рождения, даже с помощью мощнейших ускорителей. Или же у них есть такие особенности, которые мы пока не в состоянии себе вообразить. Но каждый новый день может оказаться подходящим для некоего открытия, которое опрокинет все наши представления об окружающей нас реальности.

И все‑таки что‑то должно быть возможно… понять[9]

В довершение к вышеописанному (точно его было мало!) относительно недавно произошло открытие, смешавшее нам все карты. Мы уже знали, что расширение Вселенной, начавшееся с Большим взрывом, продолжается и по сей день. В самом деле: достаточно взглянуть на галактики и скопления галактик, чтобы убедиться – чем больше они удалены от нас, тем с большей скоростью они удаляются. И еще не так много лет назад ученые предполагали, что со временем – из‑за гравитационного притяжения, действующего на любые формы материи, – скорость расширения должна уменьшаться. Но не тут‑то было! В конце 90‑х годов из наблюдений самых далеких галактик стало ясно: вместо того, чтобы уменьшаться, она увеличивается. Что‑то, некая антигравитация, отталкивающая один островок материи от другого, разгоняет галактики. Если не случится нечто новое, то это будет происходить так долго, пока расстояния между галактиками не станут настолько большими, что все сущее погрузится во тьму и небесный холод пронижет всю Вселенную.

Но в чем же причина такого ускоренного расширения? Мы этого не знаем. Может быть, это еще какое‑то поле или свойство вакуума, в котором мы пока не разобрались, или реликт того начального состояния, что дал толчок пароксизму инфляции. А может, случилось так, что этот реликт оставил Вселенную в покое лишь на несколько миллиардов лет, а затем вновь ее потревожил, хотя уже и не так сильно, без пароксизмов.

Не располагая хотя бы самой смутной идеей о том, что это может быть, ученые назвали источник данной расталкивающей силы “темной энергией”. Плотность ее исключительно мала, но коль скоро она заполняет весь объем Вселенной, то оборачивается самым важным ее ингредиентом: ее вклад в общую массу достигает 68 %. Если мы не без скрипа признали, что у нас нет никаких идей относительно темной материи, составляющей четверть массы Вселенной, то представьте себе шок, испытанный научным сообществом, когда ему пришлось признать то же самое и в отношении практически всего остального, составляющего более двух третей того, что нас окружает!

Короче говоря, если окинуть единым взором и темную материю, и темную энергию, являющие собой темную сторону Вселенной, то выяснится, что эта сторона заметно преобладает над всем прочим. Тут уж даже самым отъявленным скептикам придется согласиться с тем, что степень нашего невежества запредельна: 95 % всего того, что есть вокруг нас, полностью, абсолютно непостижимо.

И все‑таки что‑то должно быть возможно… понять. Мы знаем, что в реликтовом излучении остаются следы самых первых мгновений жизни Вселенной. И эти следы могут подробно поведать обо всем том, что сейчас представляется таким загадочным. Но для этого понадобится чувствительность в сотни, а то и в тысячи раз превосходящая чувствительность наших самых современных инструментов.

Что уж тут толковать о возможности обнаружить самые неуловимые из существующих сигналов, которые излучаются в виде гравитационных волн. Эти сигналы настолько слабы, что за десятилетия систематических наблюдений с применением самых изощренных экспериментальных методик их так и не удалось зарегистрировать[10]. Физики мечтают об изобретении новых приборов, позволяющих уловить либо их, либо какие‑то совершенно новые сигналы, тишайшим шепотом рассказывающие о тайнах зарождения космоса

Ускорители элементарных частиц (LHC – самый известный из них) – важная часть этого огромного проекта. На кону стоит понимание реальности, в которой мы живем, и только что открытый бозон Хиггса мог бы о многом нам рассказать. Невероятно, но факт: одна-единственная элементарная частица – причем весьма трудно уловимая – способна стать ключом к новому удивительному знанию о происхождении мира и материи.

Всякий ученый хотя бы однажды мечтал дожить до того волшебного момента, когда можно взмыть над пропастью, обозначающей рубеж нашего познания, и заглянуть за нее. И ему думается, будто увиденное им (никому, кроме него, в тот момент неведомое) способно принципиально изменить всю картину мира, всю нашу жизнь, наше общество, наше будущее. К такому, безусловно, стоит стремиться.

Глава 2

Ребята шестьдесят четвертого[11]

Им надо многое сказать друг другу

Стокгольм,

23 июля 2013 г., 18.30

У него легкая мальчишеская походка, и по всему ясно, что к ходьбе он привычный. Несмотря на свои 84 года и хрупкое телосложение, он тут же, едва я предложил ему пройтись, сделал знак водителю голубого “мерседеса”, который организаторы конференции предоставили в его распоряжение, и мы отправились в путь. От гостиницы до Музея корабля “Васа” полтора километра, нам придется обогнуть залив, однако погода нынче отличная. Мы идем на банкет, который состоится именно там – в единственном в мире музее, посвященном некоему эпическому провалу.

Галеон “Васа” был гордостью королевского флота Густава-Адольфа. Ему предстояло стать самым красивым, самым мощным и самым хорошо вооруженным флагманским кораблем в мире. Судно торопились поскорее спустить на воду, чтобы задействовать в операциях против поляков и литовцев, которые решили оспаривать монополию Швеции на балтийскую торговлю. Исходный проект показался королю не слишком впечатляющим, и он настоял, чтобы инженеры добавили еще одну палубу, заставленную бронзовыми орудиями. Осторожные возражения опытных кораблестроителей услышаны не были: повеления монарха не обсуждаются.

И зря. Пренебрежение мнением плотников обошлось очень дорого. 16 августа 1628 года, в день своего торжественного спуска на воду Стокгольмского залива, корабль, построенный во славу шведской короны, плюхнулся туда, словно медведь в лужу, и сразу неспешно пошел ко дну. Извлекли его из воды спустя века – в первозданном виде, с изящными деревянными украшениями и бронзовыми пушками, так и не выпустившими ни единого ядра.

