На рисунке есть тонкая полосочка – это
В детстве я задумывалась: как бы выглядела наша жизнь, если бы мы видели все длины электромагнитных волн? Помогло бы нам это или нет? Большой вопрос.
#физикишутят
Один из создателей термодинамики (наука о передаче тепла), Вальтер Нернст, в часы досуга разводил карпов.
Однажды кто‑то глубокомысленно заметил:
– Странный выбор. Кур разводить и то интересней.
Нернст невозмутимо ответил:
– Я развожу таких животных, которые находятся в термодинамическом равновесии с окружающей средой. Разводить теплокровных – значит, обогревать на свои деньги мировое пространство.
А у вас есть не связанное с работой увлечение, которое демонстрирует вашу экспертность?
Глава 3
Взаимодействия
Взаимодействие – это вообще главное, что изучает физика. Исследуя вещество, явление или предмет, мы всегда сталкиваемся с тем, что они взаимодействуют с окружающим миром.
Вместо «Я мыслю, следовательно, я существую» физик бы сказал: «Я взаимодействую, следовательно, я существую».
Даже когда мы просто смотрим на предмет, он облучается фотонами (волной света). Фотоны от него отражаются и попадают нам в глаз. И наш глаз по углу отражения и длине волны может составить представление о форме этого предмета и о его цвете. Помните, что цвет предметов – это лишь длина волны, которую предмет отразил, а мы уловили.
В мире существует всего четыре вида взаимодействий.
Гравитационное взаимодействие
Хотя это самая слабая сила, она наиболее нам знакома. Из-за неё люди могут находиться на Земле, а планеты – вращаться по орбите вокруг Солнца.
Сила гравитации любого объекта пропорциональна его массе. Поскольку Земля – ближайший к нам из самых крупных объектов, то все предметы притягиваются к ней.
Если бы не было гравитационного взаимодействия, то из-за отсутствия центростремительной силы люди оторвались бы от Земли и улетели бы в открытый космос со скоростью 436 м/с. Огромная скорость, не правда ли? Гравитация играет важнейшую роль в нашей Вселенной, в нашей жизни вообще. И вместе с тем это самое слабое взаимодействие (посмотрите на таблицу!).
Фундаментальные физические взаимодействия
Гравитационное взаимодействие объясняет теория относительности. А квантовая теория описывает три оставшихся вида взаимодействий.
Сильное взаимодействие
Участники сильного взаимодействия – протоны и нейтроны. Это та сила, которая удерживает вместе составляющие этих частиц (кварки) и всё ядро атома. Это мощное, самое сильное взаимодействие. Оно работает только на очень коротких расстояниях, крошечных, как ядро атома. И всё же иногда сильного взаимодействия не хватает, чтобы удержать ядро, и оно разваливается на части. Это называется
В большинстве атомов вокруг нас ядра устойчивые и никогда не развалятся. Некоторые атомы радиоактивны, однако в большинстве случаев это для нас не опасно. Например, банан содержит калий‑40, в грамме которого происходит 32 ядерных распада в секунду. Природный уровень радиации выше среднего у картофеля, орехов и семечек подсолнечника.
В атомной бомбе «Малыш», которая была сброшена на Хиросиму, содержалось около 700 граммов урана‑235. И всего лишь 0,6 грамма вещества было превращено в энергию, создавшую такие ужасные разрушения. Представьте, насколько мощным является сильное взаимодействие.
#физикишутят
Забавно, что люди благодаря философии «в жизни надо попробовать всё» начинают пробовать наркотики, а не изучать ядерную физику, например.
Электромагнитное взаимодействие
Электромагнитное взаимодействие – это взаимодействие электрически заряженных частиц. Носители этого взаимодействия – фотоны.
Фотоны – это безмассовые частицы, которые двигаются со скоростью света и являются самыми распространёнными частицами во Вселенной. Луч света (это поток фотонов) доходит от Солнца до Земли за 8 минут, а от Полярной звезды до Земли – за 472 года, т. е. мы видим сейчас Полярную звезду такой, какой она была во времена Колумба. И вообще, то, что мы видим в ночном небе, – это давно прошедшие события.
Электромагнитное взаимодействие, как и гравитационное, работает на бесконечно больших расстояниях. Оно намного сильнее гравитационного, но не проявляется в космических масштабах, поскольку материя электрически нейтральна (в каждой области Вселенной количество положительных и отрицательных зарядов примерно одинаково).
В обычной жизни мы постоянно сталкиваемся с электромагнитным взаимодействием. Действие большинства современных приборов и бытовой техники основано на электромагнитном взаимодействии.
Слабое взаимодействие
Участники слабого взаимодействия – все элементарные частицы.