Теперь им можно полюбоваться в музее, который построили менее чем в сотне метров от того места, где он более трех веков покоился на дне морском. К радости мальчишек всего мира, которые могут подняться на борт одного из тех кораблей, что снятся им по ночам.

Наша прогулка продолжается всего двадцать минут, но за это время Питер успевает весело рассказать мне об окрестностях Эдинбурга и о многочисленных маршах мира, в которых он участвовал. А потом внезапно с любопытством спрашивает: “Но как вам удается сделать так, чтобы три тысячи физиков работали одновременно и слаженно?” И тогда уже я увлеченно принимаюсь вспоминать о конфликтах, ссорах и сомнениях, терзавших нашу коллаборацию, когда мы только приступили к охоте за частицей, которая носит его имя. Когда же я рассказываю о пари, которые собираюсь выиграть, он искренне смеется: “Честно говоря, то, что вы ее все‑таки нашли, удивило даже меня. Я вовсе не был уверен, что она и в самом деле существует”.

Многие считают, что у Питера Хиггса сложный характер, – полагают его этаким нелюдимом, малословным и нудным. Нет ничего более далекого от реальности. Дурная слава родилась, вероятнее всего, из‑за его плохого отношения к журналистам. После одной неприятной истории Питер действительно старается их избегать. Тогда некий недобросовестный корреспондент сыграл с ним злую шутку: опубликовал интервью, в которое вставил агрессивные фразы, никогда Питером не произносившиеся. И это нежелание встречаться с представителями прессы породило мнение о нем как о мизантропе. Да, Питер относится к журналистам со страхом и недоверием, и даже вчера, во время пресс-конференции, были заметны его напряженность и скованность.

Конференция Европейского физического общества – самая важная в году. Она проходит в Стокгольме за три месяца до сакраментальной даты 8 октября, когда Королевская академия наук объявляет миру лауреатов Нобелевской премии по физике. Все уже знают, что в минувшем году мы нашли на LHC окончательные доказательства того, что новая частица, зарегистрированная в 2012‑м, обладает всеми характеристиками, предсказанными Браутом, Англером и Хиггсом в 1964‑м. Предполагается, что Королевской академии наук тоже об этом известно, и потому на конференции взгляды присутствующих прикованы к двоим “тем самым парням”. Мы все в ожидании: этот год должен стать удачным.

Вчера Франсуа и Питер практически одновременно прочитали каждый свою лекцию[12], а сразу после открывавшего конференцию пленарного заседания оргкомитет собрал в их честь пресс-конференцию.

Один из журналистов спросил Питера Хиггса о причинах, по которым все считают его отцом-первооткрывателем такой важной частицы, на что Питер ответил коротко: “Никаких особых причин для этого нет, так как мой вклад был минимальным”. Однако корреспондентам хотелось найти какую‑то яркую ноту и они продолжили настаивать: “А расскажите нам о моменте Эврика!” Питер застенчиво улыбнулся: “Был август, мою статью только что отклонили. Пару дней я думал, что надо бы бросить это дело. Но потом все же добавил к ней пару фраз, так как в редакции, очевидно, просто ничего не поняли”.

Эти двое – очень разные. Их характеры диаметрально противоположны. Если Питер скромен и немногословен, то Франсуа – шумен и напорист. Первый говорит скованно, невнятно, еле шевеля губами, с трудом выдавливая из себя немногочисленные слова. Второй же волнуется, машет руками и чуть ли не извивается всем телом, чтобы сделать излагаемые идеи яснее; он шутит, сыплет анекдотами, извергает потоки слов, которым, кажется, не будет конца.

Франсуа Англер из еврейской семьи. Во время войны он пережил Холокост – сам остался цел, но его родные пострадали. Он был ребенком, когда нацисты вторглись в Бельгию, и спасся от облав лишь чудом. Он один из enfants cachés[13]– тех еврейских детей, кого выдавали за христиан и укрывали либо в приютах, либо в семьях отважных людей. Франсуа несет в своей душе все полученные в то ужасное время травмы, но при этом его переполняют энтузиазм и радость жизни, являющиеся реакцией на долгое существование в страхе. Многие его родные перебрались в Израиль – страну, где он часто бывает и к которой у него совершенно особое отношение.

Питер Хиггс совсем не такой. С 60‑х годов он принимает участие в маршах за мир и разоружение. Он убежденный активист, и политическая позиция нередко приводит его в ряды демонстрантов, требующих создания Палестинского государства. В 2004 году ему присудили премию Вольфа, престижную награду от одноименного израильского фонда, уступающую только Нобелевской премии. Он должен был присутствовать на церемонии вместе с Франсуа Англером и Робертом Браутом. Но протокол предполагал, что победители получают премию из рук Моше Кацава, бывшего в то время президентом Израиля, и Питер решительно отказался лететь в Иерусалим. В итоге в церемонии участвовали только бельгийцы Англер и Браут[14].

У Франсуа обширное семейство. Он сейчас в третьем браке, и его многочисленные дети и внуки рассеяны по всему миру. Питер же однолюб: у него была только одна жена, обожаемая им Джоди, американская писательница из города Эрбана, штат Иллинойс, работавшая вместе с ним в Эдинбургском университете[15]. Едва увидев, он влюбился в нее до беспамятства. У них все оказалось общим: картина мира, политическая страсть, гражданская позиция. Ему тогда едва исполнилось тридцать, и он работал день и ночь. Любимая жена заботилась о нем, помогала и ободряла. Они были идеальной парой и безумно любили друг друга. Смеялись, шутили, составляли планы на будущее, ссорились и мирились… Рождение первого сына пришлось на то самое время, когда опубликованная Питером статья начала привлекать внимание и его стали приглашать в самые престижные университеты для проведения семинаров и обсуждения полученных им результатов. Казалось, наступило время полного счастья. Но тут мало-помалу что‑то начало сыпаться. Появились первые признаки взаимного непонимания, чувство отчуждения, ощущение распадающегося очарования. Молодой физик справился со всеми мучившими его проблемами, опубликовал статью, которая войдет в историю, – но его молодая жена уже выбрала себе иной путь. И наступил разрыв. Бушевавшие эмоции, которые больше невозможно было сдерживать, погрузили этот блистательный ум в пучину депрессии. Молодой физик будет все чаще запираться у себя дома, откажется встречаться с друзьями, и его работа больше не даст каких‑либо значимых результатов.

Одним словом, Питера и Франсуа можно назвать антиподами. Вдобавок – скрывать это нет смысла – Франсуа всегда с некоторым раздражением реагировал на рассуждения о бозоне Хиггса; данный термин стал популярным благодаря Стивену Вайнбергу, и из‑за этого работа, выполненная Франсуа и Робертом, оказалась несколько в тени. Да и глядя на Питера, сразу можно понять, что ему тяжело находиться рядом с Франсуа и наблюдать весь этот вихрь слов и жестов. Совершенно очевидно, что эти двое совсем не на одной волне.

Как только закончилась встреча с журналистами, мы прошли в кабинет за сценой, где нас ждали бутерброды и фрукты, чтобы мы могли быстро подкрепиться перед предстоящими заседаниями. И там, пока я сидел между Питером и Франсуа со своим сэндвичем, случилось нечто совершенно неожиданное. Эти двое начали говорить, обращаясь друг к другу через мою голову, словно делая меня молчаливым свидетелем их беседы. Мне показалось, будто меня подключили к чату, длящемуся уже почти пятьдесят лет. И я вдруг понял, что они раньше никогда толком не встречались – разве что на ходу и на людях, – и потому у них не было возможности просто поговорить и обсудить всякое разное: и то, как писались их статьи, и те сомнения, что обуревали обоих, и то, чего вообще они ожидали от своих открытий. Со стороны это выглядело так, словно они пытаются восстановить историю своих взаимоотношений, которая началась летом 1964‑го, когда их жизнь решительно переменилась. Конференция должна была вот-вот продолжиться, и нас уже звали в зал, но эти двое никак не желали прерывать разговор. Им надо было еще многое сказать друг другу.

Фермиевское взаимодействие

У истории этого бозона длинный, почти в столетие, пролог. Свое начало она берет, пожалуй, в первые годы ХХ века, в то поразительное время, когда важнейшие для развития науки события следовали одно за другим во все ускоряющемся ритме нарастающего крещендо. Именно тогда самые блистательные ученые умы всего за несколько лет полностью сменили парадигму, в которой человечество познавало мир прежде.

Специальная теория относительности, квантовая механика и общая теория относительности создали основу для новых представлений о материи и Вселенной. Перемены были настолько глубокими, что даже сегодня, век спустя, нам непросто осознать их последствия.

Исходя из этих принципов, физики, принадлежащие уже к новому поколению, делали открытие за открытием, одно удивительнее другого, и разрабатывали одну теоретическую модель за другой, чтобы объяснять результаты проведенных к тому моменту наблюдений; на основании этих моделей регулярно происходили обсуждения последующих опытов. Именно так была создана Стандартная модель фундаментальных взаимодействий.

Ее история начинается с интуитивной догадки молодого итальянского физика Энрико Ферми, озарившей его в 1933 году. К тому времени он уже стал профессором Римского университета и в этом качестве проводил занятия с группой физиков. Несмотря на весьма небольшую разницу в возрасте, они называли Ферми Папой – настолько велик уже был его авторитет. Результатам серии экспериментов этой группы суждено было сильно изменить ход развития самых разных разделов физики. Их назовут ребятами с виа Панисперна — так называлась улица, на которой располагался в Риме Институт физики, где все они работали. Вот члены этой группы – безусловно, гордость науки ХХ века: Эдоардо Амальди, Оскар Д’Агостино, Этторе Майорана, Бруно Понтекорво, Франко Разетти и Эмилио Сегрé. Результаты, которые они получали, были настолько невероятны, что очень скоро “ребят” Энрико Ферми знал весь мир.

С момента своего первого появления в Пизанском университете, куда юный Ферми пришел изучать физику, он неустанно всех поражал. А еще раньше, приехав семнадцатилетним юношей из Рима, чтобы поступить в престижную Высшую нормальную школу Пизы, он написал небольшое конкурсное сочинение, размером с хорошую диссертацию, и уже там проявилась вся оригинальность его ума. Мы, те, кому довелось учиться в Пизе, помним фронтиспис этой его первой книги – “Об отличительных особенностях звуков и их причинах”, – выставленной в помещении департамента (носящего теперь его имя). Молодой блестящий студент нередко сам поднимался на кафедру, чтобы прочитать лекцию, и вместе со своими однокурсниками Разетти и Каррара ставил эксперименты и публиковал научные статьи. В 21 год он закончил университет, а еще четыре года спустя отправился в Рим преподавать теоретическую физику.

В 1933‑м, всего 32 лет от роду, он разработал теорию до такой степени революционную, что его первая статья на эту тему, представленная в журнал Nature, была отклонена на следующем основании: “Содержит спекуляции настолько далекие от физической реальности, что они не представят для читателя никакого интереса”. Ее опубликует журнал La ricerca scientifica, который благодаря этому окажется со временем среди тех журналов, где увидели свет наиболее важные работы по физике ХХ века.