Это довольно странное взаимодействие, с помощью которого одни частицы превращаются в другие. Возьмём, например, нейтрон (напомню, что это элементарная частица, т. е. его нельзя разделить на части). С помощью слабого взаимодействия нейтрон может превратиться в протон, электрон и ещё одну очень лёгкую частицу – антинейтрино. В ядре нейтронам это сделать трудно: им мешает сильное взаимодействие. А вот когда нейтрон находится не в ядре (говорят: «свободный нейтрон»), он легко делает такое превращение. В свободном состоянии нейтроны существуют около 15 минут, а потом распадаются.
Но иногда такое превращение случается и в ядре. Это называется
Глава 4
Поля
Мы вспомнили, что такое частицы и волны, какие бывают фундаментальные взаимодействия в природе. И сейчас я расскажу о полях.
На этой теме существует больше всего спекуляций.
Думаю, вы не раз слышали фразы: «Существуют квантовые поля, и я пошлю своё желание в квантовое поле», «Вселенная обязана исполнить любое желание». Разберёмся, так ли это.
Поле – это достаточно математическое понятие в физике; поле нематериально, его невозможно потрогать. Слово «поле» используется в двух значениях.
1.
Например, температура. В каждой точке пространства есть своя температура воздуха. В Москве она одна, в Лондоне другая, в Париже третья. Отметим на карте температуру для каждого города. В каждой точке пространства карты будет существовать своё значение. И мы назовём это полем температуры. Можно создать поле влажности, поле давления.
Но вместе с тем мы же понимаем, что температура существует. Никакого ПОЛЯ температуры в физическом смысле нет. Есть распределение температуры, которое называется полем.
2.
Это как раз те четыре фундаментальных взаимодействия, которые мы рассматривали в главе 3. Никаких других взаимодействий в природе нет. Поэтому есть гравитационное поле, электромагнитное поле и поле, отвечающее за слабое и сильное взаимодействие, т. е. за взаимодействие частиц внутри атома.
Есть специальная наука, которая исследует это взаимодействие, называется она
Обратите внимание на название: «квантовая теория поля». Не «теория квантового поля»! «Квантовое поле» в русском языке говорить безграмотно!
Откуда это словосочетание вообще пришло в русский язык? Подозреваю, что так же, как и слово «вибрации», когда англоязычную научную литературу переводили переводчики без технического образования. В английском языке эта теория называется
Основная идея квантовой теории поля: частица – это элементарное возбуждение в некотором поле. Наша реальность – полевая; никаких частиц самих по себе не существует.
В квантовой физике мы рассматриваем частицы не как маленькие шарики, а как возмущения поля. В следующей главе вы узнаете, что любая частица может быть как частицей, так и волной, и из-за этого возникала путаница; введение понятия поля упростило ситуацию. К тому же квантовая теория поля позволяет делать серьёзные математические расчёты.
В физике элементарных частиц есть свой аналог таблицы Менделеева – это стандартная модель. В ней размещены все известные элементарные частицы. Ещё раз обращу ваше внимание на официальные названия кварков: прелестный, истинный, очарованный, странный… Очень мило, не правда ли?
Можно сказать, что существуют поля каждой элементарной частицы из этой таблицы. Изучением взаимодействия этих полей занимается наука квантовая теория поля.
В теоретической физике также есть много гипотетических полей. Они относятся к теориям, которые не содержат внутренних противоречий и часто не противоречат наблюдениям. Однако они ещё не приняты в научном сообществе из-за того, что воспроизводимы только статистически. А для признания научной теории необходима 100 %-ная воспроизводимость результатов.
Например,
Физик-теоретик Арнольд Зоммерфельд был универсальным учёным, чьи интересы распространялись как на точные науки, так и на гуманитарные, включая литературу, философию и историю. Его называют главным неудачником Нобелевской премии: Зоммерфельда номинировали 84 (!) раза, но так её и не дали. Сам Зоммерфельд два раза номинировал на премию своих коллег – Альберта Эйнштейна и Макса Планка, – после чего учёные стали нобелевскими лауреатами. Всего шесть учеников Зоммерфельда удостоились почётной награды, что тоже является рекордом.
Тахионы не могут как‑либо взаимодействовать с частицами нашего мира, так как их скорость выше скорости взаимодействия в нашей Вселенной. Они просто выпадают из нашей пространственно-временной и причинно-следственной структуры!
По этой причине обнаружение и фиксация таких частиц представляются, скорее всего, невозможными.
Физики вообще любят придумывать теории, которые в принципе невозможно проверить.
Другой интересный пример гипотетического поля –
Теория активно разрабатывалась советскими учёными в 1980‑е годы. Несмотря на сложности в СССР в этот период, изучение теории торсионный полей было поддержано правительством и хорошо финансировалось. Однако в 1990‑е годы исследовательская группа была распущена.