В теории Ферми рассматривается один из процессов радиоактивного распада, причины которого тогда были неизвестны: речь о бета-распаде, получившем такое название из‑за того, что он сопровождается бета-излучением, то есть потоком электронов. Ферми был первым, кто заговорил об этом явлении как о свидетельстве действия новой силы, природа которой оставалась ранее совершенно неведомой. Описывая данную силу, он оттолкнулся от гипотезы о ее близкой аналогии с электромагнетизмом. Эта простейшая гипотеза позволила определить единственную константу G, которую Ферми смог оценить с невероятной точностью. На протяжении многих лет новую силу будут называть “фермиевским взаимодействием”; это название изменится только спустя много лет, когда теория уже станет общепризнанной. Тогда ее нарекут слабым взаимодействием, что вполне естественно, если принять во внимание очень маленькое значение той самой константы G, которая характеризует интенсивность взаимодействия и которая в честь первооткрывателя именуется теперь “константой Ферми”.

В 1938 году Энрико Ферми номинировали на Нобелевскую премию за открытие трансурановых элементов и ядерных реакций, вызванных медленными нейтронами. Он совершил тогда выдающийся вклад в науку, проведя решающие исследования для понимания природы атомной энергии и управления ею. Но подход Ферми к открытию одного из четырех фундаментальных взаимодействий, как станет понятно спустя несколько лет, был бы достоин и второй Нобелевской премии. Великий физик наверняка получил бы ее, если бы не его преждевременная кончина в 1954 году. Эта глава истории была дописана.

Сегодня мы знаем, что слабое взаимодействие, сколь ни редко оно встречается в процессах, проходящих в обычной окружающей нас материи, играет фундаментальную роль во Вселенной. Без вызываемых слабым взаимодействием реакций ни Солнце, ни все остальные звезды не смогли бы производить ту энергию, которую они излучают в окружающее их пространство. И тогда Вселенная оказалась бы наполненной совершенно экзотическими формами материи, а космос приобрел бы черты, совершенно не похожие на те, которые мы знаем; но никто из нас не смог бы рассказать об этом, так как любая форма жизни, напоминающая известные нам, была бы невозможна.

Прорывная идея молодого Ферми открыла путь к объединению электромагнитного и слабого взаимодействий, и это спустя тридцать лет легло в основу Стандартной модели фундаментальных взаимодействий.

Рождение Стандартной модели

Эта история заставляет вспомнить о великих готических соборах XII века. Для создания подобных шедевров требовались гениальные архитекторы, способные их спроектировать, но также еще и тысячи каменщиков, скульпторов и камнетесов, способных воплотить в чудесные физические формы игру художественного воображения. Нечто похожее произошло и со Стандартной моделью. В ее основании находятся квантовая механика и теория относительности – две грандиозные концептуальные революции, с которых начинался ХХ век. От них произошли прочие элементы несущей инфраструктуры, такие как гениальная интуиция Энрико Ферми и работа трех других гениальных архитекторов – Шелдона Глэшоу, Стивена Вайнберга и Абдуса Салама, а уж вокруг этого закрутился непрекращающийся и систематический труд многих тысяч ученых. Стандартная модель рождалась из десятков теоретических построений, сплетенных с целой чередой впечатляющих экспериментальных открытий, которые раз за разом заставляли перерисовывать всю картину. Именно так и происходило за века до этого, когда посреди работ по возведению собора вдруг выяснялось, что какие‑то решения были слишком смелыми, что вся конструкция не способна выдерживать собственного веса или побочных напряжений и что необходимо конструктивное воплощение новых решений, которым и суждено было стать стандартом при постройке следующих храмов.

Эта теория гениальна и элегантна. Хотя в ней слишком много параметров и много констант, истинный смысл которых не очень ясен, успех ее был поразительным и определялся ее мощной предсказательной способностью. Из данной теории следовало существование новых частиц, которые успешно обнаруживались, и она позволяла с колоссальной точностью вычислять новые измеримые величины, причем физики-экспериментаторы могли убеждаться в их точном соответствии с предсказаниями – в некоторых случаях до десяти значащих цифр.

В Стандартной модели вся материя строится из трех семейств кварков и трех семейств лептонов; взаимодействуя друг с другом и объединяясь в различных сочетаниях в соответствии с вполне конкретными законами, они образуют все, что мы знаем. Дюжина элементарных частиц (три пары кварков и три пары лептонов) взаимодействуют между собой, обмениваясь другими элементарными частицами, переносчиками четырех фундаментальных сил: фотон – это частица, из которой состоит свет, и она отвечает за хорошо известный электромагнетизм, в то время как глюон, ответственный за силу между разноцветными кварками, переносит сильное ядерное взаимодействие, которое удерживает кварки связанными внутри протонов и преодолевает электромагнитное отталкивание между протонами внутри ядра. Слабое взаимодействие возникает благодаря излучению и поглощению очень тяжелых частиц W– и Z-бозонов[16]. И наконец, чуть в стороне находится гравитационное взаимодействие. В нем участвуют все тела, обладающие массой или энергией, и оно возникает благодаря обмену гравитонами, переносчиками силы тяжести, которые пока еще не были обнаружены экспериментально.

У переносчиков всех взаимодействий целый спин, 1 или 2. Вместе с частицами, чей спин равен 0, они образуют группу бозонов. У кварков и лептонов, кирпичиков вещества, спин полуцелый, 1/2, и они входят в группу фермионов.

Архитравом Стандартной модели служит объединение двух взаимодействий – электромагнитного и слабого, – оказывающихся, таким образом, двумя разными проявлениями одной и той же силы, называемой электрослабым взаимодействием. Исходная идея родилась из формальной аналогии, подкрепившей интуицию, которая позволила Ферми построить свою теорию слабого взаимодействия. Уравнения, описывающие эти два взаимодействия, практически идентичны, и эта формальная идентичность не могла быть случайной. Подобное чудо в XIX веке привело к слиянию электрических и магнитных явлений в рамках единой теории электромагнетизма Фарадея, Максвелла и Лоренца. И открытие электромагнетизма оказалось способно поколебать основы понимания не только природы, но и общества во всей его сложности.

Этот аргумент я часто использую, когда какой‑нибудь журналист просит меня объяснить в доступной форме, какими могли бы оказаться экономические и социальные последствия новых научных открытий, связанных с бозоном Хиггса. Я не знаю, как лучше ответить на этот вопрос, но зато уверен, что без понимания электромагнетизма мы бы до сих пор ездили в поездах, которые тянет паровоз, пользовались газовым освещением и свечами и посылали сообщения с голубиной почтой. Я не знаю, приведет ли электрослабое объединение к появлению новых технологий, но уверен, что во второй половине XIX века, когда были сформулированы законы Максвелла, никто не смог бы даже вообразить, что из‑за этих четырех уравнений мир сможет изменяться с такой скоростью и так основательно.

Дурацкая идея еще одного бывшего пизанского студента

Триумф Стандартной модели совпал по времени с появлением ЦЕРН на международной сцене физических исследований. Европейская лаборатория с момента своего создания в 1954 году прилагала усилия к тому, чтобы утвердиться в области физики высоких энергий, где традиционно господствовала американская сверхдержава. Первые признаки возвышения ЦЕРН появились в 1970‑х с открытием нейтральных токов (трудноуловимый эффект, первое свидетельство существования Z-бозона, предсказанного Стандартной моделью). А апофеозом стало открытие в 80‑х W– и Z-бозонов, переносчиков слабого взаимодействия.

В центре событий оказался Карло Руббиа, еще один бывший блестящий студент из Пизы, выпускник Нормальной школы. Прошло более сорока лет после статьи Ферми о слабом взаимодействии, но никому еще не удалось обнаружить его переносчиков, которые, в соответствии с теорией, должны были обладать исключительно большими массами. Для того чтобы справиться с проблемой, молодой Руббиа предложил ЦЕРН построить ускоритель доселе неслыханной конструкции. Его революционная идея на первый взгляд кажется дурацкой: пустить по кругу навстречу друг другу в одном и том же ускорителе пучок протонов и пучок антипротонов, которые, сталкиваясь, дадут энергию, достаточную для получения фантомных частиц. Идея предполагала радикальную перестройку самого мощного из ускорителей ЦЕРН с целью приспособления его к новому режиму работы и обеспечения решения целого ряда технических проблем. Характер у Руббиа взрывной, он способен перетянуть на свою сторону и заманить в какую‑нибудь затею даже вешалку у двери. На помощь ему пришел один из главных экспертов по ускорителям, голландский физик Симон ван дер Мер, предложивший новаторский способ уплотнения антипротонных пучков и удержания их в таком состоянии. Именно это стало решающим шагом к достижению нужной интенсивности столкновений. Потом в затею вовлеклись и поначалу менее заинтересовавшиеся ею коллеги, и в итоге в начале 80‑х новый ускоритель заработал. Все сразу пошло прекрасно: в детекторах, расположенных вокруг всей зоны столкновений, появились первые сигналы. В декабре 1983 года на семинаре в ЦЕРН Руббиа сообщил миру об открытии W– и Z-бозонов, благодаря чему они с ван дер Мером спустя год стали нобелевскими лауреатами.

Я был среди сотен слушателей, собравшихся по этому поводу в центральной аудитории. И пока Руббиа отрывистыми фразами рассказывал о горстке первых обнаруженных W– и Z-, сопровождая свое повествование сотнями слайдов, в моей голове – и я до сих пор хорошо это помню – возникло отчетливое видение. Что‑то вроде грез наяву. На протяжении нескольких секунд я смотрел на себя на той же кафедре в некий момент будущего – в этой же самой аудитории, полной тех же самых физиков, – демонстрирующего первые доказательства существования какой‑то новой частицы, открытие которой навсегда изменит наши представления о мире. Я уверен, что такое же видение посетило всех молодых физиков, собравшихся в тот день на том семинаре.

Загадка массы

Многочисленные успехи Стандартной модели не могли скрыть фундаментальной проблемы, притаившейся внутри самого архитрава всей теоретической конструкции.

Как это возможно, что два таких разных взаимодействия оказываются проявлениями одной и той же силы? Радиус действия электромагнитного взаимодействия бесконечен: фотоны, испущенные уличным фонарем, достигнут через определенное время самых отдаленных уголков Вселенной; но люди на протяжении тысячелетий не догадывались о существовании слабого взаимодействия просто потому, что оно проявляется на крошечных субъядерных расстояниях и его следы тут же, мгновение спустя, пропадают. Общий закон физики говорит, что радиус действия какой‑либо силы обратно пропорционален массе переносящей ее частицы. Вот почему радиус действия электромагнетизма бесконечен – такое возможно только в силу безмассовости фотона. Теперь вам должно стать понятно, отчего W и Z должны были оказаться столь массивными. Лишь очень тяжелые частицы могли быть переносчиками силы с таким малым радиусом действия, как у слабого взаимодействия. Но тогда как же мог фотон, лишенный массы, явиться переносчиком того же самого электрослабого взаимодействия, что и очень массивные W и Z? Что принципиально отличает W и Z от фотона? Что такое вообще масса?

На техническом жаргоне все эти вопросы сливаются в одно общее понятие – нарушение электрослабой симметрии. Смысл его в том, что, оттолкнувшись, в теории, от симметричной ситуации, в которой электромагнетизм и слабое взаимодействие – это одно и то же, нужно прийти к реальности, в которой эта симметрия “нарушена” и эти две силы различаются. Над тем, откуда берется это нарушение, задумались еще в 60‑е годы, и с тех пор предлагалось множество ответов, ни один из которых не был в полной мере удовлетворительным. Это продолжалось до тех пор, пока на сцену не выступили “ребята шестьдесят четвертого”. История повторилась: некие молодые люди внезапно выдвинули идею, настолько далекую от шаблонов, что прежде она просто никому не приходила в голову. Это были двое тридцатилетних бельгийцев и их сверстник из Великобритании.