Торсионное поле (если существует) является носителем пятого фундаментального взаимодействия –
Однако многие теории десятилетиями не принимались, а потом стали звёздами науки. Хороший пример – бозон Хиггса и поле Хиггса (см. стандартную модель). Благодаря полю Хиггса у элементарных частиц есть масса. Бозон Хиггса даже называют частицей Бога. Существование бозона предсказали в 1964 году, однако доказательств тому не было. До 2012 года это была гипотетическая теория, а потом бозон Хиггса экспериментально обнаружили на Большом адронном коллайдере. Кто знает, может, через несколько десятилетий теорию торсионных полей тоже признают наукой.
Глава 5
Постулаты классической физики
Квантовая физика – это набор самых действенных принципов, когда‑либо придуманных людьми. Это самая проверенная и доказанная теория из всей науки.
Нильс Бор представил миру квантовую теорию в 1927 году, и с тех пор она господствует в науке.
Любой, кто не поражён квантовой теорией, просто её не понимает.
В основе квантовой теории лежит вероятность того, что все возможные события могут произойти, сколь бы фантастичны и необычны они ни были.
Из-за этого многие стали думать, что квантовая физика – это не наука, а воображаемая теория.
Постулаты классической физики
1. Пространство и время абсолютны. Любое сложное движение можно разложить на совокупность простых движений.
2. Существует связь причины и следствия. По теории Ньютона, у каждого изменения в движении есть причина.
3. Детерминизм. Если в какой‑то момент нам известно состояние движения объекта, то мы можем определить его состояние в любой момент будущего и прошлого.
4. Свойства света полностью описаны в теории электромагнитных волн Максвелла.
5. Свойство системы можно рассчитать с любой степенью точности. Атомные системы не исключение.
Все эти постулаты нам знакомы из школы. И кажутся достаточно очевидными, потому что мир, который мы видим вокруг, казалось бы, подчиняется им. Но на самом деле сейчас все эти постулаты ставятся под сомнение как раз благодаря квантовой физике.
Глава 6
Как устроен атом
Первую модель атома предложил в 1904 году Джозеф Томсон. Она забавно называлась «пудинг с изюмом».
Считалось, что положительный заряд равномерно размещён по всему атому и внутри него находятся отрицательно заряженные электроны – как изюм в пудинге.
Кстати, не путайте Джозефа Томсона с другим физиком – Уильямом Томсоном, который известен ещё как лорд Кельвин. Этот Томсон, который лорд, был первым учёным, получившим право заседать в палате лордов. И в честь него мы говорим «температура по Кельвину».
Следующую, усовершенствованную модель атома предложил Резерфорд, ученик Джозефа Томсона, в 1911 году. Он установил, что в центре атома находится положительно заряженное ядро, вокруг которого вращаются отрицательно заряженные электроны, при этом ядро занимает меньше одной миллиардной части объёма атома. Это стало называться
#физикишутят
Уильям Томсон (лорд Кельвин) однажды отменил свою лекцию и написал на доске:
Professor Tomson will not meet his classes today.
(«Профессор Томсон не сможет сегодня встретиться со своими учениками».)
Студенты решили подшутить над профессором и стёрли первую букву в слове classes (получилось lasses – «любовницы»).
На следующий день Томсон увидел это исправление, но не растерялся, а стёр ещё одну букву в этом же слове и молча ушёл (получилось asses – «ослы»).
Сила притяжения между положительно заряженным ядром и отрицательно заряженным электроном должна быть равна центростремительной силе, действующей на вращающийся электрон. Но если электроны кружатся вокруг ядра, как планеты вокруг Солнца, и постоянно ускоряются, то почему они не излучают электромагнитные волны? (Напомню, что ускорение ведёт к изменению скорости движения тела, а скорость может меняться не только по величине, но и по направлению.) Электроны должны были постоянно терять энергию и в результате упасть на ядро (любое заряженное тело, движущееся с ускорением, излучает электромагнитные волны и, следовательно, теряет энергию). Ответ нашёл ученик Резерфорда – Нильс Бор.
Нильс Бор, пожалуй, самый знаменитый разработчик квантовой теории. Амбициозный датчанин приехал работать в Манчестерскую лабораторию Резерфорда, едва зная английский. Бор учил язык по полному собранию сочинений Диккенса, которое он привёз с собой.
Нильс Бор работал несколько лет и усовершенствовал модель Резерфорда, предложив следующие постулаты.
Постулаты Бора
• Электроны могут двигаться только по определённым (стационарным) орбитам, не излучая электромагнитных волн (энергию).
• Излучение или поглощение энергии происходит только при переходе с одной орбиты на другую.
Орбита и энергетическое состояние