Роберт Браут и Франсуа Англер дружили. Их сблизило прекрасное чувство юмора, а также любовь к шумным застольям, остроумным шуткам и красивым женщинам. Оба были экстравертами, их переполняли идеи, и они излучали заразительный энтузиазм. Молодые люди еще совсем недавно занимались физикой твердого тела, но затем решили сосредоточиться на одном из вопросов физики элементарных частиц. Поскольку область исследований была для них новой, прошло немало времени, прежде чем они представили свою первую работу. Они очень боялись сделать какую‑нибудь банальную ошибку и написать нечто такое, что коллеги могут счесть просто ерундой. Однако придуманное решение казалось обоим очевидным, тем более что они уже видели, как оно “работает” в типичных ситуациях физики твердого тела. И если уравнения двух видов взаимодействия тождественны, нарушение симметрии не может происходить иначе, как в среде, через которую они распространяются. То есть в пустоте. Другими словами, в вакууме, – но в вакууме, симметрия которого нарушена, потому что вакуум… это вовсе не пустота. Для того чтобы обосновать различие между электромагнитным и слабым взаимодействиями, нужно допустить существование некоего “поля”, проникающего во все уголки пространства.

Поначалу идею никто не принял всерьез. Подумаешь, какие‑то неофиты, утверждающие, будто вся Вселенная пронизана чем‑то таким таинственным и незаметным, о чем никто до них не догадывался. Статью, правда, напечатали, но внимания она на себя вроде бы не обратила.

А спустя всего несколько недель тот же самый журнал получил еще одну статью. В ней приводились сходные аргументы (хотя и с совершенно иной точки зрения) и делались аналогичные выводы. Ее автором был Питер Хиггс – молодой и никому доселе не известный британский физик, незадолго до этого приглашенный в Эдинбург. Его специальностью была математическая физика, и работал он в одиночку. Очень серьезный и замкнутый, безумно влюбленный в свою жену, он редко встречался с коллегами и не любил праздное времяпрепровождение. Первый вариант его статьи не прошел, но второй – приняли к публикации. И в августе ему нехотя пришлось вернуться на пару недель к этой работе, чтобы ответить на замечания рефери, то есть тех ученых, которых редакция приглашает для анонимной оценки достоинств статьи. Уточняя один из своих аргументов, Питер пришел к уверенному заключению: да, спонтанное нарушение симметрии электрослабого взаимодействия возникает вследствие наличия поля, элементарным возбуждением которого является неизвестный массивный бозон. Статья Питера Хиггса, где упоминалась работа Браута и Англера, увидела свет через несколько недель после публикации статьи молодых бельгийцев.

Много лет спустя, в Стокгольме, когда мы праздновали получение медалей нобелевских лауреатов, Питер сказал мне: “Я часто думаю о странностях этого мира: если бы тогда, в шестьдесят четвертом, мою статью отклонили, я бы сегодня здесь не сидел”.

Предложенный механизм незатейлив и может показаться очень простым, особенно если при его описании обойтись без формул. Масса – самое банальное из свойств элементарных частиц: она подобна липкой ленте. Как мы могли не подумать об этом раньше? И самые легкие из лептонов, и массивные кварки – все, без исключения, рождаются безмассовыми. Какой будет масса у каждой из частиц, выбирает пронизывающее всю Вселенную хиггсовское поле. Чем плотнее прилипает оно к частице, тем массивней она будет.

Сложно, если вообще не невозможно, подыскать строгую аналогию для механизма, действующего без рассеяния энергии. Обычно используемые образы не слишком соответствуют особенностям механизма спонтанного нарушения симметрии. Мне нравится сравнивать его с плотной и агрессивной линией защиты во время игры в регби: защитники не обращают ни малейшего внимания на фотоны, и те легко проскальзывают у них между ног, но когда дело доходит до W или Z, шанса прорваться уже нет. Защитники вцепятся в их лодыжки и непременно повалят. Любые попытки подняться окажутся безуспешными – дальше им придется ползти, таща за собой гроздья бозонов и с трудом преодолевая бесконечно малые расстояния. Вот он, тонкий баланс, на котором зиждется равновесие нашей Вселенной: фотоны доносят до нас свет самых далеких звезд, в то время как слабые взаимодействия, благодаря которым светится Солнце, остаются скрытыми, спрятанными от наших глаз на субатомных расстояниях.

Идея была революционной. Но – не вызвала никакого заметного отклика. По словам Питера Хиггса, “поначалу обе наши статьи были абсолютно проигнорированы”. Кое-кто из авторов даже подумывал о смене профессии. Но потом дела постепенно приняли совсем другой оборот. Причин тому было две. Во-первых, объяснение, предложенное Браутом – Англером и Питером Хиггсом, выглядело простым и элегантным, а во‑вторых, у теории появился эксклюзивный спонсор. Им стал Стивен Вайнберг – один из отцов электрослабого объединения, – который принялся упоминать (причем чем дальше, тем чаще) механизм Хиггса в своих статьях. Когда, несколько лет спустя, Герарду ‘т Хофту, юному аспиранту из Нидерландов, удалось после месяцев работы доказать, что в теории нет расходимостей, – то есть что в реальных вычислениях не появляются не имеющие, с формальной точки зрения, смысла математические выражения, которые давно превратились в кошмар для физиков-теоретиков, – все сошлись на том, что и Стандартную модель, и троих ее доселе неизвестных авторов можно признать.

В 1999 году, то есть спустя много лет после защиты диссертации, Герард ‘т Хофт и его научный руководитель Мартинус Вельтман также стали нобелевскими лауреатами по физике. “Если бы в 1967 году, когда я ломал голову над поиском решения кажущейся неразрешимой задачи, мне сказали, что эта работа принесет мне Нобелевскую премию, я бы просто рассмеялся!” – признался мне позднее Герард. Эту фразу я часто повторяю своим аспирантам, когда мне кажется, что они недостаточно сосредоточены на своих диссертациях. Каждая из них может оказаться самой важной работой в их жизни.

Великое объединение сил

Объединенная теория электрослабых взаимодействий стала еще одним решительным шагом к осуществлению мечты всех физиков – великому объединению фундаментальных взаимодействий.

У этой проблемы долгая предыстория. Первое объединение восходит еще к Галилею и Ньютону. Сила тяжести, благодаря которой тела ускоренно падают на землю, и та сила, что притягивает друг к другу Луну и Землю или Землю и Солнце, из‑за чего первые находятся в состоянии перманентного падения на вторые, – два разных проявления одной и той же силы всемирного тяготения. Небесная гравитация и земная сила тяжести – это одна и та же сила. Именно об этом говорит нам легенда о яблоке, падающем на голову гениального английского ученого.

Для следующего объединения потребовалось два века. Мы назвали его электромагнетизмом – это сила, переносимая фотонами. После того как Фарадей, Герц, Максвелл и Лоренц показали, что электрические явления вызывают магнитные эффекты, и наоборот, все стало простым и понятным. А когда выяснилось, что данное взаимодействие распространяется посредством фотонов и что свет – это электромагнитная волна с определенными параметрами, иначе говоря, возмущение поля, распространяющееся в пространстве, то полноправным членом семьи стала и оптика.

С объединением слабого и электромагнитного взаимодействий желание рассматривать три фундаментальных силы (третье – это сильное ядерное) как проявления одной и той же суперсилы стало практически непреодолимым.

Механизм тут прост. Три фундаментальных взаимодействия характеризуются тремя числами, константами связи, которые определяют их интенсивность. Чем больше значение соответствующей константы, тем интенсивнее взаимодействие. Значения этих трех констант хорошо известны. Принимая за 1 константу связи сильного взаимодействия, мы получим для электромагнитного взаимодействия значение константы связи в 1/137, то есть оно окажется более чем в сто раз слабее сильного, а слабое – примерно в миллион.

Это колоссальное неравенство несколько смягчается из‑за того, что я предпочитаю называть динамической социальной справедливостью: из‑за механизма, подтвержденного множеством экспериментов. Значения констант связи, то есть интенсивность соответствующих взаимодействий, не остаются постоянными, определенными раз и навсегда. Константы, таким образом, не в полной мере константы – они зависят от энергии. С ростом энергии сильные слабеют, а слабые становятся сильнее.

Эту странную динамику подтверждают эксперименты со столкновениями на высоких энергиях. С ростом энергии сталкивающихся частиц проявления электромагнитных и слабых взаимодействий растут, а проявления сильных, напротив, ослабевают. Этот механизм был в основании объединения электрослабых взаимодействий. Когда стали доступны энергии, достаточные для получения W– и Z-бозонов, интенсивность слабых взаимодействий выросла до такой степени, что мы смогли экспериментально убедиться в их объединении с электромагнитными; с тех пор, как подобное можно было наблюдать в естественных условиях, прошли миллиарды лет.

Тот же механизм наблюдается в экспериментах на LHC. При возрастании энергии константа связи сильных взаимодействий становится меньше, а константа связи слабых растет, так что оба значения все больше и больше сближаются. Экстраполируя эту тенденцию, различные теории предсказывают, что при экстремально высоких энергиях константы связи сильного, слабого и электромагнитного взаимодействий стали бы почти равными[17] и три фундаментальных взаимодействия практически сравнялись бы по интенсивности. Эти энергии не были достигнуты, и, по всей вероятности, достичь их не удастся – по крайней мере в ближайшем будущем. Тем не менее общая теоретическая рамка представляется вполне функциональной.

При проведении этой экстраполяции выяснилось, что присутствие в теории новых частиц (к примеру, предсказанных на основании предположения суперсимметрии) приводит к тому, что при вполне определенном значении энергии константы связи всех трех взаимодействий в конце концов приобретают совершенно одинаковое значение. Это обстоятельство послужило еще одним сильным аргументом в пользу суперсимметрии.

Если бы Великое объединение было доказано экспериментально, ситуация стала бы намного яснее. То, что мы видим в реальности нашего мира, – это низкоэнергетические проявления фундаментальных взаимодействий, производных от одной суперсилы, которая действовала в невозмущенном виде в горячей ранней Вселенной. Но как только температура Вселенной опустилась ниже критической, эта суперсила кристаллизовалась и приобрела формы, кажущиеся нам разными взаимодействиями; именно в таком виде мы и смогли с ними познакомиться. Произошедшее немного напоминает то, что случается с водяным паром зимних облаков, который, в зависимости от условий среды, может либо конденсироваться в холодные капли дождя, либо десублимировать в кристаллы снежинок.

Имя мечты

А что же с гравитацией? Мы на какое‑то время оставили ее в стороне – по причине ее обезоруживающей слабости в сравнении с другими фундаментальными взаимодействиями. Константа связи гравитационного взаимодействия с ее близким к нулю значением 10–39 бьет все рекорды. По причине малости этой величины принимать во внимание гравитацию имеет смысл только тогда, когда рассматриваются огромные массы: Солнце, Земля или Луна.

Никто не будет считаться с силой гравитационного притяжения между сотрудниками одного офиса или рабочими одного завода. А ведь каждый из них весит около 80 кг и находится на расстоянии всего двух метров от другого, притом что сила притяжения двух масс обратно пропорциональна квадрату расстояния. И все же она никого не интересует из‑за очень маленького значения константы связи – вследствие этого сила притяжения окажется настолько слабой, что для ее экспериментальной регистрации нам бы понадобились весьма чувствительные приборы. (Если же вы испытываете притяжение к коллеге, с которым или с которой работаете в одном помещении, то у вашего притяжения наверняка не гравитационная природа.)

Для гравитационной константы связи справедливо то же, что было уже сказано про все остальные: при возрастании энергии она растет. Но в ее случае механизм объединения не работает. Эта константа стартует со значения настолько низкого, что, когда все остальные взаимодействия сливаются вместе, безнадежно слабое гравитационное остается в одиночестве.

Эта аномалия будет в центре внимания у целых поколений физиков. Одна из самых привычных для нас сил, с которой мы сталкиваемся ежедневно, оказывается в то же самое время и самой странной. И все‑таки желание объединить все четыре встречающихся в природе взаимодействия никуда не делось. У такой теории уже даже есть амбициозное имя – Теория Всего. И она – тайная мечта любого физика.

Экстраизмерения

Добавить гравитацию в объединенную теорию казалось безнадежным делом до тех пор, пока, несколько лет назад, группа молодых физиков не предложила коренным образом поменять сам взгляд на проблему.

Механизм, в его принципиальных чертах, прост. Гравитация не слаба сама по себе, она лишь кажется слабой. Ослепленные здравым смыслом, мы остаемся в плену предрассудка, согласно которому Вселенная эволюционирует в пространстве четырех измерений: три из них собственно пространственные – длина, ширина и глубина, а одно – временнóе. Но если мы, напротив, предположим, что размерность больше (5, 6 или 10), добавив измерения, которых мы просто не замечаем, то картина радикально изменится.

Вот и разрешение загадки: гравитация кажется нам слабой, потому что мы всегда наблюдали только ее бледную проекцию в знакомом нам четырехмерном мире. Но в пространстве бóльшей размерности это взаимодействие значительно интенсивнее, чем мы думаем! Учитывая скрытые измерения, мы обнаружим, что гравитационная константа связи становится нормальной и при росте энергии гравитация сможет объединиться со всеми остальными взаимодействиями. Но где же скрываются эти экстраизмерения? В первые мгновения жизни Вселенной огромная энергия позволяет удерживать их открытыми, а при последующем охлаждении они быстро сворачиваются, словно замыкаясь сами на себя, и становятся незаметными. Аномальная же слабость гравитации остается с нами – как гигантская диспропорциональная деталь, словно подсказывающая, что мы не должны довольствоваться видимостью.

Самое удивительное заключается в том, что если дополнительные измерения существуют, то их можно обнаружить с помощью ускорителей элементарных частиц, в частности – LHC. Заставляя сталкиваться протоны высоких энергий, мы можем поколебать те пределы, в которых вот уже миллиарды лет протекает незаметная и молчаливая жизнь скрытых измерений. Различные варианты теории предсказывают существование сверхмассивных элементарных частиц – их свойства практически такие же, как и у других частиц, описываемых Стандартной моделью, только весят они в десятки раз больше, – или даже новые и совершенно экзотические состояния материи, для которых гравитационное взаимодействие значительно сильнее, чем обычно. То есть возможно образование агломератов субатомных частиц, удерживаемых вместе не электромагнитным, как электроны в атоме, и не сильным, как кварки в ядре, а гравитационным взаимодействием.

На очень маленьких расстояниях гравитационное притяжение может оказаться настолько сильным, что (теоретически) способно привести к рождению микроскопических черных дыр. У них нет ничего общего с космическими черными дырами – гигантскими небесными телами в центрах многих галактик, настолько массивными, что они оказываются невидимыми, так как даже свет не может оторваться от них. Если такие микроскопические черные дыры действительно могут образовываться, то они должны быть безобидными неустойчивыми частицами, существующими очень короткое время и оставляющими по себе в качестве доказательства своего существования микроскопический фейерверк из десятка элементарных частиц, который можно зарегистрировать ультрачувствительными детекторами, окружающими зону реакции. Поскольку до сих пор ни в одном эксперименте не было замечено ни следов сверхмассивных частиц, ни микроскопических черных дыр, то мы можем оценить сверху ничтожные пространственные размеры все еще скрывающихся дополнительных измерений. Короче говоря, вопрос остается открытым, и любой день может оказаться для нас счастливым. Момент, когда подтвердится какая‑то определенная теория дополнительных измерений, не только впишет этот день в анналы истории науки, но и откроет новую главу в истории человечества. Какая захватывающая смена перспективы, меняющая всю картину мира! Попробуйте‑ка, к примеру, мысленно вписать себя в десятимерный мир или хотя бы попросту его представить. Либо задайтесь вопросами о том, что за удивительные возможности принесет нам систематическое исследование этой новой и доселе неизвестной стороны Вселенной.

В поисках священного Грааля

Итак, начав с обсуждения Стандартной модели, мы пришли к главным вопросам современной физики. Темная материя, инфляция, темная энергия, объединение взаимодействий и особая роль гравитации – вот те проблемы, для решения которых понадобится, по всей вероятности, совершить концептуальную революцию в физике. Рано или поздно мы обнаружим нечто такое, что навсегда изменит наши представления об окружающем мире, а Стандартная модель станет частным случаем значительно более общей теории в пределе низких энергий. Такое уже случалось в прошлом и наверняка случится снова.

Но появление новых проблем не должно было отвлекать нас от решения проблемы старой. Требовалось либо обнаружить бозон Хиггса и доказать, что эта частица действительно существует, либо дать какое‑то другое объяснение механизму спонтанного нарушения симметрии электрослабого взаимодействия. Задача оказалась не из легких. Охота за бозоном началась давно, однако пока Стандартная модель шла в остальном от успеха к успеху, на этом пути копились все новые и новые неудачи. Хотя Стандартная модель переживала годы своего наивысшего триумфа, эта частица по‑прежнему оставалась неуловимой – а ведь на ее существовании держалась вся теоретическая конструкция.

Но вот на рубеже 90‑х годов в игру вступило новое поколение молодых физиков, которые решили попробовать свои силы в деле, до сих пор никому не удававшемся. То есть или обнаружить проклятый бозон, или показать, что механизм Браута – Англера – Хиггса не работает и нужна другая теория.



Поделиться книгой:

На главную
Назад